JPS5931028A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5931028A
JPS5931028A JP14136782A JP14136782A JPS5931028A JP S5931028 A JPS5931028 A JP S5931028A JP 14136782 A JP14136782 A JP 14136782A JP 14136782 A JP14136782 A JP 14136782A JP S5931028 A JPS5931028 A JP S5931028A
Authority
JP
Japan
Prior art keywords
film
insulating film
hole
mask
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14136782A
Other languages
Japanese (ja)
Other versions
JPH0138370B2 (en
Inventor
Tomoyuki Hikita
智之 疋田
Nobuo Asama
浅間 信夫
Shinichi Tanaka
真一 田中
Nobuhiro Nishimoto
宜弘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14136782A priority Critical patent/JPS5931028A/en
Publication of JPS5931028A publication Critical patent/JPS5931028A/en
Publication of JPH0138370B2 publication Critical patent/JPH0138370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To make small the diameter of a through hole, and to prevent the second layer metal from generating a cut at a step part by a method wherein an interlayer insulating film is formed by accumulating insulating films of two layers or more having the different properties between wirings, and etching is performed using the same mask. CONSTITUTION:After the inorganic insulating film 7 and the high polymer resin film 5 are accumulately formed, a photo resist film 11 is formed on the resin layer of upper layer, and a hole is opened in the resin layer of upper layer according to the photo etching method. The film 7 is dug to form a hole in the condition leaving the photo resist according to the photo etching method using the photo resist thereof and the film 5 as the mask. Then by etching the previously dug hole in the film 5 using the photo resist as the mask, an overhang part 5a formed to the resin film is removed. Accordingly as a result, the device can be made to possess in combination the property of high polymer resin of favorable step coverage, the excellent quality of being hard to generate a crack, etc., and the excellent quality of the inorganic film of humidity resistance and small impurity.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、更に詳しくは、
多層配線構造を有する半導体装置のWIA間絶間膜縁膜
成方法番こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more specifically,
The present invention relates to a method for forming an insulating film between WIAs in a semiconductor device having a multilayer wiring structure.

一般に、半導体装置が高密度化されるのに伴って、電極
配線の多層化、パターン幅の微少化が要求される。その
為、例えばMOS−ICに於いて、第1図:こ横断面図
で示すように、シリコン基板1上に設けられたMOS)
ランジスタ2の電極に接続される1層目メタル3と、そ
の上層部の2層目メタル4との間にポリイミド樹脂6を
介在させ層間絶縁膜を形成し、多層配線構造にすること
によって高密度化を計ることが考えられる。なお、ここ
で6はSiO□である。このポリイミド樹脂等の高分子
樹脂を、多層配線の層間絶縁膜として使用することは従
来から知られており、ポリイミド樹脂等の樹脂は、無機
絶縁膜、例えば5i02膜、PSG膜、SiN膜等のガ
ラス系絶縁膜に比べ、ステップカバリッジが良い、クラ
ックが起りにくい等の長所がある反面、ガラス系の絶縁
膜に比して吸湿性が大きく、樹脂材料であるが故に不純
物を含有しており、更に分極率が大きい為2層目メタル
の電位関係によっては、シリコン基板の表面反転を引!
起こしMOS)ランジスタのスレッシュホールド電圧を
変化させる等、ICとしての信頼性が悪くなるという欠
点があって、特にMOS−ICに使用することはできな
いとされている。
Generally, as semiconductor devices become more densely packed, there is a demand for multi-layered electrode wiring and smaller pattern widths. Therefore, for example, in a MOS-IC, as shown in FIG.
A polyimide resin 6 is interposed between the first layer metal 3 connected to the electrode of the transistor 2 and the second layer metal 4 above it to form an interlayer insulating film, resulting in a multilayer wiring structure with high density. It is conceivable to measure the Note that 6 is SiO□ here. It has been known for a long time that polymer resins such as polyimide resins are used as interlayer insulating films for multilayer interconnections. Compared to glass-based insulating films, it has advantages such as better step coverage and less cracking, but on the other hand, it is more hygroscopic than glass-based insulating films, and because it is a resin material, it contains impurities. Furthermore, since the polarizability is large, depending on the potential relationship of the second layer metal, the surface of the silicon substrate may be inverted!
It has the disadvantage that reliability as an IC deteriorates, such as by changing the threshold voltage of a transistor (MOS-IC), and it is said that it cannot be used particularly in a MOS-IC.

また、最近、パッケージが低価格の樹脂封止型となって
、なおその形状が小型化するにつれて、この本質的に水
を透過するパッケージでも、耐湿性のある多層配線構造
であることが強く要望されるに至っている。
In addition, recently, as packages have become low-cost resin-sealed types and their shapes have become smaller, there is a strong demand for moisture-resistant multilayer wiring structures even for packages that are essentially water permeable. It has come to be.

そこで、眉間絶縁膜を、第2図にその横断面図を示す如
く、ガラス系絶縁膜7とポリイミド樹脂5を重ねて2層
構造にすれば、上述の欠点を克服しまたニーズに応える
ことができる。すなわち、■ガラス系絶縁膜を下層に使
用することによって、ポリイミド樹脂の吸湿による水分
および樹脂に含まれている不純物がシリコン基板に到達
することを防ぐことができる。■ポリイミド樹脂の分極
に(3) よる影響を、下層のガラス系絶縁膜によって半減するこ
とができる。■ガラス系絶縁膜のステップカバリッジの
悪さおよびクラック等は上層のポリイミド樹脂によって
平坦化し、又、クラックを埋めることにより、層間絶縁
膜の完全性を飛躍的に向上することができる。又、一般
に絶縁膜の欠陥率の減少には、多層構造が有効であるこ
とが知られており、従って、この第2図に示す如く構成
すれば、LSIの歩留の向上に対して有効である。
Therefore, if the glabella insulating film is made into a two-layer structure by overlapping the glass-based insulating film 7 and the polyimide resin 5, as shown in the cross-sectional view of FIG. 2, the above-mentioned drawbacks can be overcome and the needs can be met. can. That is, (1) By using a glass-based insulating film as the lower layer, it is possible to prevent moisture due to moisture absorption of the polyimide resin and impurities contained in the resin from reaching the silicon substrate. (3) The influence of polarization of polyimide resin (3) can be halved by the underlying glass-based insulating film. (2) Poor step coverage and cracks in the glass-based insulating film can be flattened by the upper layer of polyimide resin, and the integrity of the interlayer insulating film can be dramatically improved by filling the cracks. Furthermore, it is generally known that a multilayer structure is effective in reducing the defect rate of insulating films, and therefore, the structure shown in FIG. 2 is effective in improving the yield of LSI. be.

しかるに、この様な構造、特に1層目メタル3と2層目
メタル4とを接合する為のスルーホール10を形成する
方法としては、従来、下記に示す2つの方法が採られて
おり、それぞれ問題点を有している。すなわち、第1の
方法は、第8図にその完成品の断面側面図を示す如く、
まず1層目メタル3を形成した後ガラス系絶縁膜7を塗
布し、ガラス系絶縁膜7にフォトエツチング法で孔8を
形成した後、ポリイミド樹脂6を塗布し、次いでポリイ
ミド樹脂5にフォトエツチング法で孔Bを形成して上述
の孔8とともにスルーホール10を形成(4)。
However, as a method for forming a through hole 10 for joining such a structure, particularly the first layer metal 3 and the second layer metal 4, the following two methods have been conventionally adopted, and each method is as follows. There are problems. That is, the first method is as shown in the cross-sectional side view of the finished product in FIG.
First, after forming the first layer metal 3, a glass-based insulating film 7 is applied, holes 8 are formed in the glass-based insulating film 7 by photo-etching, a polyimide resin 6 is applied, and then a polyimide resin 5 is photo-etched. A through hole 10 is formed together with the above-mentioned hole 8 by forming a hole B using a method (4).

し、2層目メタル4を形成する方法である。しかし、こ
の様な方法によっては、下層のガラス系絶縁膜7と上層
のポリイミド樹脂5を全く別個にフォトエツチング法で
穿孔する為、第8図の如く必然的にミスアラインメント
が生じ、従ってスルーホール10の径を小さくすること
ができない。これに対し、第2の方法は、1rm目メタ
ル3を形成後ガラス系絶w膜7およびポリイミド樹脂6
を塗布した後、フォトエツチング法により上層のポリイ
ミド樹脂5を軸側するエツチングで孔9を形成し、位置
をずらさずに、ポリイミド樹脂5をマスクとしてガラス
系絶縁膜7を蝕刻するエツチングを施して孔8を形成し
てスルーホール10とし、最後に2頌目メタル4を形成
する。この第2の方法によれは、孔8と孔8との同番こ
ミスアラインメントが生じず、従って、スルーホール1
0の径を小さくすることができ、高密度の半導体装置を
製作することができるが、第4図にこの第2の方法によ
って形成した半導体装1者の断匍側面図を示す如り、1
w4目メタル3と2Jii!1日メタル4が良好に接続
されにくい。すなわち、ガラス系絶縁膜7をエツチング
する際、ポリイミド樹脂5をマスクとする為、どうして
もポリイミド樹脂6、に第4図の如きオーバー−ハング
部iが形成され、この状態で2層目メタルを形成するの
で、1層目メタル3と2層目メタル4がオーバーハング
部−によって分断され、いわゆる段切れ状態となってし
まう。この段切れは半導体装置の歩留を著しく低下させ
る原因となっている。
In this method, the second layer metal 4 is formed. However, with this method, the lower glass insulating film 7 and the upper polyimide resin 5 are photo-etched completely separately, which inevitably causes misalignment as shown in Figure 8. 10 cannot be made smaller. On the other hand, in the second method, after forming the first rm metal 3, a glass-based insulating film 7 and a polyimide resin 6 are formed.
After coating, a hole 9 is formed by etching the upper layer polyimide resin 5 on the axis side using a photo-etching method, and etching is performed to etch the glass-based insulating film 7 using the polyimide resin 5 as a mask without shifting the position. A hole 8 is formed to form a through hole 10, and finally a second square metal 4 is formed. With this second method, no misalignment occurs between the holes 8 and 8, and therefore the through holes 1
The diameter of the semiconductor device 1 can be made small, and a high-density semiconductor device can be manufactured.
w 4th metal 3 and 2Jii! 1st Metal 4 is difficult to connect well. That is, since the polyimide resin 5 is used as a mask when etching the glass-based insulating film 7, an overhang part i as shown in FIG. 4 is inevitably formed in the polyimide resin 6, and in this state, the second layer metal is formed. Therefore, the first layer metal 3 and the second layer metal 4 are separated by the overhang portion, resulting in a so-called step-broken state. This disconnection causes a significant decrease in the yield of semiconductor devices.

本発明は上記に鑑みなされたもので、スルーホールの径
が小さく、かつ、2層目メタルの段切れを生じない半導
体装置の製造方法を提供することを目的とする。
The present invention has been made in view of the above, and it is an object of the present invention to provide a method for manufacturing a semiconductor device in which the diameter of a through hole is small and no breakage occurs in the second layer metal.

本発明の特徴とするところは、ガラス系絶縁膜等の無機
絶縁膜と、ポリイミド樹脂等の高分子樹脂膜とを重ねて
形成した後、上層の樹脂の上にフォトレジスト膜を形成
してフォトエツチング法により上層の樹脂に穿孔し、そ
のフォトレジストを残した状態で下層のガラス系絶縁膜
をそのフォトレジストおよび樹脂をマスクとしてフォト
エッチフグ法によって穿孔し、次に再度上述のフ第1・
レジストをマスクとして樹脂に先に穿った孔をエツチン
グすることにより、樹脂に形成されたオーバーハング部
を除去することにある。
The present invention is characterized by forming an inorganic insulating film such as a glass-based insulating film and a polymeric resin film such as polyimide resin in a layered manner, and then forming a photoresist film on the upper layer of the resin. A hole is made in the upper layer resin by an etching method, and with the photoresist left, a hole is made in the lower glass insulating film by a photoetching method using the photoresist and resin as a mask, and then the above-mentioned step 1.
The purpose of this method is to remove overhangs formed in the resin by etching holes previously drilled in the resin using a resist as a mask.

以下、図面に基づいて本発明実施例を説明する。Embodiments of the present invention will be described below based on the drawings.

第5図(a)〜(f)は、本発明実施例を経時的に説明
する為の断面図である。
FIGS. 5(a) to 5(f) are sectional views for explaining the embodiments of the present invention over time.

第6図(a)は一層目メタル3が完成した段階を示す。FIG. 6(a) shows the stage when the first layer metal 3 is completed.

次に、CVD法によってガラス系絶縁膜7(例えばSi
O□膜、SIN膜、PSG膜、その他)を1μηIの膜
厚にデポジションする。次にポリイミド樹脂5等の高分
子樹脂を同じく1μmの膜厚で形成する。この状態を第
5図(b)に示す。なお、膜の形成法はプラズマ法、ス
パッタ法、その他によっても行なうことができ、膜厚も
上記以外任意に選択すことができる。次に、ポリイミド
樹脂5の穿孔用フォトレジスト膜11を4pmの厚さで
形成し、そのフォトレジスト膜11をマスクとしてポリ
イミド樹脂5を02プラズマでエツチングして孔9を穿
つ。
Next, a glass-based insulating film 7 (for example, Si
O□ film, SIN film, PSG film, etc.) is deposited to a film thickness of 1 μηI. Next, a polymer resin such as polyimide resin 5 is similarly formed with a film thickness of 1 μm. This state is shown in FIG. 5(b). Note that the film can be formed by a plasma method, a sputtering method, or other methods, and the film thickness can also be arbitrarily selected other than those mentioned above. Next, a photoresist film 11 for forming holes in the polyimide resin 5 is formed to a thickness of 4 pm, and using the photoresist film 11 as a mask, the polyimide resin 5 is etched with 02 plasma to form the holes 9.

この02プラズマではガラス系絶縁膜7はエツチングさ
れず、又、ポリイミド樹脂5とフォトレジスト11のエ
ツチング速度はほぼ等しく、従ってフォトレジスト11
も同時にエツチングされて、ポリイミド樹脂5に穿たれ
た孔9は約45°の傾斜が付く。
In this 02 plasma, the glass-based insulating film 7 is not etched, and the etching speeds of the polyimide resin 5 and the photoresist 11 are almost equal, so the photoresist 11
The holes 9 made in the polyimide resin 5 are also etched at the same time, so that the holes 9 formed in the polyimide resin 5 have an inclination of about 45°.

この状態を第5図(C)に示す。なお、この様なエツチ
ングは02プラズマの他に、リアクテイブスバッタエツ
チン、グあるいはウェットエツチングでも同  ′様で
ある。次に、ポリイミド樹脂5とその上方に形成された
フォトレジスト11をマスクとして、下層の810μガ
ラス系絶縁膜7をフッ酸系のニッチヤードでエツチング
して孔8を形成する。このとき、ポリイミド樹脂6には
前述した如くオーバーハング部6aが形成される。この
状態を第5図(d)に示す。次いで、フォトレジスト1
1をマスクとして、再度ポリイミド樹脂6を0/ラズマ
で約1μmエツチングする。そうすれば、孔9は側壁部
からエツチングされて径が大きな孔9′となり、ポリイ
ミド樹脂5のオーバーハング部6aが除去される。この
状態を第5図(e)に示す。次に、フォトレジスト11
を除去した後、2層目メタル4を約1μm形成してその
2層目メタル4をフォトエツチングすれば、第5図(f
)に示す如く、多層配線構造が完成する。
This state is shown in FIG. 5(C). In addition to 02 plasma, this type of etching can also be done by reactive scattering etching, wet etching or etching. Next, using the polyimide resin 5 and the photoresist 11 formed above it as a mask, the lower 810 μm glass insulating film 7 is etched with a hydrofluoric acid niche yard to form holes 8. At this time, the overhang portion 6a is formed in the polyimide resin 6 as described above. This state is shown in FIG. 5(d). Next, photoresist 1
Using 1 as a mask, the polyimide resin 6 is etched again by about 1 μm using 0/lasma. Then, the hole 9 is etched from the side wall to become a hole 9' with a large diameter, and the overhang portion 6a of the polyimide resin 5 is removed. This state is shown in FIG. 5(e). Next, photoresist 11
After removing the second layer metal 4, a second layer metal 4 with a thickness of about 1 μm is formed and the second layer metal 4 is photoetched, as shown in FIG.
), the multilayer wiring structure is completed.

なお、1層目および2層目メタルは、一般にはアルミニ
ウムが用いられるが、多結晶Si、Mo等の金属又はそ
れらの化合物であってもよいことはBうまでもない。
Note that aluminum is generally used as the first and second layer metals, but it goes without saying that metals such as polycrystalline Si and Mo or compounds thereof may also be used.

以上説明したように、本発明によれば、ポリイミド樹脂
等の高分子樹脂のステップカバリッジの良好な性質およ
びクラックが起りにくい等の長所と、ガラス系絶縁膜等
の無機絶縁膜の耐湿性および不純物が少いという長所と
を兼ねそなえた信頼性の高い半導体装置を、メタル配線
の段切れ等の不良品を生ずることなく高い歩留のもとに
製造することができる。
As explained above, according to the present invention, the advantages of polymer resin such as polyimide resin such as good step coverage and less cracking, and the moisture resistance and resistance of inorganic insulating film such as glass insulating film A highly reliable semiconductor device having the advantage of having a small amount of impurities can be manufactured at a high yield without producing defective products such as broken metal wiring.

なお、本発明による多層配線構造は、実施例の如く2層
でなく、8層またはそれ以上のものであっても同様なる
手法によって形成し得ることは勿論である。
It goes without saying that the multilayer wiring structure according to the present invention can be formed by the same method even if it has eight or more layers instead of two layers as in the embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリイミド樹脂を眉間絶縁膜とした多層配線構
造の半導体装置の断面図1、第2図はポリイミド樹脂お
よびガラス系絶縁膜を重ねて層間絶縁膜を形成した多層
配線構造の半導体装置の断面図、第8図および第4図は
従来法によって第2図の構造を形成した場合のスルーホ
ール部形状を示す断面図、第5図(aχ(bλ夙(dλ
(eχ(f)はそれぞれ本発明実施例を経時的に説明す
る為の断面図である。 1・・・シリコン基板、  2・・・MOS)ランジス
タ、3・・・1層目メタル、  4・・・2層目メタル
、6・・・ポリイミド樹脂% 5i・・オーパーツ1ン
グ部、7・・・ガラス系絶縁膜、10・・・スルーホー
ル部、11・・・フォトレジスト、 特許出願人  シャープ株式会社 代 理 人  弁理士 西1)新
Figure 1 is a cross-sectional view of a semiconductor device with a multilayer wiring structure using polyimide resin as an insulating film between the eyebrows, and Figure 2 is a cross-sectional view of a semiconductor device with a multilayer wiring structure in which polyimide resin and glass-based insulation films are stacked to form an interlayer insulation film. 8 and 4 are cross-sectional views showing the shape of the through-hole portion when the structure shown in FIG. 2 is formed by the conventional method, and FIG.
(eχ(f) is a sectional view for explaining the embodiments of the present invention over time. 1... Silicon substrate, 2... MOS) transistor, 3... First layer metal, 4. ...Second layer metal, 6...Polyimide resin% 5i...Oparts 1 ring part, 7...Glass-based insulating film, 10...Through hole part, 11...Photoresist, Patent applicant Sharp Corporation Representative Patent Attorney Nishi 1) Arata

Claims (2)

【特許請求の範囲】[Claims] (1)多層配線構造を有する半導体装置の製造方法であ
って、配線間に2層以上の性質の異る絶縁膜を重ねて層
間絶縁膜を形成し、その層間絶縁膜にスルーホールを形
成するにあたり、上記異種の絶縁膜を同一のフォトレジ
ストマスクを用いてエツチングすることを特徴とする半
導体装置の製造方法。
(1) A method for manufacturing a semiconductor device having a multilayer wiring structure, in which two or more layers of insulating films with different properties are stacked between wirings to form an interlayer insulating film, and through holes are formed in the interlayer insulating film. A method for manufacturing a semiconductor device, characterized in that the different types of insulating films are etched using the same photoresist mask.
(2)上記層間絶縁膜の上方にフォトレジストを形成し
て上記層間絶縁膜の上層側の絶縁膜をエツチングにより
孔を穿ち、その下層の絶縁膜を上記フオトレジスlよび
上記上層の絶縁膜をマスクとしてエツチングした後、上
記上層の絶縁膜を再度上記フォトレジストをマスクとし
てエツチングして上記孔の側面部を所定量除去すること
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法
(2) Form a photoresist above the interlayer insulating film, make a hole in the upper insulating film of the interlayer insulating film by etching, and use the lower insulating film to mask the photoresist l and the upper insulating film. The method for manufacturing a semiconductor device according to claim 1, wherein the upper insulating film is etched again using the photoresist as a mask to remove a predetermined amount of the side surface of the hole.
JP14136782A 1982-08-13 1982-08-13 Manufacture of semiconductor device Granted JPS5931028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14136782A JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14136782A JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5931028A true JPS5931028A (en) 1984-02-18
JPH0138370B2 JPH0138370B2 (en) 1989-08-14

Family

ID=15290331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14136782A Granted JPS5931028A (en) 1982-08-13 1982-08-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5931028A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710936A (en) * 1980-06-25 1982-01-20 Sanyo Electric Co Ltd Forming method for contact hole

Also Published As

Publication number Publication date
JPH0138370B2 (en) 1989-08-14

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
US5055906A (en) Semiconductor device having a composite insulating interlayer
JP2011009581A (en) Process of producing semiconductor device and the semiconductor device
JPS5931028A (en) Manufacture of semiconductor device
JPS6059752A (en) Manufacture of semiconductor device
JPS59169154A (en) Semiconductor device
JPS6360539B2 (en)
JPH0230180B2 (en)
JPS5849026B2 (en) Multilayer wiring manufacturing method
JPS60210851A (en) Semiconductor device and manufacture thereof
JP3331756B2 (en) Wiring formation method
JPS62155537A (en) Manufacture of semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
JPH02183536A (en) Semiconductor device
JPH0530068B2 (en)
JPS61107743A (en) Manufacture of semiconductor device
JPH02278849A (en) Manufacture of semiconductor device
JPS5893254A (en) Manufacture of semiconductor device
JPS63208243A (en) Manufacture of semiconductor device
JPH06125012A (en) Wiring structure of semiconductor device
JPS6148940A (en) Method of forming electrode of semiconductor device
JPH0555164A (en) Manufacture of semiconductor device
JPS59117236A (en) Semiconductor device
JPS61120446A (en) Semiconductor device
JPH03149824A (en) Manufacture of semiconductor device