JPH0158240B2 - - Google Patents

Info

Publication number
JPH0158240B2
JPH0158240B2 JP7293884A JP7293884A JPH0158240B2 JP H0158240 B2 JPH0158240 B2 JP H0158240B2 JP 7293884 A JP7293884 A JP 7293884A JP 7293884 A JP7293884 A JP 7293884A JP H0158240 B2 JPH0158240 B2 JP H0158240B2
Authority
JP
Japan
Prior art keywords
extraction
fatty acids
esters
carbon dioxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7293884A
Other languages
Japanese (ja)
Other versions
JPS60217299A (en
Inventor
Hiroshi Unno
Hiroshi Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP7293884A priority Critical patent/JPS60217299A/en
Publication of JPS60217299A publication Critical patent/JPS60217299A/en
Publication of JPH0158240B2 publication Critical patent/JPH0158240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的) 産業上の利用分野 本発明は高度不飽和脂肪酸、特にエイコサペン
タエン酸(EPA)、ドコサヘキサエン酸(DHA)
又はそれらの低級アルコールエステルを含有する
原料混合物のEPA、DHA、又はそれらのエステ
ルの濃縮分離法に関する。 発明が解決しようとする問題点 魚油等の海産物油脂に含まれるEPA及びDHA
(及びそのエステル、アミド等の誘導体)は、心
筋梗塞、脳梗塞等の血栓性疾患の予防及び治療に
有効であることが知られている。しかしながら天
然物中の含有量は低いため、医療等各種用途には
これらを濃縮する必要がある。本発明はかかる高
度不飽和脂肪酸又はそのエステルの効果的、経済
的な濃縮分離法を提供することを目的とする。 従来の技術 魚油は一般に脂肪酸とグリセリンとのエステル
(グリセリド)として存在する。グリセリドのま
まの形では分子量が大であり、蒸気圧も高く、非
常に分離され難いだけでなく、分離過程で構成脂
肪酸の違いによる差異が殆ど出ない。 従つて分離効果を向上させるためには、グリセ
リドを分解して脂肪酸にするか、あるいは低級ア
ルコールのエステル(一般にメチルエステル又は
エチルエステル)にしてから分離操作を行う方法
が一般的である。 脂肪酸又はその低級アルコールエステルの分離
方法としては、真空蒸留法、クロマトグラフイー
法、溶剤分別法、尿素付加法等が公知であるが、
いずれも一長一短がある。 本発明は液体又は超臨界ガス状態の二酸化炭素
を抽出溶剤として用いる方法である。 加圧下の液体又は超臨界ガス状態の二酸化炭素
が、さまざまな有機化合物を溶解し、抽出溶剤と
しての使用が可能なことは公知である。 しかしながら、脂肪酸又はそのエステルを単純
に液体又は超臨界ガス状態の二酸化炭素で抽出し
ただけでは、構成脂肪酸の種類に応じた分別効果
は殆どない。 (発明の構成) 問題点を解決するための手段 本発明は、液体又は超臨界ガス状態の二酸化炭
素に対する脂肪酸又はそのエステルの溶解度が、
構成脂肪酸の種類及び温度により変化するという
知見に基いて完成されたものである。 即ち本発明は、高度不飽和脂肪酸又はその低級
アルコールエステルを含有する各種脂肪酸又はそ
の低級アルコールエステル原料混合物を、上部に
加熱還流部を有する抽出装置において、上部から
留出する抽出相を加熱還流せしめつつ液体又は超
臨界ガス状態の二酸化炭素で抽出した後、該装置
から得られる抽出相から二酸化炭素を除去するこ
とよりなる高度不飽和脂肪酸又はその低級アルコ
ールエステルの濃縮分離法である。 高度不飽和脂肪酸又はその低級アルコールエス
テルを含有する各種脂肪酸又はその低級アルコー
ルエステル混合物を、液体又は超臨界ガス状態の
二酸化炭素で抽出する工程の圧力は70〜300気圧
が好ましく、特にメチルエステル又はエチルエス
テルを抽出する場合は100〜180気圧が好適であ
る。脂肪酸の場合にはこれよりも幾分高い圧力、
特に200気圧程度が好ましい。抽出温度は特に制
限はないが、操作の簡便さの為には室温付近、即
ち20〜40℃が適当である。還流部の温度は抽出温
度よりも20〜100℃高い温度とする。ただし
EPA、DHA、及びそれらのエステルは熱に不安
定であるので、150℃を越えない温度とするのが
望ましい。 この抽出工程から留出する抽出相を加熱または
減圧することにより、二酸化炭素は急速に気化し
て、容易かつ完全に除去され、脂肪酸又はその低
級アルコールエステル留分を分離することができ
る。 分離工程で分離された二酸化炭素は圧縮して再
使用することができる。 本発明を実施するに適当な装置の一例を第1図
に示す。抽出器1の上部には加熱部(ヒーター)
11が設けられ、また抽出器の側面にはジヤケツ
ト12が設けられている。ジヤケツト12には恒
温水を循環して抽出温度を所定値(上述の如く20
〜40℃が適当)に保ち、またヒーター11はスチ
ーム等により加熱して還流温度を所定値(上述の
如く抽出温度より20〜100℃高い温度)に保つよ
うにしてある。抽出器の圧力は弁4により所定値
に保たれる。このような抽出器に原料混合物を入
れ、ボンベ2から二酸化炭素をポンプ3により送
入する。低温(20〜40℃)で脂肪酸又はエステル
を抽出した二酸化炭素は、上部のヒーター11で
加熱されて抽出能が低下するため、抽出油の一部
を放出する。これが一般の蒸留における還流に相
当する効果を与えるため分別効果が生じる。ただ
一般の蒸留においては、留分を冷却・液化して還
流させるのに対して、本発明方法においては、抽
出溶剤である二酸化炭素を加熱してその抽出能を
低下させることにより抽出油の一部を放出させて
還流させる点で、一般の蒸留における還流とは異
なる。その結果、抽出の初期においては飽和及び
不飽和度の低い脂肪酸又はそのエステルが留出
し、不飽和度の高い脂肪酸又はそのエステルは抽
出操作の後半において濃縮されて留出するので、
それを分離すればよい。抽出物は弁4で大気圧ま
で減圧され、二酸化炭素は気化するので、分離槽
5で脂肪酸又はそのエステル留分を捕集する。記
号6は実験データを得るために二酸化炭素の使用
量を測定するガスメーターである。 本発明方法は、魚油等から得られた脂肪酸又は
そのエステルの混合物に対して直接実施しても濃
縮効果があるが、尿素付加法等の他の濃縮手段で
前処理した原料を用いることにより、更に濃縮度
を高めることができる。 以下実施例により、本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 以下の実施例1〜4において使用する原料脂肪
酸メチルエステル混合物は、魚油(いわし油を主
とする混合魚油)をメタノール中、ナトリウムメ
トキシドを触媒としてメチルエステル化して調製
した。組成はガスクロマトグラフイーにて測定し
ガスクロマトグラフイーの面積%で表示した。 実施例 1 第1図に示した装置を用いた。抽出器1に脂肪
酸メチルエステル混合物60.9gを入れ、抽出温度
40℃、還流温度100℃に設定し、ボンベ2からポ
ンプ3にて二酸化炭素を抽出器に送入し抽出を開
始した。抽出圧力は抽出開始時に100Kg/cm2Gに
設定し、徐々に昇圧して抽出終了時には150Kg/
cm2Gとした。メチルエステルをとり込んだ抽出相
は減圧弁4で大気圧まで減圧し、分離器5で抽出
油を分離した。抽出油を分離した二酸化炭素ガス
は、ガスメーター6で検量して系外に放出した。
抽出には10時間を要し、使用した二酸化炭素は18
Kgであつた。原料及び代表的な留分の組成を第1
表に示す。第1表の成分の表示において、例えば
18:2は炭素数が18、二重結合が2個の脂肪酸
(リノール酸)を示す。エイコサペンタエン酸
(EPA)は20:5、ドコサヘキサエン酸(DHA)
は22:6である。
(Purpose) Industrial application field The present invention is directed to highly unsaturated fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
The present invention relates to a method for concentrating and separating EPA, DHA, or their esters from a raw material mixture containing the lower alcohol esters thereof. Problems to be solved by the invention EPA and DHA contained in seafood oils such as fish oil
(and derivatives thereof such as esters and amides) are known to be effective in preventing and treating thrombotic diseases such as myocardial infarction and cerebral infarction. However, since the content in natural products is low, it is necessary to concentrate them for various medical and other uses. The object of the present invention is to provide an effective and economical method for concentrating and separating such highly unsaturated fatty acids or their esters. BACKGROUND OF THE INVENTION Fish oils generally exist as esters of fatty acids and glycerin (glycerides). In its original form, glyceride has a large molecular weight and high vapor pressure, making it extremely difficult to separate, and in the separation process, there are almost no differences due to differences in the constituent fatty acids. Therefore, in order to improve the separation effect, it is common to decompose glyceride into fatty acids or convert it into esters of lower alcohols (generally methyl esters or ethyl esters) before performing the separation operation. Vacuum distillation method, chromatography method, solvent fractionation method, urea addition method, etc. are known as methods for separating fatty acids or their lower alcohol esters.
Both have their advantages and disadvantages. The present invention is a method using carbon dioxide in a liquid or supercritical gas state as an extraction solvent. It is known that carbon dioxide in liquid or supercritical gas state under pressure dissolves various organic compounds and can be used as an extraction solvent. However, simply extracting fatty acids or their esters with carbon dioxide in a liquid or supercritical gas state has little effect on separating the constituent fatty acids according to their types. (Structure of the Invention) Means for Solving the Problems The present invention provides that the solubility of a fatty acid or its ester in carbon dioxide in a liquid or supercritical gas state is
This was completed based on the knowledge that it changes depending on the type of constituent fatty acids and temperature. That is, the present invention heats and refluxes the extraction phase distilled from the upper part of a raw material mixture of various fatty acids or lower alcohol esters containing highly unsaturated fatty acids or lower alcohol esters in an extraction apparatus having a heating reflux section in the upper part. This is a method for concentrating and separating highly unsaturated fatty acids or lower alcohol esters thereof, which comprises extracting with carbon dioxide in a liquid or supercritical gas state, and then removing carbon dioxide from the extraction phase obtained from the apparatus. The pressure in the step of extracting various fatty acids or mixtures of lower alcohol esters containing highly unsaturated fatty acids or lower alcohol esters with liquid or supercritical gaseous carbon dioxide is preferably 70 to 300 atmospheres, particularly when extracting methyl esters or ethyl esters. When extracting esters, a pressure of 100 to 180 atmospheres is suitable. a somewhat higher pressure for fatty acids;
In particular, about 200 atmospheres is preferable. There are no particular restrictions on the extraction temperature, but for ease of operation, a temperature around room temperature, ie, 20 to 40°C, is appropriate. The temperature of the reflux section is 20 to 100°C higher than the extraction temperature. however
Since EPA, DHA, and their esters are unstable to heat, it is desirable that the temperature does not exceed 150°C. By heating or reducing the pressure of the extraction phase distilled from this extraction step, carbon dioxide is rapidly vaporized and easily and completely removed, allowing the fatty acid or its lower alcohol ester fraction to be separated. The carbon dioxide separated in the separation process can be compressed and reused. An example of an apparatus suitable for carrying out the invention is shown in FIG. There is a heating section (heater) at the top of extractor 1.
11 is provided, and a jacket 12 is provided on the side of the extractor. In the jacket 12, constant temperature water is circulated to maintain the extraction temperature at a predetermined value (as described above,
The reflux temperature is maintained at a predetermined value (20 to 100° C. higher than the extraction temperature as described above) by heating the heater 11 with steam or the like. The extractor pressure is kept at a predetermined value by a valve 4. A raw material mixture is put into such an extractor, and carbon dioxide is introduced from a cylinder 2 by a pump 3. The carbon dioxide from which fatty acids or esters have been extracted at low temperatures (20 to 40°C) is heated by the heater 11 at the top, reducing its extraction ability and releasing a portion of the extracted oil. This produces an effect equivalent to reflux in general distillation, resulting in a fractionation effect. However, in general distillation, the fraction is cooled, liquefied, and refluxed, whereas in the method of the present invention, the extracted oil is heated by heating the extraction solvent, carbon dioxide, to reduce its extraction ability. It differs from reflux in general distillation in that part is released and refluxed. As a result, fatty acids with a low degree of saturation and unsaturation or their esters are distilled out in the early stage of extraction, and fatty acids with a high degree of unsaturation or their esters are concentrated and distilled out in the latter half of the extraction operation.
Just separate it. The pressure of the extract is reduced to atmospheric pressure by a valve 4, and carbon dioxide is vaporized, so a fatty acid or its ester fraction is collected in a separation tank 5. Symbol 6 is a gas meter that measures the amount of carbon dioxide used to obtain experimental data. The method of the present invention has a concentration effect even when directly applied to mixtures of fatty acids or their esters obtained from fish oil, etc., but by using raw materials pretreated with other concentration means such as urea addition method, Furthermore, the degree of concentration can be increased. The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. The raw fatty acid methyl ester mixtures used in Examples 1 to 4 below were prepared by methyl esterifying fish oil (mixed fish oil mainly consisting of sardine oil) in methanol using sodium methoxide as a catalyst. The composition was measured by gas chromatography and expressed as area % of gas chromatography. Example 1 The apparatus shown in FIG. 1 was used. Put 60.9g of fatty acid methyl ester mixture into extractor 1 and set the extraction temperature to
The temperature was set at 40°C and the reflux temperature was 100°C, and carbon dioxide was fed from cylinder 2 to the extractor using pump 3 to start extraction. The extraction pressure is set at 100Kg/cm 2 G at the start of extraction, and gradually increases to 150Kg/cm2 at the end of extraction.
cm 2 G. The pressure of the extraction phase containing the methyl ester was reduced to atmospheric pressure using a pressure reducing valve 4, and the extracted oil was separated using a separator 5. The carbon dioxide gas from which the extracted oil was separated was calibrated with a gas meter 6 and discharged to the outside of the system.
The extraction took 10 hours and the carbon dioxide used was 18
It was Kg. The composition of the raw materials and representative fractions is
Shown in the table. In the display of ingredients in Table 1, for example,
18:2 indicates a fatty acid (linoleic acid) with 18 carbon atoms and 2 double bonds. Eicosapentaenoic acid (EPA) is 20:5, docosahexaenoic acid (DHA)
is 22:6.

【表】 ついて記載
また抽出の進行に伴う、その時点で抽出成分中
のEPA、DHAのメチルエステル及び両者の合計
濃度を第2図に示す。図において横軸は抽出進行
率(%)、縦軸は抽出成分中の濃度(%)を示し、
■はEPAメチルエステル、▲はDHAメチルエス
テル、●は両者の合計濃度を示す。(記号は第3
図及び第4図も同じ) 第1表及び第2図から、本発明による抽出操作
の前半においては飽和又は不飽和度の低い脂肪酸
メチルエステルが優先的に抽出され、EPAや
DHAのような不飽和度の高い脂肪酸のメチルエ
ステルは抽出操作の後半において集中的に抽出さ
れていることがわかる。 実施例 2 実施例1と同じ原料及び同一の装置を用いた。
抽出器に脂肪酸メチルエステル混合物57.2gを入
れ、抽出温度40℃、還流温度100℃に設定し、120
Kg/cm2Gで原料の50wt%が留出するまで還流抽
出を行い、そこで抽出圧力を150Kg/cm2Gに上げ、
還流を停止して残りの留分を抽出した。抽出には
6時間を要し、使用した二酸化炭素は11Kgであつ
た。 抽出の進行に伴うその時点での抽出成分中の
EPA、DHAのメチルエステル及び両者の合計濃
度を第3図に示した。横軸は抽出進行率(%)、
縦軸は抽出成分中の濃度(%)を示す。 実施例2においても、実施例1と同様な傾向を
示した。 実施例3 尿素付加前処理を併用した試験を行つた。魚油
から調製したメチルエステル混合物360gと尿素
900gにエタノール5を加えて30分還流し、そ
の後室温で1.5時間放置し、生じた固体を瀘別し
た。瀘液からエタノールを減圧留去した残留物を
1のn−ヘキサンで溶解し、それを1の水
(40℃)で3回洗浄した後、無水硫酸ナトリウム
上で乾燥し、その後n−ヘキサンを減圧留去し
て、不飽和脂肪酸のメチルエステルに富む混合物
142gを得た。 この尿素処理したメチルエステル混合物53.8g
を抽出器に入れ、抽出温度40℃、還流温度100℃
で抽出した。抽出圧力は抽出開始時に100Kg/cm2
Gに設定し、徐々に昇圧して抽出終了時には130
Kg/cm2Gとした。 原料及び代表的な留分の組成を第2表に示す。 また、抽出の進行に伴う、その時点での抽出成
分中のEPA、DHAのメチルエステル及び両者の
合計濃度を第4図に示した。横軸は抽出進行率
(%)、縦軸は抽出成分中の濃度(%)を示す。 抽出処理に先立つて尿素付加前処理をした実施
例3においては、高度不飽和脂肪酸エステルの濃
度率は更に向上した。
[Table] In addition, as the extraction progresses, the methyl esters of EPA and DHA in the extracted components and the total concentration of both are shown in Figure 2. In the figure, the horizontal axis shows the extraction progress rate (%), the vertical axis shows the concentration (%) in the extracted components,
■ indicates EPA methyl ester, ▲ indicates DHA methyl ester, and ● indicates the total concentration of both. (The symbol is the third
The same applies to Figures 1 and 4.) From Table 1 and Figure 2, it can be seen that in the first half of the extraction operation according to the present invention, fatty acid methyl esters with a low degree of saturation or unsaturation are preferentially extracted, and EPA and
It can be seen that methyl esters of highly unsaturated fatty acids such as DHA are intensively extracted in the latter half of the extraction operation. Example 2 The same raw materials and the same equipment as in Example 1 were used.
Put 57.2g of the fatty acid methyl ester mixture into the extractor, set the extraction temperature to 40℃, the reflux temperature to 100℃, and
Reflux extraction was performed at Kg/cm 2 G until 50 wt% of the raw material was distilled out, and then the extraction pressure was increased to 150 Kg/cm 2 G.
Reflux was stopped and the remaining fraction was extracted. The extraction took 6 hours and used 11 kg of carbon dioxide. As the extraction progresses, the content of the extracted components at that point
Figure 3 shows the methyl esters of EPA and DHA and the total concentration of both. The horizontal axis is the extraction progress rate (%),
The vertical axis indicates the concentration (%) in the extracted components. Example 2 also showed the same tendency as Example 1. Example 3 A test was conducted in combination with urea addition pretreatment. 360 g of methyl ester mixture prepared from fish oil and urea
Ethanol 5 was added to 900 g and refluxed for 30 minutes, then left at room temperature for 1.5 hours, and the resulting solid was filtered out. The residue obtained by distilling off ethanol from the filtrate under reduced pressure was dissolved in n-hexane (1), washed three times with water (40°C) (1), dried over anhydrous sodium sulfate, and then dissolved in n-hexane. Distilled under reduced pressure to obtain a mixture rich in methyl esters of unsaturated fatty acids.
Obtained 142g. 53.8g of this urea-treated methyl ester mixture
into the extractor, extraction temperature 40℃, reflux temperature 100℃
Extracted with. Extraction pressure is 100Kg/cm 2 at the start of extraction
Set it to G and gradually increase the pressure to 130 at the end of extraction.
Kg/cm 2 G. The compositions of the raw materials and representative fractions are shown in Table 2. Furthermore, as the extraction progresses, the methyl esters of EPA and DHA in the extracted components and the total concentration of both are shown in FIG. 4 at that point. The horizontal axis shows the extraction progress rate (%), and the vertical axis shows the concentration (%) in the extracted components. In Example 3, in which urea addition pretreatment was performed prior to extraction treatment, the concentration ratio of highly unsaturated fatty acid ester was further improved.

【表】 ついて記載
実施例 4 尿素共存二酸化炭素抽出による前処理を併用し
た試験を行つた。魚油から調製したメチルエステ
ル混合物87.0gと固体尿素261g(メチルエステ
ルの3.0倍)を尿素共存抽出器に入れ二酸化炭素
をポンプで送液し、抽出温度40℃、抽出圧力150
Kg/cm2Gで抽出し、分離器で抽出相を大気圧に減
圧した。0.40Nm3(0.79Kg)の二酸化炭素を使用
し、1時間かけて抽出したところ、45.2g(原料
の52%)の抽出油が得られた。 ここで得られた尿素共存抽出器40.0gを第1図
の装置の抽出器1に入れ、抽出温度40℃、還流温
度100℃で抽出した。抽出圧力は100Kg/cm2Gから
徐々に昇圧し、終了時には130Kg/cm2Gとした。 原料及び代表的な留分の組成を第3表に示す。
[Table] Example 4 A test was conducted in which pretreatment by urea-coexisting carbon dioxide extraction was combined. 87.0 g of a methyl ester mixture prepared from fish oil and 261 g of solid urea (3.0 times the amount of methyl ester) were placed in a urea coexistence extractor, and carbon dioxide was pumped in at an extraction temperature of 40°C and an extraction pressure of 150°C.
Kg/cm 2 G was extracted, and the extraction phase was depressurized to atmospheric pressure in a separator. Extraction was performed using 0.40 Nm 3 (0.79 Kg) of carbon dioxide for 1 hour, and 45.2 g (52% of the raw material) of extracted oil was obtained. 40.0 g of the urea coexisting extractor obtained here was placed in extractor 1 of the apparatus shown in FIG. 1, and extraction was carried out at an extraction temperature of 40°C and a reflux temperature of 100°C. The extraction pressure was gradually increased from 100 Kg/cm 2 G to 130 Kg/cm 2 G at the end of the extraction. The compositions of the raw materials and representative fractions are shown in Table 3.

【表】 ついて記載
なお本実施例では、尿素共存抽出後の組成を分
析するため一度減圧して抽出油を取り出している
が、尿素共存抽出後二酸化炭素を分離して抽出油
を取り出すことなく、直接還流抽出を行うことも
もちろん可能である。 実施例 5 魚油をエタノール性水酸化カリウム水溶液で分
解することによつて調製した脂肪酸混合物48gを
第1図に示した装置の抽出器1に入れ、抽出温度
40℃、還流温度100℃で抽出した。抽出圧力は180
Kg/cm2Gから徐々に昇圧し、終了時には200Kg/
cm2Gとした。抽出には8時間を要し、使用した二
酸化炭素は21Kgであつた。 原料及び代表的な留分の組成を第4表に示す。
なお組成分析は、脂肪酸をメチルエステル化して
行つた。
[Table] Note that in this example, in order to analyze the composition after urea coexistence extraction, the extracted oil was extracted by reducing the pressure once, but the extracted oil was not taken out by separating carbon dioxide after urea coexistence extraction. It is of course also possible to perform a direct reflux extraction. Example 5 48 g of a fatty acid mixture prepared by decomposing fish oil with an aqueous ethanolic potassium hydroxide solution was placed in the extractor 1 of the apparatus shown in Figure 1, and the extraction temperature was
Extraction was carried out at 40°C and reflux temperature of 100°C. Extraction pressure is 180
Gradually increase the pressure from Kg/cm 2 G to 200Kg/cm2 at the end.
cm 2 G. The extraction took 8 hours and used 21 kg of carbon dioxide. The compositions of the raw materials and representative fractions are shown in Table 4.
The compositional analysis was performed by converting fatty acids into methyl esters.

【表】 (効果) a) 天然油脂から高度不飽和脂肪酸又はそのエ
ステルを効果的に濃縮分離できる。 b) 溶剤として用いる二酸化炭素は、安価、か
つ人体に無害である。 c) 抽出相を減圧するだけで、溶剤二酸化炭素
を容易かつ完全に除去できる。 d) 抽出は低温操作であり、還流部もあまり高
温にする必要がないので、高度不飽和脂肪酸等
の異性化や重合が起きにくい。
[Table] (Effects) a) Highly unsaturated fatty acids or their esters can be effectively concentrated and separated from natural oils and fats. b) Carbon dioxide used as a solvent is inexpensive and harmless to the human body. c) Solvent carbon dioxide can be easily and completely removed simply by applying vacuum to the extraction phase. d) Extraction is a low-temperature operation, and the reflux section does not need to be heated too high, so isomerization and polymerization of highly unsaturated fatty acids and the like are less likely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の一
例を示すものである。第2図は実施例1、第3図
は実施例2、第4図は実施例3の、それぞれ抽出
の進行に伴う、その時点での抽出成分中のEPA
(エイコサペンタエン酸)、DHA(ドコサヘキサエ
ン酸)のメチルエステル及び両者の合計濃度の変
化を示すもので、横軸は抽出進行率(%)、縦軸
は抽出成分中の濃度(%)を示す。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. Figure 2 shows the EPA in the extracted components of Example 1, Figure 3 shows Example 2, and Figure 4 shows Example 3 as the extraction progresses.
(eicosapentaenoic acid), DHA (docosahexaenoic acid) methyl ester, and the total concentration of both. The horizontal axis shows the extraction progress rate (%), and the vertical axis shows the concentration (%) in the extracted components.

Claims (1)

【特許請求の範囲】 1 高度不飽和脂肪酸又はその低級アルコールエ
ステルを含有する各種脂肪酸又はその低級アルコ
ールエステル原料混合物を、上部に加熱還流部を
有する抽出装置において、上部から留出する抽出
相を加熱還流せしめつつ液体又は超臨界ガス状態
の二酸化炭素で抽出した後、該装置から得られる
抽出相から二酸化炭素を除去することよりなる高
度不飽和脂肪酸又はその低級アルコールエステル
の濃縮分離法。 2 高度不飽和脂肪酸がエイコサペンタエン酸
(EPA)又はドコサヘキサエン酸(DHA)であ
る特許請求の範囲第1項記載の方法。 3 抽出圧力が70〜300気圧、抽出温度が20〜40
℃で、且つ還流部の温度が抽出温度より20〜100
℃高い温度である特許請求の範囲第1項又は第2
項記載の方法。 4 原料混合物を抽出前に尿素処理して飽和又は
低度不飽和の脂肪酸又はそのエステルの尿素付加
物を分離し、原料中の高度不飽和脂肪酸又はその
エステルの濃度を高めた後、抽出することよりな
る特許請求の範囲第1項、第2項又は第3項記載
の方法。
[Scope of Claims] 1 A raw material mixture of various fatty acids or lower alcohol esters containing highly unsaturated fatty acids or lower alcohol esters thereof is heated in an extraction device having a heating reflux section at the upper part of the extraction phase distilled from the upper part. A method for concentrating and separating highly unsaturated fatty acids or lower alcohol esters thereof, which comprises extracting with carbon dioxide in a liquid or supercritical gas state while refluxing, and then removing carbon dioxide from the extraction phase obtained from the apparatus. 2. The method according to claim 1, wherein the highly unsaturated fatty acid is eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). 3 Extraction pressure is 70 to 300 atm, extraction temperature is 20 to 40
℃, and the temperature of the reflux section is 20 to 100 degrees higher than the extraction temperature.
Claim 1 or 2, which is a high temperature
The method described in section. 4. Before extraction, the raw material mixture is treated with urea to separate urea adducts of saturated or low unsaturated fatty acids or their esters, and the concentration of highly unsaturated fatty acids or their esters in the raw materials is increased, and then extracted. A method according to claim 1, 2 or 3, comprising:
JP7293884A 1984-04-13 1984-04-13 Condensation separation of highly unsaturated fatty acid or ester of same Granted JPS60217299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7293884A JPS60217299A (en) 1984-04-13 1984-04-13 Condensation separation of highly unsaturated fatty acid or ester of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7293884A JPS60217299A (en) 1984-04-13 1984-04-13 Condensation separation of highly unsaturated fatty acid or ester of same

Publications (2)

Publication Number Publication Date
JPS60217299A JPS60217299A (en) 1985-10-30
JPH0158240B2 true JPH0158240B2 (en) 1989-12-11

Family

ID=13503807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7293884A Granted JPS60217299A (en) 1984-04-13 1984-04-13 Condensation separation of highly unsaturated fatty acid or ester of same

Country Status (1)

Country Link
JP (1) JPS60217299A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538753B2 (en) * 1993-08-27 1996-10-02 財団法人地球環境産業技術研究機構 How to extract fatty acids

Also Published As

Publication number Publication date
JPS60217299A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
JPH0159318B2 (en)
US5679809A (en) Concentrate of polyunsaturated fatty acid ethyl esters and preparation thereof
FR2678632A1 (en) Process for the preparation of the unsaponifiable material from avocado which makes it possible to improve its content of one of its fractions known as H
JPH11236591A (en) Preparation of highly pure eicosapentaenoic acid or its ester
JP2003509506A (en) Method for extracting avocado furan lipid compounds and polyhydroxylated fatty alcohols, compositions based on the compounds and their use in therapy, beauty and food
KR20020042432A (en) Method for isolating high-purified unsaturated fatty acids using crystallization
RU2242505C2 (en) Method for removing free fatty acids from fat and oil of biological origin or their vapor distillate (variants)
KR100972703B1 (en) Improvements in or relating to separation technology
Patil et al. Microwave-mediated non-catalytic transesterification of algal biomass under supercritical ethanol conditions
JPH09157684A (en) Purification of highly unsaturated fatty acid ester
Gunstone et al. Improved procedures for the isolation of pure oleic, linoleic, and linolenic acids or their methyl esters from natural sources
JPH0796498B2 (en) How to extract the fruits of Selenoa repens
JP2010513570A (en) Method for increasing DHA concentration
JP3678317B2 (en) Method for concentrating eicosapentaenoic acid-containing material
JPH02289692A (en) Method for concentrating triglyceride with high alpha-linolenic acid content
JPH0158240B2 (en)
JP3040136B2 (en) Method for producing eicosapentaenoic acid or ester thereof
JP3344887B2 (en) Method for concentrating fats and oils containing highly unsaturated fatty acids
JPH028298A (en) Selective separation and purification of docosahexaenoic acid and eicosapentaenoic acid from internal organs of cuttlefish
JPS588037A (en) Preparation of eicosapentaenoic acid or its ester
JPH0137387B2 (en)
JPS6388159A (en) Production of docosahexaenoic acid ester
JP2004502657A (en) Squalene manufacturing method
Chang et al. Recovery and enhancement of unsaturated fatty acids in soft-shelled turtle fish oil using supercritical carbon dioxide and associated catalase release activity
JP3005638B2 (en) Method for producing high concentration eicosapentaenoic acid or ester thereof