JPS60214757A - Concentration and separation of highly unsaturated fatty acid or its ester - Google Patents

Concentration and separation of highly unsaturated fatty acid or its ester

Info

Publication number
JPS60214757A
JPS60214757A JP6839384A JP6839384A JPS60214757A JP S60214757 A JPS60214757 A JP S60214757A JP 6839384 A JP6839384 A JP 6839384A JP 6839384 A JP6839384 A JP 6839384A JP S60214757 A JPS60214757 A JP S60214757A
Authority
JP
Japan
Prior art keywords
carbon dioxide
unsaturated fatty
highly unsaturated
fatty acid
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6839384A
Other languages
Japanese (ja)
Other versions
JPH0137387B2 (en
Inventor
Hiroshi Unno
洋 海野
Hiroshi Sagara
相良 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP6839384A priority Critical patent/JPS60214757A/en
Publication of JPS60214757A publication Critical patent/JPS60214757A/en
Publication of JPH0137387B2 publication Critical patent/JPH0137387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To concentrate and separate the titled compound useful as a preventive and remedy for thrombosis, by using carbon dioxide of liquid or super-critical gaseous state as an extractant, contacting the extractant with a highly unsaturated fatty acid or its ester in the presence of solid urea, and removing carbon dioxide from the extracted phase. CONSTITUTION:A highly unsaturated fatty acid, especially eicosapentaenoic acid, docosahexaenoic acid or various fatty acids containing said lower alcohol ester, or a mixture of lower alcohol esters, is made to contact with carbon dioxide of liquid or super-critical gaseous state in the presence of solid urea, and carbon dioxide is removed from the extracted phase obtained from the contacting zone to effect the concentration and separation of the titled compound. The extraction is carried out preferably under 70-300atm at about 20-40 deg.C lowering the pressure of the extraction phase in two or more steps.

Description

【発明の詳細な説明】 (目的) 、−丑の1 里ゞ 本発明は高度不飽和脂肪酸、特にエイコサペンタエン酸
(EPA)、ドコサヘキサエン酸(DHA)又はそれら
のエステルを含有する原料中のEPA、DHA、又はそ
れらのエステルを濃縮分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objective) - The present invention is directed to the treatment of highly unsaturated fatty acids, particularly eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or esters thereof in raw materials containing EPA, The present invention relates to a method for concentrating and separating DHA or esters thereof.

発」1が」1誌」イようと る。 へ 魚油等の海産物油脂に含まれるEPA及びDHA(及び
そのエステル、アミド等の誘導体)は、心筋梗塞、脳梗
塞等の血栓性疾患の予防及び治療に有効であることが知
られている。しかしながら天然物中の含有量は低いため
、医療等各種用途にはこれを濃縮する必要がある。本発
明はかかる高度不飽和脂肪酸又はそのエステルの効果的
、経済的な濃縮分離方法を提供することを目的とする。
``1'' is trying to ``1'' magazine. It is known that EPA and DHA (and their derivatives such as esters and amides) contained in marine oils and fats such as fish oil are effective in preventing and treating thrombotic diseases such as myocardial infarction and cerebral infarction. However, since the content in natural products is low, it is necessary to concentrate it for various medical and other uses. An object of the present invention is to provide an effective and economical method for concentrating and separating such highly unsaturated fatty acids or their esters.

従来の技俯 各種脂肪酸又はそのエステルの混合物から特定の脂肪酸
又はそのエステルを濃縮分離する方法として従来用いら
れている次の語法、即ち(1)g留法は高真空(1mm
Hg以下)を必要とし、また沸点差による分離であるた
め、高度不飽和脂肪酸又はそのエステルと他の脂肪酸(
飽和及び低不飽和脂肪酸)又はそのエステルとの分離が
困難であり、かつ蒸留法単独ではバッチ式蒸留となるた
め、長時間高温にさらされることによって異性化や重合
が起こり易いという欠点がある。
Conventional Techniques The following terminology is conventionally used as a method for concentrating and separating a specific fatty acid or its ester from a mixture of various fatty acids or its esters: (1) The g distillation method is a high vacuum (1 mm
Hg or less), and because the separation is based on the boiling point difference, highly unsaturated fatty acids or their esters and other fatty acids (
It is difficult to separate it from saturated and low unsaturated fatty acids) or their esters, and distillation alone requires batch distillation, which has the drawback that isomerization and polymerization are likely to occur when exposed to high temperatures for a long period of time.

(2)クロマトグラフィー法は、一般に少量しか扱えず
、スケールアップは極めて困難で、分離に長時間を要し
、操作も複雑であり、原料に対して大量の溶剤を必要と
するという欠点がある。
(2) Chromatography methods generally only handle small amounts, are extremely difficult to scale up, require a long time for separation, are complicated to operate, and have the drawbacks of requiring a large amount of solvent relative to the raw material. .

(3)尿素付加法は、不飽和度の低い脂肪酸又はそのエ
ステルが尿素に付加して結晶を生成する性質を利用して
、尿素付加混合物から高度不飽和脂肪酸又はそのエステ
ルを溶剤抽出し、その溶液から高度不飽和脂肪酸又はそ
のエステルを回収する方法であるが、抽出溶剤としてメ
タノール等の極性溶剤を使用すると抽出液中に尿素が溶
解して移行する為、溶剤除去後尿素を水洗又はカラムク
ロマトを使用して除去する工程が必要になる。その改良
法としてメタノールを20%以下含有する脂肪族又は脂
環族炭化水素溶剤を使用する方法(#開開57−164
196)が提案されているが、この方法も溶剤抽出後、
溶剤を除去するために加熱下又は減圧下で分離操作を行
う必要がある。
(3) The urea addition method utilizes the property of fatty acids or their esters with a low degree of unsaturation to add to urea to form crystals, and extracts highly unsaturated fatty acids or their esters from a urea addition mixture with a solvent. This method recovers highly unsaturated fatty acids or their esters from a solution, but if a polar solvent such as methanol is used as an extraction solvent, urea will dissolve and migrate into the extract, so after removing the solvent, the urea must be washed with water or subjected to column chromatography. A process of removing it using An improved method is to use an aliphatic or alicyclic hydrocarbon solvent containing 20% or less methanol (#Kaikai57-164
196) has been proposed, but this method also requires that after solvent extraction,
In order to remove the solvent, it is necessary to perform a separation operation under heat or reduced pressure.

(発明の構成) 、1 占 ・ るための一 本発明者等は、液体又は超臨界ガス状態の二酸化炭素が
、尿素付加混合物から高度不飽和脂肪酸又はそのエステ
ルを選択的に抽出することを見出し、本発明を完成した
(Structure of the Invention) , 1. The present inventors have discovered that carbon dioxide in a liquid or supercritical gas state selectively extracts highly unsaturated fatty acids or their esters from a urea addition mixture. , completed the invention.

即ち本発明は、高度不飽和脂肪酸又はその低級アルコー
ルエステルを含有する各種脂肪酸又はその低級アルコー
ルエステル混合物と、液体又は超臨界ガス状態の二酸化
炭素と、固体尿素とを接触せしめ、該接触域から得られ
る抽出相から二酸化炭素を除去することよりなる高度不
飽和脂肪酸又はその低級アルコールエステルを濃縮分離
する方法である。
That is, the present invention involves bringing a mixture of various fatty acids or lower alcohol esters containing a highly unsaturated fatty acid or a lower alcohol ester thereof into contact with carbon dioxide in a liquid or supercritical gas state, and solid urea, and producing a mixture obtained from the contact area. This is a method for concentrating and separating highly unsaturated fatty acids or their lower alcohol esters by removing carbon dioxide from the extracted phase.

この方法は、不飽和度の低い脂肪酸又はそのエステルが
尿素に付加する性質を利用する点においては従来の尿素
付加法と同じであるが、高度不飽和脂肪酸又はその低級
アルコールエステルの抽出剤として液体又は超臨界ガス
状態の二酸化炭素を用いる点で新規性及び進歩性を有す
る。
This method is the same as the conventional urea addition method in that it utilizes the property of a fatty acid with a low degree of unsaturation or its ester to add to urea, but a liquid Alternatively, the invention is novel and inventive in that it uses carbon dioxide in a supercritical gas state.

尿素は液体又は超臨界ガス状態の二酸化炭素に溶解しな
いので、抽出相は濃縮された高度不飽和脂肪酸又はその
低級アルコールエステルと二酸化炭素とのみよりなる。
Since urea does not dissolve in liquid or supercritical gaseous carbon dioxide, the extraction phase consists only of concentrated highly unsaturated fatty acids or lower alcohol esters thereof and carbon dioxide.

高度不飽和脂肪酸又はその低級アルコールエステルを含
有する各種脂肪酸又はその低級アルコールエステル混合
物と、液体又は超臨界ガス状態の二酸化炭素と、固体尿
素とを接触させる工程、即ち抽出工程の圧力は70〜3
00気圧、好ましくは100〜250気圧、特に好まし
くは200%圧前後が好適である。温度は特に制限はな
いが、操作の簡便さの為には室温付近、即ち20〜40
°Cが適当である。この条件下では二酸化炭素は液体又
は超臨界ガス状態で存在する。
The pressure of the extraction step, which is a step of bringing a mixture of various fatty acids or lower alcohol esters containing a highly unsaturated fatty acid or a lower alcohol ester thereof into contact with carbon dioxide in a liquid or supercritical gas state, and solid urea, is 70 to 3.
00 atm, preferably 100 to 250 atm, particularly preferably around 200% pressure. There is no particular restriction on the temperature, but for ease of operation, it is recommended to keep it around room temperature, i.e. 20 to 40℃.
°C is suitable. Under these conditions, carbon dioxide exists in a liquid or supercritical gas state.

また固体尿素の使用量は、原料の各種脂肪酸又はその低
級アルコールエステル混合物に対して1〜10重量倍、
特に3〜8重量倍が好ましい。
In addition, the amount of solid urea used is 1 to 10 times the weight of the various fatty acids or lower alcohol ester mixtures as raw materials.
Particularly preferred is 3 to 8 times the weight.

この抽出工程からの抽出相を加熱又は減圧することによ
り二酸化炭素は急速に気化するので、容易かつ完全に除
去でき、尿素や溶剤を全く含まない濃縮された高度不飽
和脂肪酸又はその低級アルコールエステルを分離するこ
とができる(分離工程)。
By heating or depressurizing the extraction phase from this extraction step, the carbon dioxide is rapidly vaporized and can be easily and completely removed, creating a concentrated polyunsaturated fatty acid or its lower alcohol ester that is completely free of urea and solvents. can be separated (separation step).

さらに、分離器を2個以上設け、抽出相を2段以上の圧
力段階で減圧して、それぞれの段階で濃縮された高度不
飽和脂肪酸又はその低級アルコールエステルを分離する
ことにより、分離効果を向上させることができる。これ
は特にEPA、DHA又はそのエステルの分離に有効で
ある。
Furthermore, the separation effect is improved by installing two or more separators, reducing the pressure of the extraction phase in two or more pressure stages, and separating concentrated highly unsaturated fatty acids or their lower alcohol esters in each stage. can be done. This is particularly effective for separating EPA, DHA or their esters.

分離工程で分離された二酸化炭素は圧縮して再使用する
ことができる。
The carbon dioxide separated in the separation process can be compressed and reused.

支崖1 以下実施例により、本発明を具体的に説明するが、本発
明はそれらに限定されるものではない。
Support 1 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

以下の実施例1〜6において使用する原料は、魚油をエ
タノール性水酸化カリウム水溶液でアルカリ分解したも
のを使用した。脂肪酸の組成は、脂肪酸混合物を無水塩
化水素メタノール溶液でメチルエステルとし、このメチ
ルエステルをガスクロマトグラフィーにて分析した。組
成はガスクロマトグラフの面積%で表示した。
The raw material used in Examples 1 to 6 below was obtained by alkaline decomposition of fish oil with an ethanolic potassium hydroxide aqueous solution. The composition of the fatty acids was determined by converting the fatty acid mixture into methyl esters with anhydrous hydrogen chloride methanol solution, and analyzing the methyl esters by gas chromatography. The composition was expressed as area % on a gas chromatograph.

実施例1 第1図に示した装置を用いた。抽出器lに脂肪酸52.
0gと固体尿素156g (原料の3倍)を入れ、二酸
化炭素をポンベ2からポンプ3で移液し、加熱器4で抽
出温度が25℃になるように加熱し、200Kg/cm
2Gの一定圧力で抽出器lに送った。抽出相は減圧弁5
で大気圧に減圧され、分離器6で抽出油を分離した二酸
化炭素ガスはガスメーター7で検量して系外に放出した
Example 1 The apparatus shown in FIG. 1 was used. Fatty acids 52.
0g and solid urea 156g (3 times the raw material), carbon dioxide was transferred from pump 2 with pump 3, heated with heater 4 so that the extraction temperature was 25℃, and 200Kg/cm
A constant pressure of 2G was sent to extractor I. Extraction phase is by pressure reducing valve 5
The pressure was reduced to atmospheric pressure in the separator 6, and the carbon dioxide gas from which the extracted oil was separated was measured in the gas meter 7 and discharged to the outside of the system.

分離器6に捕集された抽出油は19.7g(原料の38
%)であった。原料、抽出油、及び抽残油た二酸化炭素
は1.07Nm’ (2,09Kg)であり、抽出時間
は1.5時間であった。
The extracted oil collected in the separator 6 was 19.7 g (38 g of the raw material
%)Met. The carbon dioxide content of the raw materials, extracted oil, and raffinate oil was 1.07 Nm' (2,09 Kg), and the extraction time was 1.5 hours.

第1表の脂肪酸成分の表示において、例えば18:2は
、炭素数が18、二重結合が2個の脂肪酸(リノール酸
)を示す。エイコサペンタエン酸(E P A)は2o
:5、ドコサヘキサエン酸(DHA)は22:6である
In the display of fatty acid components in Table 1, for example, 18:2 indicates a fatty acid (linoleic acid) having 18 carbon atoms and 2 double bonds. Eicosapentaenoic acid (EPA) is 2o
:5, and docosahexaenoic acid (DHA) is 22:6.

EPAは18.4%から22.4%へ、DHAは11.
1%から13.6%に[16されていた。
EPA increased from 18.4% to 22.4%, and DHA increased to 11.
It had increased from 1% to 13.6% [16].

実施例2 実施例1と同一の原料脂肪酸混合物及び同一の装置を用
いた。脂肪酸35.1gと固体尿素18Ig(原料の5
.2倍)を混合して抽出器1に入れ、25℃、200K
g/Cm2c’t’o 、64Nm” (1,24Kg
)の二酸化炭素で1.5時間で抽出し、抽出油to、t
g(原料の29%)を得た。組成分析値を第2表に示す
Example 2 The same raw fatty acid mixture and the same equipment as in Example 1 were used. 35.1 g of fatty acids and 18 Ig of solid urea (raw material 5
.. 2 times) and put it in extractor 1, 25℃, 200K.
g/Cm2c't'o, 64Nm" (1,24Kg
) was extracted with carbon dioxide for 1.5 hours, and the extracted oil to, t
g (29% of raw material) was obtained. Composition analysis values are shown in Table 2.

第 2 表 EPAは18.4%から29.4%へ、DMAは11.
1%から21.5%に濃縮されていた。
Table 2 EPA increased from 18.4% to 29.4%, DMA increased to 11.
It was concentrated from 1% to 21.5%.

実施例3 第2図に示した装置で、抽出油の分離圧力を2段に変化
させて行った。原料脂肪酸34.7gと固体尿素181
g (原料の5.2倍)を混合して抽出器lに入れ、4
0℃、200Kg/cm2Gで二酸化炭素による抽出を
行った。抽出相は減圧弁5aで120Kg/cm2Gに
減圧され、分離器6aで抽出油の1部を分離する。6a
で分離されなかった抽出油を含む二酸化炭素は、さらに
減圧弁5bで大気圧に減圧され、分離器6aで抽出油を
完全に分離する。このようにして、0.74Nm3 (
1,54Kg)t7)二酸化炭素を用いて1.5時間か
けて抽出したところ、分離器6a中に6.8g(原料の
20%)、分離器6b中に5゜7g(原料の17%)の
抽出油が得られた。組成分析の結果を第3表に示す。
Example 3 Separation pressure of extracted oil was changed in two steps using the apparatus shown in FIG. 2. Raw fatty acid 34.7g and solid urea 181g
g (5.2 times the raw material) and put it into the extractor l,
Extraction with carbon dioxide was performed at 0°C and 200Kg/cm2G. The pressure of the extraction phase is reduced to 120 kg/cm2G by a pressure reducing valve 5a, and a portion of the extracted oil is separated by a separator 6a. 6a
The carbon dioxide containing the extracted oil that was not separated is further reduced in pressure to atmospheric pressure in the pressure reducing valve 5b, and the extracted oil is completely separated in the separator 6a. In this way, 0.74Nm3 (
1,54Kg) t7) Extraction using carbon dioxide over 1.5 hours resulted in 6.8g (20% of the raw material) in the separator 6a and 5.7g (17% of the raw material) in the separator 6b. An extracted oil was obtained. The results of the compositional analysis are shown in Table 3.

分離器6aで捕集された抽出油では、EPAはlj’l
−A気カ)ち30−3%へ、DNAは11.1%から2
5.0%に濃縮されていた。また分離器6bで捕集され
た抽出油でも、EPAは28.3%、DHAは17.3
%に濃縮されていた。
In the extracted oil collected in separator 6a, EPA is lj'l
-A Qi) Chi 30-3%, DNA from 11.1% to 2
It was concentrated to 5.0%. Also, in the extracted oil collected in the separator 6b, EPA is 28.3% and DHA is 17.3%.
It was concentrated to %.

第 3 表 実施例4〜6 原料脂肪酸混合物に対する固体尿素の重量を、それぞれ
1.0倍(実施例4)、2.9倍(実施例5)、および
8.2倍(実施例6)とした以外は、実施例3と同様に
して、40℃、200Kg/Cm3にて二酸化炭素によ
る抽出を行った。この時の抽出油及び抽残油に含まれる
EPA及びDHAの濃度を、実施例3の場合も含めて、
それぞれ第3図及び第4図に示す。
Table 3 Examples 4 to 6 The weight of solid urea relative to the raw fatty acid mixture was 1.0 times (Example 4), 2.9 times (Example 5), and 8.2 times (Example 6), respectively. Extraction with carbon dioxide was performed at 40° C. and 200 Kg/Cm 3 in the same manner as in Example 3, except for the following. The concentrations of EPA and DHA contained in the extracted oil and raffinate oil at this time, including the case of Example 3,
They are shown in FIGS. 3 and 4, respectively.

第3図における横軸は原料脂肪酸混合物に対する固体尿
素の使用倍率、縦軸はエイコサペンタエン酸(E P 
A)の濃度(%)を示し、O印は分離器6a (120
Kg/cm2G) で捕集された抽出油中、0印は分離
器6b(大気圧)で捕集された抽出油中、Δ印は抽残油
中の、それぞれEPA濃度を示す。
In Fig. 3, the horizontal axis is the usage ratio of solid urea to the raw fatty acid mixture, and the vertical axis is the usage ratio of eicosapentaenoic acid (E P
The concentration (%) of A) is shown, and the O mark indicates the concentration (%) of separator 6a (120
Kg/cm2G), the 0 mark indicates the EPA concentration in the extracted oil collected by the separator 6b (atmospheric pressure), and the Δ mark indicates the raffinate oil.

また第4図における横軸は原料脂肪酸混合物に対する固
体尿素の使用倍率、縦軸はドコサヘキサエン酸(DHA
)の濃度(%)を示し、O印は分離器6a (120,
Kg/am2G)で捕集された抽出油中、0印は分離器
6b(大気圧)で捕集された抽出油中、Δ印は抽残油中
の、それぞれDMA濃度を示す。
In addition, the horizontal axis in Figure 4 is the usage ratio of solid urea to the raw fatty acid mixture, and the vertical axis is docosahexaenoic acid
), and the O mark indicates the concentration (%) of separator 6a (120,
Kg/am2G), the 0 mark indicates the DMA concentration in the extracted oil collected by the separator 6b (atmospheric pressure), and the Δ mark indicates the raffinate oil concentration.

尿素の倍率が高いほど、分離効率が向上し、約8重量倍
のところでほぼ一定になることが示されている。
It has been shown that the higher the ratio of urea, the better the separation efficiency, and it becomes almost constant at about 8 times the weight.

実施例7 魚油をメタノール中で、ナトリウムメトキシドを触媒と
して調製したメチルエステル混合物57.9gと固体尿
素z7o、sgcメチルエステルの2.9倍)を第2図
に示した抽出器に入れ、抽出温度を40℃、抽出圧力を
150 K g / c m 2G、分離器6aの圧力
100Kg/cm2G、分離器6bの圧力を大気圧とし
て、0.26Nm3(0,51に’g)の二酸化炭素を
用いて1時間抽出したところ、分離器6a中に2o、3
g(原料の35%)、分離器6b中に9.8g(原料の
17%)の抽出油が得られた。組成分析値を第4表に示
す。
Example 7 57.9 g of a methyl ester mixture prepared from fish oil in methanol using sodium methoxide as a catalyst and solid urea Z7O (2.9 times the amount of SGC methyl ester) were placed in the extractor shown in Figure 2 and extracted. The temperature was 40°C, the extraction pressure was 150 Kg/cm2G, the pressure of separator 6a was 100Kg/cm2G, the pressure of separator 6b was atmospheric pressure, and 0.26Nm3 (0.51'g) of carbon dioxide was added. When extraction was carried out for 1 hour using
g (35% of the raw material), 9.8 g (17% of the raw material) of extracted oil was obtained in separator 6b. Composition analysis values are shown in Table 4.

分離器6aで捕集された抽出油では、EPAのメチルエ
ステルは14.7%から25.8%へ、DMAのメチル
エステルは12.2%から19゜6渉に濃縮されていた
。また分離器6bで捕集された抽出油でも、EPAのメ
チルエステルは22.2%、DHAのメチルエステルは
13.4%に濃縮されていた。
In the extracted oil collected in the separator 6a, the methyl ester of EPA was concentrated from 14.7% to 25.8%, and the methyl ester of DMA was concentrated from 12.2% to 19.6%. Furthermore, in the extracted oil collected by the separator 6b, EPA methyl ester was concentrated to 22.2%, and DHA methyl ester was concentrated to 13.4%.

第 4 表 実施例8 実施例7と同一のメチルエステル混合物42゜0gと固
体尿素253.3g(メチルエステルの6.0倍)を第
2図に示した抽出器に入れ、抽出温度40 ’C!、抽
出圧力200Kg/cm2G、分離器6aの圧力120
Kg/cm2G、分離器6bの圧力を大気圧として、0
.15Nm3 (0。
Table 4 Example 8 42.0 g of the same methyl ester mixture as in Example 7 and 253.3 g of solid urea (6.0 times the amount of methyl ester) were placed in the extractor shown in Figure 2, and the extraction temperature was 40'C. ! , extraction pressure 200Kg/cm2G, pressure of separator 6a 120
Kg/cm2G, assuming the pressure of the separator 6b to be atmospheric pressure, 0
.. 15Nm3 (0.

29Kg)の二酸化炭素を用いて約1時間かけて抽出し
たところ、分離器6a中に15.1g(原判の36%)
、分離器6b中に5.0g(原料の12%)の抽出油が
得られた。組成分析値を第5表に示す。
When extracted using carbon dioxide (29 kg) for about 1 hour, 15.1 g (36% of the original size) was found in the separator 6a.
, 5.0 g (12% of the raw material) of extracted oil was obtained in separator 6b. Composition analysis values are shown in Table 5.

第 5 表 分離器6aで捕集された抽出油では、EPAのメチルエ
ステルは14.7%から26.2%へ、DHAのメチル
エステルは12.2%から20゜0%に濃縮されていた
。また分離器6bで捕集された抽出油でも、EPAのメ
チルエステルは24.3%、DHAのメチルエステルは
16.2%に濃縮されていた。
Table 5 In the extracted oil collected by separator 6a, methyl ester of EPA was concentrated from 14.7% to 26.2%, and methyl ester of DHA was concentrated from 12.2% to 20.0%. . Also, in the extracted oil collected by the separator 6b, EPA methyl ester was concentrated to 24.3% and DHA methyl ester was concentrated to 16.2%.

(効果) a)溶剤として用いる二酸化炭素は、安価、かつ人体に
無害である。
(Effects) a) Carbon dioxide used as a solvent is inexpensive and harmless to the human body.

b)尿素は二酸化炭素で抽出されず、また抽出相から溶
剤二酸化炭素を容易かつ完全に除去できるので、天然油
脂を原料とする脂肪酸又はそのエステルから、高度不飽
和脂肪酸又はそのエステルを効果的に濃縮分離できる。
b) Since urea is not extracted with carbon dioxide and the solvent carbon dioxide can be easily and completely removed from the extraction phase, highly unsaturated fatty acids or their esters can be effectively extracted from fatty acids or their esters made from natural fats and oils. Can be concentrated and separated.

C)抽出は低温で行えるので、高度不飽和脂肪酸等の異
性化や重合が起きにくい。
C) Since extraction can be carried out at low temperatures, isomerization and polymerization of highly unsaturated fatty acids are unlikely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1及び2で使用した装置を示す図、第2
図は実施例3〜8で使用した装置を示す図、第3図は原
料脂肪酸混合物に対する固体尿素の使用倍率を変化させ
た時の、濃縮分離物中のエイコサペンタエン酸(EPA
)の法度変化を示す図、第4図は原料脂肪酸混合物に対
する固体尿素の使用倍率を変化させた時の、濃縮分離物
中のドコサヘキサエン酸(D HA)の濃度変化を示す
図である。 出願人 日 揮 株 式 会 社 代理人 弁理士 青 麻 昌 二 第 1 因 第21!1
Figure 1 is a diagram showing the apparatus used in Examples 1 and 2;
The figure shows the equipment used in Examples 3 to 8. Figure 3 shows the amount of eicosapentaenoic acid (EPA) in the concentrated isolate when the usage ratio of solid urea to the raw fatty acid mixture was changed.
Figure 4 is a diagram showing changes in the concentration of docosahexaenoic acid (DHA) in the concentrated isolate when the usage ratio of solid urea to the raw fatty acid mixture was changed. Applicant JGC Co., Ltd. Company agent Patent attorney Masa Aoma 2nd 1st cause 21st! 1st

Claims (1)

【特許請求の範囲】 1 高度不飽和脂肪酸又はその低級アルコールエステル
を含有する各種脂肪酸又はその低級アルコールエステル
混合物と、液体又は超臨界ガス状態の二酸化炭素と、固
体尿素とを接触せしめ、該接触域から得られる抽出相か
ら二酸化炭素を除去することよりなる高度不飽和脂肪酸
又はその低級アルコールエステルを濃縮分離する方法。 2 高度不飽和脂肪酸がエイコサペンタエン酸(EPA
)又はドコサヘキサエン酸(DHA)である特許請求の
範囲第1項記載の方法。 3 抽出圧力が70〜300気圧、抽出温度が20〜4
0°Cである特許請求の範囲第1項又は第2項記載の方
法。 4 抽出相を2段以上の圧力段階で減圧して、−LA+
12jJうMFI’L吐七−−a3m(db”th−+
J−1白rRFfh’>1(1RkコnbMT〕はその
低級アルコールエステルを分離する特許請求の範囲第1
項、第2項又は第3項記載の方法。
[Claims] 1. Various fatty acids containing a highly unsaturated fatty acid or a lower alcohol ester thereof, or a mixture of lower alcohol esters thereof, carbon dioxide in a liquid or supercritical gas state, and solid urea are brought into contact, and the contact area A method for concentrating and separating highly unsaturated fatty acids or their lower alcohol esters, which comprises removing carbon dioxide from the extracted phase obtained from 2 The highly unsaturated fatty acid is eicosapentaenoic acid (EPA
) or docosahexaenoic acid (DHA). 3 Extraction pressure is 70-300 atm, extraction temperature is 20-4
The method according to claim 1 or 2, wherein the temperature is 0°C. 4 Reduce the pressure of the extraction phase in two or more pressure stages to -LA+
12jJ U MFI'L 7--a3m(db"th-+
J-1 white rRFfh'>1 (1Rk connbMT) is claimed in claim 1 to separate its lower alcohol ester.
3. The method described in Section 2, Section 2, or Section 3.
JP6839384A 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester Granted JPS60214757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6839384A JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6839384A JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Publications (2)

Publication Number Publication Date
JPS60214757A true JPS60214757A (en) 1985-10-28
JPH0137387B2 JPH0137387B2 (en) 1989-08-07

Family

ID=13372412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6839384A Granted JPS60214757A (en) 1984-04-07 1984-04-07 Concentration and separation of highly unsaturated fatty acid or its ester

Country Status (1)

Country Link
JP (1) JPS60214757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294649A (en) * 1988-05-21 1989-11-28 Agency Of Ind Science & Technol Method for extracting docosahexaenoic acid and eicosapentaenoic acid in high concentration from spermary of walleye pollack
JPH02180996A (en) * 1989-01-06 1990-07-13 Nippon Suisan Kaisha Ltd Continuous method and apparatus of urea addition and separation
WO2003084907A1 (en) * 2002-04-11 2003-10-16 Cognis Deutschland Gmbh & Co. Kg Method for separating supercritical or near critical mixtures
WO2003089399A1 (en) 2002-04-22 2003-10-30 Industrial Research Limited Improvements in or relating to separation technology
CN107459459A (en) * 2016-06-02 2017-12-12 中国石化扬子石油化工有限公司 A kind of method that methyl stearate is extracted in the benzoyl methane raffinate from stearic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294649A (en) * 1988-05-21 1989-11-28 Agency Of Ind Science & Technol Method for extracting docosahexaenoic acid and eicosapentaenoic acid in high concentration from spermary of walleye pollack
JPH02180996A (en) * 1989-01-06 1990-07-13 Nippon Suisan Kaisha Ltd Continuous method and apparatus of urea addition and separation
WO2003084907A1 (en) * 2002-04-11 2003-10-16 Cognis Deutschland Gmbh & Co. Kg Method for separating supercritical or near critical mixtures
US7084313B2 (en) 2002-04-11 2006-08-01 Cognis Deutschland Gmbh & Co. Kg Three stage processes for the separation of supercritical or near-critical mixtures
WO2003089399A1 (en) 2002-04-22 2003-10-30 Industrial Research Limited Improvements in or relating to separation technology
JP2005523323A (en) * 2002-04-22 2005-08-04 インダストリアル リサーチ リミティド Improvements in or relating to separation technology
US7709668B2 (en) 2002-04-22 2010-05-04 Industrial Research Limited Separation technology
KR100972703B1 (en) 2002-04-22 2010-07-27 인더스트리얼 리서치 리미티드 Improvements in or relating to separation technology
CN107459459A (en) * 2016-06-02 2017-12-12 中国石化扬子石油化工有限公司 A kind of method that methyl stearate is extracted in the benzoyl methane raffinate from stearic acid
CN107459459B (en) * 2016-06-02 2020-08-11 中国石化扬子石油化工有限公司 Method for extracting methyl stearate from benzoyl methane stearate residual liquid

Also Published As

Publication number Publication date
JPH0137387B2 (en) 1989-08-07

Similar Documents

Publication Publication Date Title
US5840944A (en) Method to produce highly pure eicosapentaenoic acid or its ester
KR100972703B1 (en) Improvements in or relating to separation technology
JPH11236591A (en) Preparation of highly pure eicosapentaenoic acid or its ester
JPH0225447A (en) Production of highly unsaturated fatty acids
Gunstone et al. Improved procedures for the isolation of pure oleic, linoleic, and linolenic acids or their methyl esters from natural sources
JPS60214757A (en) Concentration and separation of highly unsaturated fatty acid or its ester
EP0724557B1 (en) A process for separating lipophilic compounds
JPS5888339A (en) Separating and purifying method of eicosapentaenoic acid or ester thereof and docosahexaenoic acid or ester thereof
JPH1180083A (en) Production of eicosapentaenoic ester
JP2003506423A (en) Recovery of polyunsaturated fatty acids from urea adduct
JPH028298A (en) Selective separation and purification of docosahexaenoic acid and eicosapentaenoic acid from internal organs of cuttlefish
JPH0441457A (en) Production of eicosapentaenoic acid or its ester
JP2726828B2 (en) Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters
JPS59118740A (en) Preparation of eicosapentaenoic acid or its lower alcohol ester
JPH09302380A (en) Purification of eicosapentaenoic acid or its ester
US3720696A (en) Process for the extraction of 9-hexadecenoic acid
SU1440907A1 (en) Method of producing coriander essential oil
JPS61176597A (en) Method of purifying phosphatidylcholine
JPS60217299A (en) Condensation separation of highly unsaturated fatty acid or ester of same
Khan Urea complexes: preparation and purification of elaidic acid and its glyceride esters
SU641963A1 (en) Method of preparing arachidonic and eicosatrienic acids
JP2001335794A (en) Process for purifying docosahexaenoic acid or its derivative
JPH06248288A (en) Method of separating and recovering highly unsaturated fatty acids
JPS63132871A (en) Purification of carotene concentrate
JPS635074A (en) Treatment of natural oil and fat