JPH0137387B2 - - Google Patents

Info

Publication number
JPH0137387B2
JPH0137387B2 JP6839384A JP6839384A JPH0137387B2 JP H0137387 B2 JPH0137387 B2 JP H0137387B2 JP 6839384 A JP6839384 A JP 6839384A JP 6839384 A JP6839384 A JP 6839384A JP H0137387 B2 JPH0137387 B2 JP H0137387B2
Authority
JP
Japan
Prior art keywords
fatty acids
carbon dioxide
highly unsaturated
unsaturated fatty
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6839384A
Other languages
Japanese (ja)
Other versions
JPS60214757A (en
Inventor
Hiroshi Unno
Hiroshi Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP6839384A priority Critical patent/JPS60214757A/en
Publication of JPS60214757A publication Critical patent/JPS60214757A/en
Publication of JPH0137387B2 publication Critical patent/JPH0137387B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的) 産業上の利用分野 本発明は高度不飽和脂肪酸、特にエイコサペン
タエン酸(EPA)、ドコサヘキサエン酸(DHA)
又はそれらのエステルを含有する原料中のEPA,
DHA、又はそれらのエステルを濃縮分離する方
法に関する。 発明が解決しようとする問題点 魚油等の海産物油脂に含まれるEPA及びDHA
(及びそのエステル、アミド等の誘導体)は、心
筋梗塞、脳梗塞等の血栓性疾患の予防及び治療に
有効であることが知られている。しかしながら天
然物中の含有量は低いため、医療等各種用途には
これを濃縮する必要がある。本発明はかかる高度
不飽和脂肪酸又はそのエステルの効果的、経済的
な濃縮分離方法を提供することを目的とする。 従来の技術 各種脂肪酸又はそのエステルの混合物から特定
の脂肪酸又はそのエステルを濃縮分離する方法と
して従来用いられている次の諸法、即ち (1) 蒸留法は高真空(1mmHg以下)を必要と
し、また沸点差による分離であるため、高度不
飽和脂肪酸又はそのエステルと他の脂肪酸(飽
和及び低不飽和脂肪酸)又はそのエステルとの
分離が困難であり、かつ蒸留法単独ではバツチ
式蒸留となるため、長時間高温にさらされるこ
とによつて異性化や重合が起こり易いという欠
点がある。 (2) クロマトグラフイー法は、一般に少量しか扱
えず、スケールアツプは極めて困難で、分離に
長時間を要し、操作も複雑であり、原料に対し
て大量の溶剤を必要とするという欠点がある。 (3) 尿素付加法は、不飽和度の低い脂肪酸又はそ
のエステルが尿素に付加して結晶を生成する性
質を利用して、尿素付加混合物から高度不飽和
脂肪酸又はそのエステルを溶剤抽出し、その溶
液から高度不飽和脂肪酸又はそのエステルを回
収する方法であるが、抽出溶剤としてメタノー
ル等の極性溶剤を使用すると抽出液中に尿素が
溶解して移行する為、溶剤除去後尿素を水洗又
はカラムクロマトを使用して除去する工程が必
要になる。その改良法としてメタノールを20%
以下含有する脂肪族又は脂環族炭化水素溶剤を
使用する方法(特開昭57−164196)が提案され
ているが、この方法も溶剤抽出後、溶剤を除去
するために加熱下又は減圧下で分離操作を行う
必要がある。 (発明の構成) 問題点を解決するための手段 本発明者等は、液体又は超臨界ガス状態の二酸
化炭素が、尿素付加混合物から高度不飽和脂肪酸
又はそのエステルを選択的に抽出することを見出
し、本発明を完成した。 即ち本発明は、高度不飽和脂肪酸又はその低級
アルコールエステルを含有する各種脂肪酸又はそ
の低級アルコールエステル混合物と、液体又は超
臨界ガス状態の二酸化炭素と、固体尿素とを接触
せしめ、該接触域から得られる抽出相から二酸化
炭素を除去することよりなる高度不飽和脂肪酸又
はその低級アルコールエステルを濃縮分離する方
法である。 この方法は、不飽和度の低い脂肪酸又はそのエ
ステルが尿素に付加する性質を利用する点におい
ては従来の尿素付加法と同じであるが、高度不飽
和脂肪酸又はその低級アルコールエステルの抽出
剤として液体又は超臨界ガス状態の二酸化炭素を
用いる点で新規性及び進歩性を有する。 尿素は液体又は超臨界ガス状態の二酸化炭素に
溶解しないので、抽出相は濃縮された高度不飽和
脂肪酸又はその低級アルコールエステルと二酸化
炭素とのみよりなる。 高度不飽和脂肪酸又はその低級アルコールエス
テルを含有する各種脂肪酸又はその低級アルコー
ルエステル混合物と、液体又は超臨界ガス状態の
二酸化炭素と、固体尿素とを接触させる工程、即
ち抽出工程の圧力は70〜300気圧、好ましくは100
〜250気圧、特に好ましくは200気圧前後が好適で
ある。温度は特に制限はないが、操作の簡便さの
為には室温付近、即ち20〜40℃が適当である。こ
の条件下では二酸化炭素は液体又は超臨界ガス状
態で存在する。 また固体尿素の使用量は、原料の各種脂肪酸又
はその低級アルコールエステル混合物に対して1
〜10重量倍、特に3〜8重量倍が好ましい。 この抽出工程からの抽出相を加熱又は減圧する
ことにより二酸化炭素は急速に気化するので、容
易かつ完全に除去でき、尿素や溶剤を全く含まな
い濃縮された高度不飽和脂肪酸又はその低級アル
コールエステルを分離することができる(分離工
程)。 さらに、分離器を2個以上設け、抽出相を2段
以上の圧力段階で減圧して、それぞれの段階で濃
縮された高度不飽和脂肪酸又はその低級アルコー
ルエステルを分離することにより、分離効果を向
上させることができる。これは特にEPA、DHA
又はそのエステルの分離に有効である。 分離工程で分離された二酸化炭素は圧縮して再
使用することができる。 実施例 以下実施例により、本発明を具体的に説明する
が、本発明はそれらに限定されるものではない。 以下の実施例1〜6において使用する原料は、
魚油をエタノール性水酸化カリウム水溶液でアル
カリ分解したものを使用した。脂肪酸の組成は、
脂肪酸混合物を無水塩化水素メタノール溶液でメ
チルエステルとし、このメチルエステルをガスク
ロマトグラフイーにて分析した。組成はガスクロ
マトグラフの面積%で表示した。 実施例 1 第1図に示した装置を用いた。抽出器1に脂肪
酸52.0gと固体尿素156g(原料の3倍)を入れ、
二酸化炭素をボンベ2からポンプ3で移液し、加
熱器4で抽出温度が25℃になるように加熱し、
200Kg/cm2Gの一定圧力で抽出器1に送つた。抽
出相は減圧弁5で大気圧に減圧され、分離器6で
抽出油を分離した二酸化炭素ガスはガスメーター
7で検量して系外に放出した。分離器6に捕集さ
れた抽出油は19.7g(原料の38%)であつた。原
料、抽出油、及び抽残油の組成分析値を第1表に
示す。なおこの時使用した二酸化炭素は1.07Nm3
(2.09Kg)であり、抽出時間は1.5時間であつた。 第1表の脂肪酸成分の表示において、例えば
18:2は、炭素数が18、二重結合が2個の脂肪酸
(リノール酸)を示す。エイコサペンタエン酸
(EPA)は20:5、ドコサヘキサエン酸(DHA)
は22:6である。
(Purpose) Industrial application field The present invention is directed to highly unsaturated fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
or EPA in raw materials containing those esters,
This invention relates to a method for concentrating and separating DHA or esters thereof. Problems to be solved by the invention EPA and DHA contained in seafood oils such as fish oil
(and derivatives thereof such as esters and amides) are known to be effective in preventing and treating thrombotic diseases such as myocardial infarction and cerebral infarction. However, since the content in natural products is low, it is necessary to concentrate it for various medical and other uses. An object of the present invention is to provide an effective and economical method for concentrating and separating such highly unsaturated fatty acids or their esters. PRIOR TECHNOLOGY The following methods have been conventionally used to concentrate and separate a specific fatty acid or its ester from a mixture of various fatty acids or its esters, namely (1) distillation method, which requires high vacuum (1 mmHg or less); In addition, because the separation is based on the difference in boiling point, it is difficult to separate highly unsaturated fatty acids or their esters from other fatty acids (saturated and low unsaturated fatty acids) or their esters, and distillation alone requires batch distillation. However, it has the disadvantage that isomerization and polymerization are likely to occur when exposed to high temperatures for a long period of time. (2) Chromatography methods generally only handle small amounts, are extremely difficult to scale up, require a long time to separate, are complicated to operate, and require a large amount of solvent relative to the raw materials. be. (3) The urea addition method takes advantage of the property of fatty acids with a low degree of unsaturation or their esters to form crystals when added to urea, and extracts highly unsaturated fatty acids or their esters from a urea addition mixture with a solvent. This method recovers highly unsaturated fatty acids or their esters from a solution, but if a polar solvent such as methanol is used as an extraction solvent, urea will dissolve and migrate into the extract, so after removing the solvent, the urea must be washed with water or subjected to column chromatography. A process of removing it using As an improvement method, methanol is added to 20%
A method using an aliphatic or alicyclic hydrocarbon solvent containing the following has been proposed (Japanese Patent Application Laid-open No. 57-164196), but this method also requires heating or reduced pressure to remove the solvent after solvent extraction. It is necessary to perform a separation operation. (Structure of the Invention) Means for Solving the Problems The present inventors have discovered that carbon dioxide in a liquid or supercritical gas state selectively extracts highly unsaturated fatty acids or their esters from a urea addition mixture. , completed the invention. That is, the present invention involves bringing a mixture of various fatty acids or lower alcohol esters containing a highly unsaturated fatty acid or a lower alcohol ester thereof into contact with carbon dioxide in a liquid or supercritical gas state, and solid urea, and producing a mixture obtained from the contact area. This is a method for concentrating and separating highly unsaturated fatty acids or their lower alcohol esters by removing carbon dioxide from the extracted phase. This method is the same as the conventional urea addition method in that it utilizes the property of a fatty acid with a low degree of unsaturation or its ester to add to urea, but a liquid Alternatively, the invention is novel and inventive in that it uses carbon dioxide in a supercritical gas state. Since urea does not dissolve in liquid or supercritical gaseous carbon dioxide, the extraction phase consists only of concentrated highly unsaturated fatty acids or lower alcohol esters thereof and carbon dioxide. The pressure of the extraction step is 70 to 300, i.e., the step of contacting various fatty acids or lower alcohol ester mixtures containing highly unsaturated fatty acids or lower alcohol esters, carbon dioxide in a liquid or supercritical gas state, and solid urea. atmospheric pressure, preferably 100
~250 atm, particularly preferably around 200 atm. The temperature is not particularly limited, but for ease of operation, a temperature around room temperature, ie, 20 to 40°C, is suitable. Under these conditions, carbon dioxide exists in a liquid or supercritical gas state. In addition, the amount of solid urea used is 1% per raw material of various fatty acids or their lower alcohol ester mixtures.
~10 times by weight, especially 3 to 8 times by weight is preferred. By heating or depressurizing the extraction phase from this extraction step, the carbon dioxide is rapidly vaporized and can be easily and completely removed, creating a concentrated polyunsaturated fatty acid or its lower alcohol ester that is completely free of urea and solvents. can be separated (separation step). Furthermore, the separation effect is improved by installing two or more separators, reducing the pressure of the extraction phase in two or more pressure stages, and separating concentrated highly unsaturated fatty acids or their lower alcohol esters in each stage. can be done. This is especially true for EPA, DHA
or its ester. The carbon dioxide separated in the separation process can be compressed and reused. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. The raw materials used in Examples 1 to 6 below are:
Fish oil was used after being alkali-decomposed with an ethanolic potassium hydroxide aqueous solution. The composition of fatty acids is
The fatty acid mixture was made into methyl ester with anhydrous hydrogen chloride methanol solution, and the methyl ester was analyzed by gas chromatography. The composition was expressed as area % on a gas chromatograph. Example 1 The apparatus shown in FIG. 1 was used. Put 52.0 g of fatty acids and 156 g of solid urea (3 times the amount of raw materials) into extractor 1.
Transfer carbon dioxide from cylinder 2 with pump 3, heat it with heater 4 so that the extraction temperature is 25°C,
It was sent to extractor 1 at a constant pressure of 200 Kg/cm 2 G. The pressure of the extracted phase was reduced to atmospheric pressure by a pressure reducing valve 5, and the carbon dioxide gas from which the extracted oil was separated by a separator 6 was measured by a gas meter 7 and discharged to the outside of the system. The extracted oil collected in separator 6 was 19.7 g (38% of the raw material). Table 1 shows the compositional analysis values of the raw materials, extracted oil, and raffinate oil. The carbon dioxide used at this time was 1.07Nm 3
(2.09Kg), and the extraction time was 1.5 hours. In the display of fatty acid components in Table 1, for example,
18:2 indicates a fatty acid (linoleic acid) with 18 carbon atoms and 2 double bonds. Eicosapentaenoic acid (EPA) is 20:5, docosahexaenoic acid (DHA)
is 22:6.

【表】 EPAは18.4%から22.4%へ、DHAは11.1%から
13.6%に濃縮されていた。 実施例 2 実施例1と同一の原料脂肪酸混合物及び同一の
装置を用いた。脂肪酸35.1gと固体尿素181g
(原料の5.2倍)を混合して抽出器1に入れ、25
℃、200Kg/cm2Gで0.64Nm3(1.24Kg)の二酸化炭
素で1.5時間で抽出し、抽出油10.1g(原料の29
%)を得た。組成分析値を第2表に示す。
[Table] EPA from 18.4% to 22.4%, DHA from 11.1%
It was concentrated to 13.6%. Example 2 The same raw fatty acid mixture and the same equipment as in Example 1 were used. 35.1g fatty acids and 181g solid urea
(5.2 times the amount of raw materials) and put it in extractor 1, 25
℃, 200Kg/cm 2 G and 0.64Nm 3 (1.24Kg) of carbon dioxide for 1.5 hours to extract 10.1g of extracted oil (raw material 29
%) was obtained. Composition analysis values are shown in Table 2.

【表】【table】

【表】 EPAは18.4%から29.4%へ、DHAは11.1%から
21.5%に濃縮されていた。 実施例 3 第2図に示した装置で、抽出油の分離圧力を2
段に変化させて行つた。原料脂肪酸34.7gと固体
尿素181g(原料の5.2倍)を混合して抽出器1に
入れ、40℃、200Kg/cm2Gで二酸化炭素による抽
出を行つた。抽出相は減圧弁5aで120Kg/cm2
に減圧され、分離器6aで抽出油の1部を分離す
る。6aで分離されなかつた抽出油を含む二酸化
炭素は、さらに減圧弁5bで大気圧に減圧され、
分離器6aで抽出油を完全に分離する。このよう
にして、0.74Nm3(1.54Kg)の二酸化炭素を用い
て1.5時間かけて抽出したところ、分離器6a中
に6.8g(原料の20%)、分離器6b中に5.7g
(原料の17%)の抽出油が得られた。組成分析の
結果を第3表に示す。 分離器6aで捕集された抽出油では、EPAは
18.4%から30.3%へ、DHAは11.1%から25.0%に
濃縮されていた。また分離器6bで捕集された抽
出油でも、EPAは28.3%、DHAは17.3%に濃縮
されていた。
[Table] EPA from 18.4% to 29.4%, DHA from 11.1%
It was concentrated to 21.5%. Example 3 Using the apparatus shown in Figure 2, the separation pressure of extracted oil was set to 2.
I changed it step by step. 34.7 g of raw fatty acid and 181 g of solid urea (5.2 times the raw material) were mixed and placed in extractor 1, and extracted with carbon dioxide at 40° C. and 200 kg/cm 2 G. The extraction phase is 120Kg/cm 2 G with pressure reducing valve 5a.
The pressure is reduced to , and a portion of the extracted oil is separated in the separator 6a. The carbon dioxide containing the extracted oil that was not separated in step 6a is further reduced in pressure to atmospheric pressure in pressure reducing valve 5b,
The extracted oil is completely separated in the separator 6a. In this way, when extraction was performed using 0.74Nm 3 (1.54Kg) of carbon dioxide over 1.5 hours, 6.8g (20% of the raw material) was placed in separator 6a and 5.7g was placed in separator 6b.
(17% of raw material) extracted oil was obtained. The results of the compositional analysis are shown in Table 3. In the extracted oil collected in separator 6a, EPA is
DHA was concentrated from 11.1% to 25.0%, from 18.4% to 30.3%. Furthermore, in the extracted oil collected by the separator 6b, EPA was concentrated to 28.3% and DHA was concentrated to 17.3%.

【表】 実施例 4〜6 原料脂肪酸混合物に対する固体尿素の重量を、
それぞれ1.0倍(実施例4)、2.9倍(実施例5)、
および8.2倍(実施例6)とした以外は、実施例
3と同様にして、40℃、200Kg/cm3にて二酸化炭
素による抽出を行つた。この時の抽出油及び抽残
油に含まれるEPA及びDHAの濃度を、実施例3
の場合も含めて、それぞれ第3図及び第4図に示
す。 第3図における横軸は原料脂肪酸混合物に対す
る固体尿素の使用倍率、縦軸はエイコサペンタエ
ン酸(EPA)の濃度(%)を示し、〇印は分離
器6a(120Kg/cm2G)で捕集された抽出油中、□
印は分離器6b(大気圧)で捕集された抽出油中、
△印は抽残油中の、それぞれEPA濃度を示す。 また第4図における横軸は原料脂肪酸混合物に
対する固体尿素の使用倍率、縦軸はドコサヘキサ
エン酸(DHA)の濃度(%)を示し、〇印は分
離器6a(120Kg/cm2G)で捕集された抽出油中、
□印は分離器6b(大気圧)で捕集された抽出油
中、△印は抽残油中の、それぞれDHA濃度を示
す。 尿素の倍率が高いほど、分離効率が向上し、約
8重量倍のところでほぼ一定になることが示され
ている。 実施例 7 魚油をメタノール中で、ナトリウムメトキシド
を触媒として調製したメチルエステル混合物57.9
gと固体尿素170.8g(メチルエステルの2.9倍)
を第2図に示した抽出器に入れ、抽出温度を40
℃、抽出圧力を150Kg/cm2G、分離器6aの圧力
100Kg/cm2G、分離器6bの圧力を大気圧として、
0.26Nm3(0.51Kg)の二酸化炭素を用いて1時間
抽出したところ、分離器6a中に20.3g(原料の
35%)、分離器6b中に9.8g(原料の17%)の抽
出油が得られた。組成分析値を第4表に示す。 分離器6aで捕集された抽出油では、EPAの
メチルエステルは14.7%から25.8%へ、DHAのメ
チルエステルは12.2%から19.6%に濃縮されてい
た。また分離器6bで捕集された抽出油でも、
EPAのメチルエステルは22.2%、DHAのメチル
エステルは13.4%に濃縮されていた。
[Table] Examples 4 to 6 The weight of solid urea relative to the raw fatty acid mixture,
1.0 times (Example 4), 2.9 times (Example 5), respectively.
Extraction with carbon dioxide was performed at 40° C. and 200 Kg/cm 3 in the same manner as in Example 3, except that the amount was increased by 8.2 times (Example 6). The concentrations of EPA and DHA contained in the extracted oil and raffinate oil at this time were determined in Example 3.
3 and 4, respectively. In Figure 3, the horizontal axis shows the usage ratio of solid urea with respect to the raw fatty acid mixture, the vertical axis shows the concentration (%) of eicosapentaenoic acid (EPA), and the circle mark shows the concentration (%) of eicosapentaenoic acid (EPA) collected by separator 6a (120Kg/cm 2 G). In the extracted oil, □
The marks are in the extracted oil collected in the separator 6b (atmospheric pressure).
The △ mark indicates the EPA concentration in the raffinate oil. In addition, the horizontal axis in Fig. 4 shows the usage ratio of solid urea with respect to the raw fatty acid mixture, the vertical axis shows the concentration (%) of docosahexaenoic acid (DHA), and the circle mark shows the concentration (%) of docosahexaenoic acid (DHA) collected in the separator 6a (120 Kg/cm 2 G). In the extracted oil,
The □ mark indicates the DHA concentration in the extracted oil collected by the separator 6b (atmospheric pressure), and the △ mark indicates the DHA concentration in the raffinate oil. It has been shown that the higher the ratio of urea, the better the separation efficiency, and it becomes almost constant at about 8 times the weight. Example 7 Methyl ester mixture prepared from fish oil in methanol with sodium methoxide as catalyst57.9
g and solid urea 170.8g (2.9 times that of methyl ester)
into the extractor shown in Figure 2, and set the extraction temperature to 40
℃, extraction pressure 150Kg/cm 2 G, pressure of separator 6a
100Kg/cm 2 G, the pressure of separator 6b is atmospheric pressure,
When extracted for 1 hour using 0.26Nm 3 (0.51Kg) of carbon dioxide, 20.3g (of the raw material) was collected in the separator 6a.
35%), 9.8 g (17% of the raw material) of extracted oil was obtained in separator 6b. Composition analysis values are shown in Table 4. In the extracted oil collected in the separator 6a, the methyl ester of EPA was concentrated from 14.7% to 25.8%, and the methyl ester of DHA was concentrated from 12.2% to 19.6%. Also, even the extracted oil collected in the separator 6b,
EPA methyl ester was concentrated at 22.2% and DHA methyl ester at 13.4%.

【表】 * メチルエステルを構成する脂肪酸
部分について記載
実施例 8 実施例7と同一のメチルエステル混合物42.0g
と固体尿素253.3g(メチルエステルの6.0倍)を
第2図に示した抽出器に入れ、抽出温度40℃、抽
出圧力200Kg/cm2G、分離器6aの圧力120Kg/cm2
G、分離器6bの圧力を大気圧として、0.15Nm3
(0.29Kg)の二酸化炭素を用いて約1時間かけて
抽出したところ、分離器6a中に15.1g(原料の
36%)、分離器6b中に5.0g(原料の12%)の抽
出油が得られた。組成分析値を第5表に示す。
[Table] *Description of the fatty acid moiety that constitutes the methyl ester Example 8 42.0 g of the same methyl ester mixture as in Example 7
and 253.3 g of solid urea (6.0 times that of methyl ester) were placed in the extractor shown in Figure 2, and the extraction temperature was 40°C, the extraction pressure was 200 Kg/cm 2 G, and the pressure of separator 6a was 120 Kg/cm 2
G, assuming the pressure of separator 6b to be atmospheric pressure, 0.15Nm 3
(0.29Kg) of carbon dioxide was extracted over approximately 1 hour, and 15.1g (of the raw material
36%), 5.0 g (12% of the raw material) of extracted oil was obtained in separator 6b. Composition analysis values are shown in Table 5.

【表】 * メチルエステルを構成する脂肪酸
部分について記載
分離器6aで捕集された抽出油では、EPAの
メチルエステルは14.7%から26.2%へ、DHAのメ
チルエステルは12.2%から20.0%に濃縮されてい
た。また分離器6bで捕集された抽出油でも、
EPAのメチルエステルは24.3%、DHAのメチル
エステルは16.2%に濃縮されていた。 (効用) a 溶剤として用いる二酸化炭素は、安価、かつ
人体に無害である。 b 尿素は二酸化炭素で抽出されず、また抽出相
から溶剤二酸化炭素を容易かつ完全に除去でき
るので、天然油脂を原料とする脂肪酸又はその
エステルから、高度不飽和脂肪酸又はそのエス
テルを効果的に濃縮分離できる。 c 抽出は低温で行えるので、高度不飽和脂肪酸
等の異性化や重合が起きにくい。
[Table] * Describes the fatty acid portion that constitutes methyl ester In the extracted oil collected in separator 6a, methyl ester of EPA was concentrated from 14.7% to 26.2%, and methyl ester of DHA was concentrated from 12.2% to 20.0%. was. Also, even the extracted oil collected in the separator 6b,
EPA methyl ester was concentrated to 24.3% and DHA methyl ester to 16.2%. (Efficacy) a Carbon dioxide used as a solvent is inexpensive and harmless to the human body. b. Since urea is not extracted with carbon dioxide and the solvent carbon dioxide can be easily and completely removed from the extraction phase, highly unsaturated fatty acids or their esters can be effectively concentrated from fatty acids or their esters made from natural fats and oils. Can be separated. c. Since extraction can be carried out at low temperatures, isomerization and polymerization of highly unsaturated fatty acids etc. are unlikely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1及び2で使用した装置を示す
図、第2図は実施例3〜8で使用した装置を示す
図、第3図は原料脂肪酸混合物に対する固体尿素
の使用倍率を変化させた時の、濃縮分離物中のエ
イコサペンタエン酸(EPA)の濃度変化を示す
図、第4図は原料脂肪酸混合物に対する固体尿素
の使用倍率を変化させた時の、濃縮分離物中のド
コサヘキサエン酸(DHA)の濃度変化を示す図
である。
Figure 1 is a diagram showing the equipment used in Examples 1 and 2, Figure 2 is a diagram showing the equipment used in Examples 3 to 8, and Figure 3 is a diagram showing the equipment used in Examples 3 to 8. Figure 4 shows the change in the concentration of eicosapentaenoic acid (EPA) in the concentrated isolate when the ratio of solid urea to the raw fatty acid mixture was changed. FIG. 2 is a diagram showing changes in concentration of DHA).

Claims (1)

【特許請求の範囲】 1 高度不飽和脂肪酸又はその低級アルコールエ
ステルを含有する各種脂肪酸又はその低級アルコ
ールエステル混合物と、液体又は超臨界ガス状態
の二酸化炭素と、固体尿素とを接触せしめ、該接
触域から得られる抽出相から二酸化炭素を除去す
ることよりなる高度不飽和脂肪酸又はその低級ア
ルコールエステルを濃縮分離する方法。 2 高度不飽和脂肪酸がエイコサペンタエン酸
(EPA)又はドコサヘキサエン酸(DHA)であ
る特許請求の範囲第1項記載の方法。 3 抽出圧力が70〜300気圧、抽出温度が20〜40
℃である特許請求の範囲第1項又は第2項記載の
方法。 4 抽出相を2段以上の圧力段階で減圧して、そ
れぞれの段階で濃縮された高度不飽和脂肪酸又は
その低級アルコールエステルを分離する特許請求
の範囲第1項、第2項又は第3項記載の方法。
[Claims] 1. Various fatty acids containing a highly unsaturated fatty acid or a lower alcohol ester thereof, or a mixture of lower alcohol esters thereof, carbon dioxide in a liquid or supercritical gas state, and solid urea are brought into contact, and the contact area A method for concentrating and separating highly unsaturated fatty acids or their lower alcohol esters, which comprises removing carbon dioxide from the extracted phase obtained from 2. The method according to claim 1, wherein the highly unsaturated fatty acid is eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). 3 Extraction pressure is 70 to 300 atm, extraction temperature is 20 to 40
The method according to claim 1 or 2, wherein the temperature is .degree. 4. Claims 1, 2, or 3 in which the extraction phase is depressurized in two or more pressure stages to separate the highly unsaturated fatty acids or lower alcohol esters thereof concentrated in each stage. the method of.
JP6839384A 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester Granted JPS60214757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6839384A JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6839384A JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Publications (2)

Publication Number Publication Date
JPS60214757A JPS60214757A (en) 1985-10-28
JPH0137387B2 true JPH0137387B2 (en) 1989-08-07

Family

ID=13372412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6839384A Granted JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Country Status (1)

Country Link
JP (1) JPS60214757A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294649A (en) * 1988-05-21 1989-11-28 Agency Of Ind Science & Technol Method for extracting docosahexaenoic acid and eicosapentaenoic acid in high concentration from spermary of walleye pollack
JPH07107158B2 (en) * 1989-01-06 1995-11-15 日本水産株式会社 Continuous urea addition fractionation method and its equipment
DE10215862A1 (en) * 2002-04-11 2003-10-30 Cognis Deutschland Gmbh Process for the separation of supercritical or near critical mixtures
NZ518504A (en) 2002-04-22 2005-05-27 Ind Res Ltd Use of near-critical fluids in the separation of saturated and mono-unsaturated fatty acids from urea-containing solutions
CN107459459B (en) * 2016-06-02 2020-08-11 中国石化扬子石油化工有限公司 Method for extracting methyl stearate from benzoyl methane stearate residual liquid

Also Published As

Publication number Publication date
JPS60214757A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
US5840944A (en) Method to produce highly pure eicosapentaenoic acid or its ester
KR100972703B1 (en) Improvements in or relating to separation technology
JPH0159318B2 (en)
JPS649977B2 (en)
JPH0137387B2 (en)
JPS5888339A (en) Separating and purifying method of eicosapentaenoic acid or ester thereof and docosahexaenoic acid or ester thereof
JP3678317B2 (en) Method for concentrating eicosapentaenoic acid-containing material
JPH1180083A (en) Production of eicosapentaenoic ester
JPH1095744A (en) Production of highly unsaturated aliphatic acid or its alkyl ester
JPH04243849A (en) Purification of highly unsaturated fatty acid and its derivative
JP2003171376A (en) Tocopherol concentrate and tocotrienol concentrate, and method for producing the same
JPS588037A (en) Preparation of eicosapentaenoic acid or its ester
JPH0140817B2 (en)
JP2742569B2 (en) Method for separating polyunsaturated fatty acid ester having double bond at ω3 position and ω6 position
JPH01290659A (en) Production of natural carotene condensate
JP2726828B2 (en) Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters
US3720696A (en) Process for the extraction of 9-hexadecenoic acid
JPH09302380A (en) Purification of eicosapentaenoic acid or its ester
Nadenicek et al. Preparation of pure polyunsaturated fatty acids 1. Linolenic acid
JPS61176597A (en) Method of purifying phosphatidylcholine
SU641963A1 (en) Method of preparing arachidonic and eicosatrienic acids
JPH0158240B2 (en)
JPH051090A (en) Method for separating and purifying sucrose ester of fatty acid
JPH06248288A (en) Method of separating and recovering highly unsaturated fatty acids
SU1440907A1 (en) Method of producing coriander essential oil