JPH02180996A - Continuous method and apparatus of urea addition and separation - Google Patents

Continuous method and apparatus of urea addition and separation

Info

Publication number
JPH02180996A
JPH02180996A JP89989A JP89989A JPH02180996A JP H02180996 A JPH02180996 A JP H02180996A JP 89989 A JP89989 A JP 89989A JP 89989 A JP89989 A JP 89989A JP H02180996 A JPH02180996 A JP H02180996A
Authority
JP
Japan
Prior art keywords
urea
oil
solvent
adduct
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP89989A
Other languages
Japanese (ja)
Other versions
JPH07107158B2 (en
Inventor
Kazuhiko Hata
和彦 秦
Masahiro Makuta
幕田 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissui Corp
Original Assignee
Nippon Suisan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Suisan Kaisha Ltd filed Critical Nippon Suisan Kaisha Ltd
Priority to JP64000899A priority Critical patent/JPH07107158B2/en
Publication of JPH02180996A publication Critical patent/JPH02180996A/en
Publication of JPH07107158B2 publication Critical patent/JPH07107158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To separate an oil such as fatty acid (deriv.) or a hydrocarbon oil into two components, one which forms a urea adduct and the other which does not form any adduct, with a simple apparatus without using solid-liquid separation process and without producing waste water by subjecting a urea adduct of an oil component formed by reacting a raw material oil with urea in a solvent to a specific treatment. CONSTITUTION:A raw material oil (e.g. ethyl ester of sardine oil) is reacted with urea in an org. solvent (e.g. methanol) to form a urea adduct of an oil (e.g. a lowly unsatd. ethyl ester). From the reaction mixture an unadded component chiefly comprising an unreacted oil (e.g. a highly unsatd. ethyl ester) is separated by extraction with an extractant (e.g. n-hexane), and the urea adduct in the extraction residue is heated to decompose. The oil produced by the decomposition is separated by extraction with an extractant (e.g. n-hexane). Urea and the solvent remaining in the extraction residue are recycled and reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ■ 本発明は脂肪酸もしくはその誘導体からなる組成物や炭
化水素などの油分を、尿素付加体を生成する成分と生成
しない成分とに分別するための方法右よびこれに用いる
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] ■ The present invention is a method for separating compositions consisting of fatty acids or their derivatives and oil components such as hydrocarbons into components that generate urea adducts and components that do not. Regarding the method and the equipment used therefor.

〔従来の技術〕[Conventional technology]

一般に油分と称されるものには、炭化水素などの鉱物油
;トリグリセリド、脂肪酸、脂肪酸エステルなどの動・
植物油脂;合成油などがある。これらの油分は通常、種
々の成分の混合物として存在するため、用途に応じた性
質の油を得るため、あるいは有用な生理活性を有する成
分を得るために各成分に分別する必要が生じる。例えば
、動植物油、特に魚油中の高度不飽和脂肪酸成分は有用
な生理活性を有し、これを分離濃縮することは重要であ
る。また、石油工業の分野において用途に応じた性質の
油を得るため直鎖炭化水素と分枝鎖もしくは脂環式炭化
水素とを分別する必要がある。
Generally speaking, oils include mineral oils such as hydrocarbons;
Vegetable oils; synthetic oils, etc. Since these oils usually exist as a mixture of various components, it is necessary to separate them into each component in order to obtain oils with properties appropriate to the intended use or to obtain components with useful physiological activity. For example, highly unsaturated fatty acid components in animal and vegetable oils, especially fish oils, have useful physiological activities, and it is important to separate and concentrate them. Furthermore, in the field of petroleum industry, it is necessary to separate straight chain hydrocarbons from branched chain or alicyclic hydrocarbons in order to obtain oils with properties appropriate to the intended use.

らの成分の一方のみが尿素と反応し、尿素付加体を生成
する性質を利用した尿素付加分別法が知られている。か
かる尿素付加分別法には、具体的に次のような方法が知
られている。
A urea addition fractionation method is known that utilizes the property that only one of these components reacts with urea to produce a urea adduct. Specifically, the following methods are known as such urea addition fractionation methods.

■ 脂肪酸またはその誘導体からなる組成物(以下、「
脂肪酸組成物」という)と尿素メタノール溶液を攪拌混
合し冷却して尿素付加体を生成させる。析出した尿素付
加体を濾別し、濾液中のメタノールを留去後残留物の水
洗あるいは溶剤抽出により高度不飽和成分を得る。また
、尿素付加体に温水を加えて分解し、浮上油分として低
度不飽和成分を得る。
■ Compositions consisting of fatty acids or their derivatives (hereinafter referred to as “
A urea adduct is produced by stirring and mixing the urea methanol solution and the fatty acid composition and cooling the mixture. The precipitated urea adduct is filtered off, the methanol in the filtrate is distilled off, and the residue is washed with water or extracted with a solvent to obtain highly unsaturated components. In addition, hot water is added to the urea adduct to decompose it to obtain a low degree unsaturated component as a floating oil component.

■ メタノールを20容量%以下含有する炭素数5〜8
の炭化水素系溶剤中で、脂肪酸組成物と固体尿素を攪拌
混合し、反応させる。反応後、尿素付加体を濾別し、濾
液を減圧下膜溶剤して高度不飽和成分を得る。また尿素
付加体に上記組成の溶剤を加え70〜120℃に加熱し
て分解し、固体尿素を濾別して、濾液を減圧下膜溶剤し
て低度不飽和成分を得る。
■ 5 to 8 carbon atoms containing 20% by volume or less of methanol
The fatty acid composition and solid urea are stirred and mixed in a hydrocarbon solvent to react. After the reaction, the urea adduct is filtered off, and the filtrate is subjected to membrane solvent under reduced pressure to obtain highly unsaturated components. Further, a solvent having the above composition is added to the urea adduct and heated to 70 to 120°C to decompose it, solid urea is filtered off, and the filtrate is subjected to a membrane solvent under reduced pressure to obtain a low unsaturated component.

固体尿素は繰返し使用する(特公昭6340239号)
Solid urea is used repeatedly (Special Publication No. 6340239)
.

■ 原料石油を塩化メチレン等の溶剤とともに尿素水溶
液と攪拌混合し反応させる。反応後尿素付加体を濾別し
、濾液を脱溶剤して低融点油(脱ロウ油)を得る。尿素
付加体に必要であれば水を加え加熱して分解し、浮上油
分として、高融点油(パラフィン)を得る。
■ Raw petroleum is stirred and mixed with a urea aqueous solution together with a solvent such as methylene chloride to react. After the reaction, the urea adduct is filtered off, and the filtrate is desolvented to obtain a low melting point oil (dewaxed oil). If necessary, water is added to the urea adduct and it is decomposed by heating to obtain a high melting point oil (paraffin) as a floating oil component.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記いずれの分別法も濾過工程を含んでいるため、次の
ような問題がある。すなわち、まず装置が複雑となる。
Since all of the above-mentioned fractionation methods include a filtration step, they have the following problems. That is, first, the device becomes complicated.

また、尿素付加体は細かい結晶状であり、濾液成分が付
着するため、多量の洗浄用溶剤を用いないと完全な回収
が難しい。さらに、これら従来法を連続式1程とするた
めには、固体の移送が必須であるため、装置?^を開放
系とせざるを得す、特に高度不飽和脂肪酸のように空気
中の酸素で容易に酸化される物質に対しては好ましくな
い。
Furthermore, since the urea adduct is in the form of fine crystals and filtrate components adhere to it, complete recovery is difficult unless a large amount of cleaning solvent is used. Furthermore, in order to make these conventional methods continuous, it is essential to transfer the solid, so it is necessary to use equipment? ^ must be an open system, which is particularly unfavorable for substances that are easily oxidized by oxygen in the air, such as highly unsaturated fatty acids.

また、前記分別法は、各々以下の如き問題をも有する。In addition, each of the above separation methods has the following problems.

すなわち、方法■において、濾液は油分以外に相当量の
尿素を含むため濾液中の油分回収の際、メタノールを留
去すると、高度不飽和成分の尿素付加体を生ずる。これ
を濾別除去してしまうと収潰が大きく減少するため通常
温水を加えて尿素付加体を分解するが、この際乳化を起
こしやすく、やはり油分の損失が避けられない。加えて
、尿素を多量に含む廃水が生ずる。これは、尿素付加体
より低度不飽和成分を回収する際も同様で、相当量が廃
水中に失われる。また、尿素付加体を形成した大型の尿
素を回収するためには水を留去する必要があり、経費が
かかるため、再利用せず、そのまま廃棄しているのが現
状である。すなわち、収率が悪く、尿素の再利用が困難
でかつ多重の廃水が出るのが欠点である。
That is, in method (2), since the filtrate contains a considerable amount of urea in addition to oil, when methanol is distilled off when recovering the oil in the filtrate, a urea adduct of a highly unsaturated component is produced. If this is removed by filtration, the urea adduct will be greatly reduced, so hot water is usually added to decompose the urea adduct, but emulsification tends to occur at this time, and loss of oil content is unavoidable. In addition, urea-rich wastewater is produced. The same is true when recovering less unsaturated components from urea adducts, and a considerable amount is lost in wastewater. In addition, in order to recover large urea that has formed a urea adduct, it is necessary to distill off water, which is expensive, so the current situation is that it is not reused and is discarded as is. That is, the disadvantages are that the yield is poor, it is difficult to reuse urea, and multiple wastewaters are produced.

方法■においては、反応の場が固体尿素表面に限られる
ため、反応性が低いので反応に長時間を要する。また固
体尿素は二重結合数2〜4の不飽和成分(例えば18:
2.18:3.18:4.20:2.20:3.20:
4等)と付加体を形成しにくいので、20:5.22:
6、といった二重結合数5以上の高度不飽和成分を高度
に濃縮することは不可能である。さらに尿素付加体の分
解には80℃以−トの高温が必要であるため、脂肪酸ま
たはその誘導体の劣化をおこしやすい。
In method (2), since the reaction site is limited to the solid urea surface, the reactivity is low and the reaction takes a long time. In addition, solid urea is an unsaturated component having 2 to 4 double bonds (for example, 18:
2.18:3.18:4.20:2.20:3.20:
4, etc.), so it is difficult to form adducts with 20:5.22:
It is impossible to highly concentrate highly unsaturated components having 5 or more double bonds, such as 6. Furthermore, since a high temperature of 80° C. or higher is required to decompose the urea adduct, deterioration of the fatty acid or its derivative is likely to occur.

方法■においては、尿素が有機層に、溶解しないことか
ら反応は有機層と尿素水溶液の界面に限られるため反応
性が低い。従って、上記方法■と同様に反応には長時間
を要し、また、極度に融点の低い油は得難い。
In method (2), since urea does not dissolve in the organic layer, the reaction is limited to the interface between the organic layer and the urea aqueous solution, and therefore the reactivity is low. Therefore, like the above method (1), the reaction takes a long time, and it is difficult to obtain an oil with an extremely low melting point.

すなわち、従来の油分の尿素付加分別法には、以下のよ
うな問題点があり、これを解決した油分の尿素付加分別
法の開発が熱望されていた。
That is, the conventional urea addition fractionation method for oil has the following problems, and it has been eagerly awaited to develop a urea addition fractionation method for oil that solves these problems.

(i)濾過(固液分離)工程を必要とし、これに伴なう
種々の問題がある。
(i) A filtration (solid-liquid separation) step is required, and there are various problems associated with this step.

(ii )尿素の再使用が難しい。(ii) It is difficult to reuse urea.

(iii )廃水が生ずる。(iii) Wastewater is generated.

(iv )反応性が低いため、反応に長時間を要し、ま
た強度の分別が難しい。
(iv) Since the reactivity is low, the reaction takes a long time and it is difficult to classify the intensity.

(v)尿素付加体の分解に比較的高温度を要し、高度不
飽和成分の劣化を引き起こし易も)。
(v) Decomposition of urea adducts requires relatively high temperatures and tends to cause deterioration of highly unsaturated components).

〔課題を解決するための手段〕[Means to solve the problem]

かかる実情に鑑み、本発明者ら1ま前言己課題を解決す
べく鋭意検討してきたところ、尿素付加体を濾別するこ
となく抽出溶剤1こて未J叉応油分を抽出すれば、尿素
、反応溶剤とも1ご再使用でき、連続式に簡易な装置で
、高ah度で油分の分別ができることを見出し本発明を
完成した。
In view of these circumstances, the present inventors have made extensive studies to solve the problem that we had previously discussed, and have found that if the unreacted oil is extracted using an extraction solvent without filtering out the urea adduct, urea, The present invention was completed by discovering that both reaction solvents can be reused and that oil fractionation can be performed continuously with a simple device at high AH degrees.

すなわち、本発明は原料油と尿素を反応溶剤中で反応さ
せて油分の尿素付加体を生成させ、反応混合物から未反
応油分を抽出溶斉り(こより抽出し、反応混合物中の尿
素付加体を加熱処理により分解せしめ、分解した油分を
1由出溶剤により抽出し、残存尿素および反応溶剤を再
使用することを特徴とする、油分の連続式尿素付加分別
法を提供するものである。
That is, in the present invention, raw oil and urea are reacted in a reaction solvent to produce a urea adduct of oil, and unreacted oil is extracted and dissolved from the reaction mixture, and the urea adduct in the reaction mixture is extracted. The present invention provides a continuous urea addition fractionation method for oil components, which is characterized in that the oil components are decomposed by heat treatment, the decomposed oil components are extracted with a solvent, and the remaining urea and reaction solvent are reused.

また、本発明は原料油と尿素とを反応溶剤中で反応させ
るための反応槽11反応混合物から未反応油分を抽出溶
剤で抽出するための抽出器2、尿素付加体分解のための
加熱装置3および分解した油分を抽出溶剤により抽出す
るための抽出器4を備えていることを特徴とする油分の
連続式尿素付加分別装置をも提供するものである。
The present invention also provides a reaction tank 11 for reacting raw oil and urea in a reaction solvent, an extractor 2 for extracting unreacted oil from the reaction mixture with an extraction solvent, and a heating device 3 for decomposing urea adducts. The present invention also provides a continuous urea addition and fractionation apparatus for oil components, which is characterized by being equipped with an extractor 4 for extracting the decomposed oil components using an extraction solvent.

以下、本発明方法を本発明装置の一例を示す図面ととも
に説明する。
The method of the present invention will be described below with reference to drawings showing an example of the apparatus of the present invention.

本発明方法においては、まず反応槽1において、原料油
と尿素とを反応溶剤中で反応させて油分の尿素付加体を
生成させる。本発明において用いられる原料油は、尿素
と付加体を形成する成分と形成しない成分とを含有する
混合組成物であり、具体例としては魚油、肝油などの海
産動物油をはじめとする各種幼植物油類又はその誘導体
(脂肪酸、脂肪酸エステル、グリセリド、脂肪族アルコ
ール、ワックス、石ケンなど)、あるいは人為的にそれ
らを変換した油脂類又はそれらの混合物、石油炭化水素
類などが挙げられ、就中脂肪酸、脂肪酸Tルキルエステ
ル、脂肪族アルコール、グリセリド、炭化水素が好まし
い。
In the method of the present invention, first, in the reaction tank 1, raw material oil and urea are reacted in a reaction solvent to produce a urea adduct of oil. The raw material oil used in the present invention is a mixed composition containing components that form adducts with urea and components that do not. Specific examples include various young vegetable oils including marine animal oils such as fish oil and cod liver oil. or derivatives thereof (fatty acids, fatty acid esters, glycerides, fatty alcohols, waxes, soaps, etc.), or artificially converted oils and fats or mixtures thereof, petroleum hydrocarbons, etc., among which fatty acids, Preferred are fatty acid T-alkyl esters, aliphatic alcohols, glycerides, and hydrocarbons.

本発明において反応溶剤としては、例えば炭素数1〜3
の低級アルコール、これらアルコールと水の混液または
水が使用されるが、就中メタノールが特に好ましい。
In the present invention, the reaction solvent is, for example, a carbon number of 1 to 3.
lower alcohols, mixtures of these alcohols and water, or water, among which methanol is particularly preferred.

反応は、好ましくはまず反応溶剤に尿素を加えて、尿素
の反応溶剤溶液をつくり、次いでこれに原料油を添加す
ることにより行われる。尿素の反応溶剤溶液は、通常3
0〜65℃にて調製される。ただしこの溶液中において
尿素は完全に溶解している必要はない。原料油添加後、
尿素付加体が生成しスラリー状となるが、必要に応じて
液温を下げれば、尿素付加体の生成量が増加する。
The reaction is preferably carried out by first adding urea to a reaction solvent to create a reaction solvent solution of urea, and then adding the raw oil to this. The reaction solvent solution of urea is usually 3
Prepared at 0-65°C. However, urea does not need to be completely dissolved in this solution. After adding raw oil,
Urea adducts are produced and become slurry-like, but if the liquid temperature is lowered as necessary, the amount of urea adducts produced can be increased.

ここに形成される尿素付加体は、例えば脂肪酸エステル
組成物を原料油として用いた場合、低度不飽和脂肪酸エ
ステルと尿素との付加体であり、石油炭化水素を原料油
として用いた場合、直鎮状炭化水素と尿素との付加体で
ある。一方、脂肪酸エステル組成物中の高度不飽和脂肪
酸エステルや石油炭化水素中の分岐鎖もしくは脂環式炭
化水素は未反応油分として反応混合物中に存在する。
The urea adduct formed here is, for example, an adduct of a low unsaturated fatty acid ester and urea when a fatty acid ester composition is used as a raw material oil, and a direct adduct when a petroleum hydrocarbon is used as a raw material oil. It is an adduct of quenched hydrocarbon and urea. On the other hand, highly unsaturated fatty acid esters in the fatty acid ester composition and branched or alicyclic hydrocarbons in petroleum hydrocarbons exist in the reaction mixture as unreacted oil components.

未反応油分(非付加成分)は、抽出器2に移され、反応
混合物から抽出溶剤により抽出される。抽出器としては
、例えば向流分配式連続抽出器、混合器と連続遠心分離
器の組合せ等が好適に使用される。ここで用いられる抽
出溶剤としては、反応溶剤と互いに混和しない溶剤、例
えば炭素数5〜8の脂肪族炭化水素又は脂環式炭化水素
等が用いられる。
Unreacted oil (non-added components) is transferred to extractor 2 and extracted from the reaction mixture with an extraction solvent. As the extractor, for example, a countercurrent distribution type continuous extractor, a combination of a mixer and a continuous centrifugal separator, etc. are suitably used. The extraction solvent used here is a solvent that is immiscible with the reaction solvent, such as an aliphatic hydrocarbon or alicyclic hydrocarbon having 5 to 8 carbon atoms.

抽出された未反応油分は、例えば溶剤蒸留塔5などによ
り減圧等で脱溶剤すれば抽出溶剤より分離れさる。ここ
で回収した抽出溶剤は再使用可能である。
The extracted unreacted oil is separated from the extraction solvent by removing the solvent under reduced pressure using, for example, a solvent distillation column 5. The extraction solvent recovered here can be reused.

一方、抽出残渣である尿素付加体を含む反応溶剤は、加
熱袋@3において加熱することにより、尿素と油分(付
加成分)に分解される。加熱温度は30〜65℃で充分
である。
On the other hand, the reaction solvent containing the urea adduct, which is the extraction residue, is decomposed into urea and oil (additional component) by heating in the heating bag @3. A heating temperature of 30 to 65°C is sufficient.

分解した油分く付加成分)は、抽出器4において前述の
抽出溶剤と同様の抽出溶剤をIIJいて抽出される。抽
出器4としては上述の抽出器3と同様のものが使用でき
る。また抽出された付加成分は、例えば溶剤蒸留塔6な
どにより減圧等で脱溶剤すれば抽出溶剤より分離される
。ここで回収した抽出溶剤は再使用可能である。
The decomposed oil (additional components) is extracted in the extractor 4 using an extraction solvent similar to the above-mentioned extraction solvent. As the extractor 4, one similar to the above-mentioned extractor 3 can be used. Further, the extracted additional components are separated from the extraction solvent by removing the solvent under reduced pressure using a solvent distillation column 6, for example. The extraction solvent recovered here can be reused.

抽出残渣として尿素の反応溶剤溶液が得られ、これは直
接再使用可能である。従って、この溶液に原料油を再び
加え、以下前記同様の操作を行うことができる。
A solution of urea in the reaction solvent is obtained as the extraction residue, which can be directly reused. Therefore, the raw material oil can be added again to this solution, and the same operations as described above can be carried out.

〔作用及び発明の効果〕[Action and effect of the invention]

本発明の工程は、濾過等の固液分離工程を含まないため
、装置が簡易であり、また装置全体を密閉系とすること
が容易なため高度不飽和脂肪酸のように空気酸化され易
い物質の取扱いには、非常に有利である。また、反応溶
剤、抽出溶剤、尿素、いずれも、繰返し使用でき、損失
がない。さらに廃水も生じない3、尿素付加体の分解に
要する温度は通常50℃程度と比較的低温でありやはり
高度不飽和脂肪酸の取り扱いに有利である。また、原料
油と使用する尿素の量比や加熱冷却の温度差を適宜換え
ることにより、反応の強弱(分別の程度)を容易に調節
することができる。
The process of the present invention does not include a solid-liquid separation process such as filtration, so the equipment is simple, and the entire equipment can be easily sealed, so it is possible to remove substances that are easily oxidized by air, such as highly unsaturated fatty acids. It is very convenient for handling. In addition, the reaction solvent, extraction solvent, and urea can all be used repeatedly without loss. Furthermore, no waste water is generated3, and the temperature required to decompose the urea adduct is usually around 50°C, which is relatively low, which is advantageous for handling highly unsaturated fatty acids. In addition, the strength of the reaction (degree of fractionation) can be easily adjusted by appropriately changing the ratio of amounts of the raw material oil to the urea used and the temperature difference between heating and cooling.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例1 メタノール450dに尿素80gを加え、12容の分液
ロート中50℃で5分間攪拌した。
Example 1 80 g of urea was added to 450 d of methanol, and the mixture was stirred at 50° C. for 5 minutes in a 12-volume separating funnel.

(2) (りの混合液にオレイン酸およびリルン酸(い
ずれも市販試薬)の等重量混合物45gを加え、攪拌し
ながら20分間で10℃まで冷却し、尿素付加体を形成
させた。
(2) 45 g of an equal weight mixture of oleic acid and lylunic acid (both commercially available reagents) was added to the mixed solution, and the mixture was cooled to 10° C. for 20 minutes with stirring to form a urea adduct.

(3)  (2)の反応液に10℃のn−へキサン45
()−を加え、10℃に保ちつつ3分間激しく攪拌後静
置した。上層の透明なヘキサン層を分取し、減圧上溶剤
を留去回収し、高度不飽和エチルエステルを多量に含む
非付加エステル20.8gを得た。
(3) Add 45% n-hexane at 10°C to the reaction solution of (2).
()- was added, stirred vigorously for 3 minutes while maintaining the temperature at 10°C, and then allowed to stand. The upper transparent hexane layer was separated and the solvent was distilled off under reduced pressure to obtain 20.8 g of non-added ester containing a large amount of highly unsaturated ethyl ester.

(4)  下層の尿素付加体を含むメタノール層を攪拌
しながら20分間で50℃まで加熱し、これに50℃の
n−ヘキサン450−を加え50℃に保ちつつ3分間激
しく攪拌した後静置した。上層の透明なヘキサン層を分
取し、減圧上溶剤を留去回収し、付加成分22.3 g
を得た。
(4) Heat the lower methanol layer containing the urea adduct to 50°C for 20 minutes while stirring, add 50°C n-hexane 450°C to this, keep the temperature at 50°C, stir vigorously for 3 minutes, and then let it stand. did. The upper transparent hexane layer was separated and the solvent was distilled off under reduced pressure to obtain 22.3 g of additional component.
I got it.

(5)  (4)の下層のメタノール層を50℃に保ち
っつオレイン酸とリルン酸の等重量混合物45gを加え
、以下(2)、(3)、(4)の順に同様に操作し22
.6gの非付加成分と22.2gの付加成分を得た。
(5) While keeping the lower methanol layer in (4) at 50°C, add 45 g of an equal weight mixture of oleic acid and lylic acid, and perform the following operations in the same order as (2), (3), and (4).
.. 6 g of non-added component and 22.2 g of added component were obtained.

なお、非付加エステルの抽出には、(3)で回収した抽
出溶剤を、付加エステルの抽出には、(4)で回収した
抽出溶剤を用いた。
The extraction solvent recovered in step (3) was used to extract the non-added ester, and the extraction solvent recovered in step (4) was used to extract the added ester.

(6)  (5)の模作をさらに1回繰り返し、21.
2gの非付加成分と23.9gの付加成分を得た。
(6) Repeat (5) one more time, 21.
2 g of non-added component and 23.9 g of added component were obtained.

以上、3ザイクルの試験で得られた非(=11成分と付
加成分の脂肪酸を常法によりメチルエステル化したのち
、ガスクロマトグラフィーを行い各成分のすレイン酸と
リルン酸の比を求めた。その結果を第1表に示す。
After methyl esterifying the non-(=11 component and the additional component fatty acid) obtained in the 3-cycle test above, gas chromatography was performed to determine the ratio of sleic acid to lylunic acid of each component. The results are shown in Table 1.

以下余白 実施例2 (1)  メタノール400dに尿素80gを加え、5
0℃に保ちつつ攪拌溶解した。
Below is the margin Example 2 (1) Add 80 g of urea to 400 d of methanol,
The mixture was stirred and dissolved while maintaining the temperature at 0°C.

(2) 50Fd!容三ロフラスコに20mt’/分の
流速で(1)の尿素メタノール溶液および2−7分の流
速で、イワシ油エチルエステルの精密蒸留により得られ
た炭素数20の脂肪酸のエチルエステルを主成分とする
留分(原料エステル)を、いずれも連続的に送液し、攪
拌混合した。
(2) 50Fd! The urea methanol solution of (1) was added to a three-way flask at a flow rate of 20 mt'/min and the ethyl ester of a fatty acid having 20 carbon atoms obtained by precision distillation of sardine oil ethyl ester was added as the main component. The fractions (raw material esters) were continuously fed and mixed with stirring.

(3)5℃に保った恒温水槽中に設置した内径5−1、
長さ1.8mのステンレス管に(2)の三[4フラスコ
より混合液を連続的に送液した。
(3) Inner diameter 5-1 installed in a constant temperature water tank kept at 5℃,
The mixed solution was continuously fed from the three flasks in (2) to a stainless steel pipe with a length of 1.8 m.

(4)50rnI!容三ロフラスコを5℃に保ち、これ
に(3)のステンレス管より出た液、および5′t゛の
n−ヘキサン(20tf’/分)を連続的に送液し攪拌
混合した。
(4) 50rnI! A three-hole flask was maintained at 5°C, and the liquid discharged from the stainless steel tube (3) and 5't'n-hexane (20tf'/min) were continuously fed into the flask and mixed with stirring.

(5)5℃に保った内径2.8cm、高さ15cmのガ
ラス製デカンタ−(第2図)中央部より(4)の三ロフ
ラスコの混合液を連続的に送液して一゛層分離し、デカ
ンタ−上部より透明なn−ヘキサン層をオーバーフ〇−
により分取し、減圧下洛剤を留去回収して、残油分とし
て高度不飽和エチルエステルを主成分とする非付加成分
を得た。また留去回収した少量のメタノールを含むn−
ヘキサンは(4)の工程に戻し、循環使用した。
(5) A glass decanter with an inner diameter of 2.8 cm and a height of 15 cm kept at 5°C (Fig. 2) The mixture from the three-ring flask in (4) is continuously pumped through the center to separate one layer. Then, pour over the transparent n-hexane layer from the top of the decanter.
The extract was collected by distillation under reduced pressure to obtain a non-additive component containing highly unsaturated ethyl ester as a residual oil. In addition, n- containing a small amount of methanol recovered by distillation
Hexane was returned to step (4) and used for circulation.

(6)  (5)と同時に、デカンタ−下部より上下層
の界面が一定の高さを保つ流速で、尿素付加体を含むメ
タノール層を抜き出し、これを50℃に保った恒温水槽
中に設置した内径5市、長さ1.8mのステンレス管に
連続的に送液した。
(6) At the same time as (5), the methanol layer containing the urea adduct was extracted from the bottom of the decanter at a flow rate that kept the interface between the upper and lower layers at a constant height, and this was placed in a constant temperature water bath maintained at 50°C. The liquid was continuously fed into a stainless steel tube with an inner diameter of 5 mm and a length of 1.8 m.

(7)50−容の三ロフラスコを50℃に保ち、(6)
のステンレス管より出た液およびn−へ牛サン(20m
f/分)を連続的に送液し、攪拌混合した。
(7) Keep a 50-volume three-loaf flask at 50°C, (6)
The liquid coming out from the stainless steel tube and the beef san (20 m
f/min) was continuously fed and mixed by stirring.

(8)50℃に保った内径2.8cm、長さ15cmの
ガラス製デカンタ−中央部より、(7)の三ロフラスコ
の混合液を連続的に送液して二層分離しデカンタ−上部
より透明なn−ヘキサン層をオーバーフローにより分取
し、減圧下洛剤を留去回収して、残油分として低度不飽
和エチルエステルを主成分とする付加成分をi’−4,
た。
(8) Continuously feed the mixture from the three-lough flask in (7) through the center of a glass decanter with an inner diameter of 2.8 cm and a length of 15 cm kept at 50°C to separate the two layers, and then pour the mixture into two layers from the top of the decanter. The transparent n-hexane layer is separated by overflow, the filtration agent is distilled off and recovered under reduced pressure, and the residual oil is an additional component mainly composed of low unsaturated ethyl ester.
Ta.

また留去回収した少量のメタノールを含む■1−へキサ
ンは(7)の工程に戻し循環使用した3゜(9)  (
8)と同時にデカンタ−下部より上下層の界面が一定の
高さを保つ流速で、尿素を含むメタノール層を抜き出し
、これを(1)の工程の尿素メタノール溶液の容器に連
続的に送液し、循環使用した。
In addition, the 1-hexane containing a small amount of methanol recovered by distillation was returned to the step (7) and recycled to 3゜(9) (
8) At the same time, extract the methanol layer containing urea from the bottom of the decanter at a flow rate that maintains the interface between the upper and lower layers at a constant height, and continuously feed this into the container containing the urea-methanol solution in step (1). , used in circulation.

以上一連の連続循環工程を、5時間連続で行い、540
gの原料エステルより2701;の非付加成分および2
66gの付加成分を14だ。原料エステルおよび非付加
成分、付加成分の脂肪酸組成をガスクロマトグラフィー
により測定した。その結果を第2表に示す。
The above series of continuous circulation steps were performed continuously for 5 hours, and 540
From the raw material ester of g, the non-added component of 2701; and 2
14 for 66g of additional ingredients. The fatty acid compositions of the raw ester, non-added components, and added components were measured by gas chromatography. The results are shown in Table 2.

第2表 実施例3 (1)  メタノール40fに水1.5!、および尿素
8kgを加え、50℃に保ちつつ攪拌溶解した1゜(2
)124!/時の流速で(1)の溶液および1.2n/
時の流速で実施例2で用いたものと同じ原料エステルを
いずれも連続的にカキ) IJ式熟熱交換器送液し5℃
まで冷却して尿素付加体を形成させた。
Table 2 Example 3 (1) 40f methanol to 1.5ml water! , and 8 kg of urea were added and stirred and dissolved at 50°C.
)124! solution of (1) at a flow rate of /h and 1.2n/h
The same raw material ester used in Example 2 was continuously fed to the IJ heat exchanger at a flow rate of 5°C.
The urea adduct was formed by cooling to .

(3)  (2)の混合液を、5℃に保った向流分配液
々抽出器に連続的に送液し、10p/時の流速の5℃の
n−ヘキサンにて抽出した。n−ヘキザン層の溶剤を減
圧下で留去回収し、残油分として高度不飽和エチルエス
テルを主成分とする非付加成分を得た。また、留去回収
した少量のメタノールを含むn−へキサンは、抽出溶剤
として循環使用した。
(3) The mixture of (2) was continuously fed to a countercurrent liquid-liquid extractor maintained at 5°C, and extracted with n-hexane at a flow rate of 10 p/hr at 5°C. The solvent in the n-hexane layer was distilled off and recovered under reduced pressure to obtain a non-added component mainly composed of highly unsaturated ethyl ester as a residual oil. In addition, the n-hexane containing a small amount of methanol that was distilled off and recovered was recycled and used as an extraction solvent.

(4)  (3)の抽出残渣である、尿素付加体を含む
メタノール層をカキトリ式熱交換器に送液し、50℃ま
で加温し尿素付加体を分解した。
(4) The methanol layer containing the urea adduct, which was the extraction residue of (3), was sent to an oyster-type heat exchanger and heated to 50° C. to decompose the urea adduct.

(5)  (4)の熱交換器より出た液を、50℃に保
、った向流分配液々抽出器に連続的に送液し、1027
時の50℃のn−ヘキサンにて抽出した。n−へキサン
層の溶剤を留去回収し、残油分として低度不飽和エチル
エステルを主成分とする付加成分を得た。また、留去回
収した少量のメタノールを含むn−ヘキサンは、循環使
用した。
(5) The liquid discharged from the heat exchanger in (4) is continuously sent to a countercurrent distribution liquid-liquid extractor maintained at 50°C.
The mixture was extracted with n-hexane at 50°C. The solvent in the n-hexane layer was distilled off and recovered to obtain an additional component mainly composed of low unsaturated ethyl ester as a residual oil. In addition, n-hexane containing a small amount of methanol that was distilled off and recovered was recycled and used.

(6)  (5)の抽出残渣である尿素を含むメタノー
ル層は、(1)の工程の容器に連続的に送液し、循環使
用した。
(6) The methanol layer containing urea, which was the extraction residue in (5), was continuously fed to the container in step (1) and used for circulation.

以上の一連の連続循環工程を、8時間連続的に行い、8
.74kgの原料エステルより4.54kgの非付加成
分および4.17kgの付加成分を得た、。
The above series of continuous circulation steps were carried out continuously for 8 hours.
.. 4.54 kg of non-added components and 4.17 kg of added components were obtained from 74 kg of raw ester.

原料エステル、および非付加成分、付加成分の脂肪酸組
成をガスクロマトグラフィーにより測定した。その結果
を第3表に示す。
The fatty acid compositions of the raw ester, non-added components, and added components were measured by gas chromatography. The results are shown in Table 3.

第3表 実施例4 (1)  メタノール401に尿素12kgを加え60
℃に保ちつつ攪拌溶解した。
Table 3 Example 4 (1) Add 12 kg of urea to 401 methanol and add 60
The mixture was stirred and dissolved while maintaining the temperature at °C.

(2)1242/時の流速で、(1)の溶液および12
E/時の流速で、n−ヘキサデカンと2.6.1014
−テトラメチルベンタテ“カン(いずれも市販試薬)の
等重量混合物をいずれも連続的にカキトリ式熱交換器に
送液し、20℃まで冷却して尿素付加体を形成させた。
(2) At a flow rate of 1242/hr, the solution of (1) and 12
n-hexadecane and 2.6.1014 at a flow rate of E/h.
-Tetramethylbentate"can (both commercially available reagents) were continuously fed into an oyster-type heat exchanger and cooled to 20° C. to form urea adducts.

(3)  (2]の混合液を20℃に保った向流分配液
々抽出器に連続的に送液し、1012/時の流速の20
℃のイソオクタンにて抽出した。イソオクタン層の溶剤
を減圧下で留去回収し、残油分として非付加成分を得た
。また留去回収した少量のメタノールを含むイソオクタ
ンは抽出溶剤として循環使用した。
(3) The mixture of (2) was continuously fed to a countercurrent distribution liquid-liquid extractor kept at 20°C, and the flow rate was 20°C at a flow rate of 1012/hour.
Extracted with isooctane at ℃. The solvent in the isooctane layer was distilled off and recovered under reduced pressure to obtain a non-added component as a residual oil. Also, the isooctane containing a small amount of methanol that was distilled off and recovered was recycled and used as an extraction solvent.

(4)  (3)の抽出残渣である尿素付加体を含むメ
タノール層を、カキ) IJ式熟熱交換器送液し、60
℃まで加温して尿素付加体を分解した。
(4) The methanol layer containing the urea adduct, which is the extraction residue of (3), was sent to the oysters) through an IJ type aging heat exchanger, and
The urea adduct was decomposed by heating to ℃.

(5)  (4)の熱交換器より出た液を、60℃に保
つた向流分配液を抽出器に連続的に送液し、101/時
の60℃のイソオクタンにて抽出した。イソオクタン層
の溶剤を留去回収し残油分として付加成分を得た。また
留去回収した生型のメタノールを含むイソオクタンは抽
出溶剤として循環使用した。
(5) The liquid discharged from the heat exchanger in (4) was continuously fed as a countercurrent distribution liquid maintained at 60°C to an extractor and extracted with isooctane at 60°C at 101/hour. The solvent in the isooctane layer was distilled off and recovered to obtain an additional component as a residual oil. In addition, the isooctane containing raw methanol recovered by distillation was recycled and used as an extraction solvent.

(6)  (5)の抽出残渣である尿素を含むメタノー
ル層は(1)の工程の容器に連続的に送液し、循環使用
した。
(6) The methanol layer containing urea, which was the extraction residue in (5), was continuously fed to the container in step (1) and used for circulation.

以上の一連の連続循環工程を8時間連続的に行い、7.
48kgのn−ヘキサデカンと2.6.+014−テト
ラメチルペンタデカンの等量混合物より、3.72kg
の非付加成分および3.72 kgの付加成分を得た。
7. Perform the above series of continuous circulation steps continuously for 8 hours.
48 kg of n-hexadecane and 2.6. +014-Tetramethylpentadecane from an equal mixture of 3.72 kg
of non-added component and 3.72 kg of added component were obtained.

各成分のn−ヘキサデカンと2、6.10.14−テト
ラメチルペンタデカンの組成比を、ガスクロマトグラフ
ィーにて測定した。その結果を第4表に示す。
The composition ratio of each component, n-hexadecane and 2,6.10.14-tetramethylpentadecane, was measured by gas chromatography. The results are shown in Table 4.

第4表Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例を示す概略図である。 1:反応槽    2:抽出器 3:加熱装置   4:抽出器 5 溶剤蒸留塔  6:溶剤蒸留塔 第2図は実施例2で使用したデカンタ−の断面図を示す
図面である。 以  J− 第1図 第2図
FIG. 1 is a schematic diagram showing an example of the apparatus of the present invention. 1: Reaction tank 2: Extractor 3: Heating device 4: Extractor 5 Solvent distillation column 6: Solvent distillation column FIG. 2 is a cross-sectional view of the decanter used in Example 2. J- Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 原料油と尿素を反応溶剤中で反応させて油分の尿素
付加体を生成させ、反応混合物から未反応油分を抽出溶
剤により抽出し、反応混合物中の尿素付加体を加熱処理
により分解せしめ、分解した油分を抽出溶剤により抽出
し、残存尿素および反応溶剤を再使用することを特徴と
する、油分の連続式尿素付加分別法。 2 原料油と尿素とを反応溶剤中で反応させるための反
応槽1、反応混合物から未反応油分を抽出溶剤で抽出す
るための抽出器2、尿素付加体分解のための加熱装置3
および分解した油分を抽出溶剤により抽出するための抽
出器4を備えていることを特徴とする油分の連続式尿素
付加分別装置
[Scope of Claims] 1. A raw material oil and urea are reacted in a reaction solvent to produce a urea adduct of oil, an unreacted oil is extracted from the reaction mixture with an extraction solvent, and the urea adduct in the reaction mixture is heated. A continuous urea addition fractionation method for oil components, which is characterized by decomposing the oil components through treatment, extracting the decomposed oil components with an extraction solvent, and reusing the remaining urea and reaction solvent. 2 Reaction tank 1 for reacting raw oil and urea in a reaction solvent, extractor 2 for extracting unreacted oil from the reaction mixture with an extraction solvent, heating device 3 for decomposing urea adducts
and an extractor 4 for extracting the decomposed oil using an extraction solvent.A continuous urea addition fractionation device for oil.
JP64000899A 1989-01-06 1989-01-06 Continuous urea addition fractionation method and its equipment Expired - Fee Related JPH07107158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP64000899A JPH07107158B2 (en) 1989-01-06 1989-01-06 Continuous urea addition fractionation method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64000899A JPH07107158B2 (en) 1989-01-06 1989-01-06 Continuous urea addition fractionation method and its equipment

Publications (2)

Publication Number Publication Date
JPH02180996A true JPH02180996A (en) 1990-07-13
JPH07107158B2 JPH07107158B2 (en) 1995-11-15

Family

ID=11486533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64000899A Expired - Fee Related JPH07107158B2 (en) 1989-01-06 1989-01-06 Continuous urea addition fractionation method and its equipment

Country Status (1)

Country Link
JP (1) JPH07107158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021766A1 (en) * 1993-03-16 1994-09-29 Kawasaki Steel Corporation Process for separating docosahexaenoic acid or ester thereof from marine microalgae
JPH07278585A (en) * 1994-04-06 1995-10-24 Nippon Kagaku Shiryo Kk Method for purifying eicosapentaenoic acid or its ester
US5734071A (en) * 1993-10-20 1998-03-31 Trikonex Ab Process for separating lipophilic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164196A (en) * 1981-04-03 1982-10-08 Nippon Oils & Fats Co Ltd Concentration separation of highly unsaturated fatty acids
JPS60214757A (en) * 1984-04-07 1985-10-28 Jgc Corp Concentration and separation of highly unsaturated fatty acid or its ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164196A (en) * 1981-04-03 1982-10-08 Nippon Oils & Fats Co Ltd Concentration separation of highly unsaturated fatty acids
JPS60214757A (en) * 1984-04-07 1985-10-28 Jgc Corp Concentration and separation of highly unsaturated fatty acid or its ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021766A1 (en) * 1993-03-16 1994-09-29 Kawasaki Steel Corporation Process for separating docosahexaenoic acid or ester thereof from marine microalgae
US5734071A (en) * 1993-10-20 1998-03-31 Trikonex Ab Process for separating lipophilic compounds
JPH07278585A (en) * 1994-04-06 1995-10-24 Nippon Kagaku Shiryo Kk Method for purifying eicosapentaenoic acid or its ester

Also Published As

Publication number Publication date
JPH07107158B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US4076948A (en) Process for treatment of adipic acid mother liquor
CA2164121C (en) Method for purifying alcohol esters
KR20010023757A (en) Method of re-refining waste oil by distillation and extraction
US4057576A (en) Process for isolating 2-hydroxynaphthalene carboxylic acids from reaction mixtures of the alkali metal salts of 2-hydroxynaphthalene with carbon dioxide
KR100371759B1 (en) Process for producing (meth)acrylic acid
KR100515232B1 (en) Hydroformylation Process
JPH02180996A (en) Continuous method and apparatus of urea addition and separation
CN106660926A (en) Process for recovering aromatic monocarboxylic acid
JP2003506423A (en) Recovery of polyunsaturated fatty acids from urea adduct
US4421649A (en) Method and apparatus for enriching compounds of low water solubility from aqueous suspensions of substantially inorganic solid substances
US5959142A (en) Process for refining methacrylic acid
FR2470762A1 (en) PROCESS FOR TREATING AN ADIPIC ACID PRODUCTION RESIDUE
CN103796985B (en) The method of methacrylic acid is reclaimed from higher-boiling compound phase and aqueous phase
CA2439571A1 (en) Method and apparatus for the preparation of triptane and/or triptene
US3624145A (en) Purification of terephthalic acid by liquid-liquid extraction
US1371342A (en) Process for the removal of fatty acids, resins, bitter and mucilaginous substances from fats and oils
US2885446A (en) Process for improving color of oil-soluble alcohols
US2573891A (en) Recovery of sterols
US2918487A (en) Process for producing dibasic acids
FR2630730A1 (en) PROCESS FOR OBTAINING SQUALANE
KR890700559A (en) Process for the preparation of para-xylol having a purity of at least 99.5%
US3686322A (en) Process for purifying vanillin
JPH0649480A (en) Separation of unsaturated compound
JP3413251B2 (en) Isophorone recovery method
US2853478A (en) Separation of urea adducts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees