JPH1095744A - Production of highly unsaturated aliphatic acid or its alkyl ester - Google Patents

Production of highly unsaturated aliphatic acid or its alkyl ester

Info

Publication number
JPH1095744A
JPH1095744A JP8271908A JP27190896A JPH1095744A JP H1095744 A JPH1095744 A JP H1095744A JP 8271908 A JP8271908 A JP 8271908A JP 27190896 A JP27190896 A JP 27190896A JP H1095744 A JPH1095744 A JP H1095744A
Authority
JP
Japan
Prior art keywords
fatty acid
weight
alkyl ester
epa
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8271908A
Other languages
Japanese (ja)
Inventor
Kazuhiro Akama
和博 赤間
Masato Mori
真人 森
Yoshiro Nakano
善郎 中野
Shigeru Matsuyoshi
繁 松吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP8271908A priority Critical patent/JPH1095744A/en
Publication of JPH1095744A publication Critical patent/JPH1095744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily producing a highly purified highly unsaturated aliphatic acid or its alkyl ester from a mixture containing a highly unsaturated aliphatic acid or its alkyl ester without generating a thermally denaturated material in a high yield. SOLUTION: A highly unsaturated aliphatic acid or its alkyl ester is fractionated and concentrated by treating a mixture containing the highly unsaturated aliphatic acid or its alkyl ester by a thin film distillation method, a supercritical gas extraction method and a urea addition method, and performing the supercritical gas extraction method in a process after the thin film distilling method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高度不飽和脂肪酸
又はそのアルキルエステルの製造方法に関する。さらに
詳しくは、本発明は、高度不飽和脂肪酸又はそのアルキ
ルエステルを含有する混合物を、熱による変性を生じな
い温和な条件により分別、濃縮し、高純度の高度不飽和
脂肪酸又はそのアルキルエステルを得ることができる高
度不飽和脂肪酸又はそのアルキルエステルの製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a polyunsaturated fatty acid or an alkyl ester thereof. More specifically, the present invention provides a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof, which is separated and concentrated under mild conditions that do not cause thermal denaturation to obtain a highly pure polyunsaturated fatty acid or an alkyl ester thereof. And a method for producing a highly unsaturated fatty acid or an alkyl ester thereof.

【0002】[0002]

【従来の技術】従来より、純度90重量%以上のエイコ
サペンタエン酸エチルが、高脂血症改善薬として有用で
あることが知られている。また、ドコサヘキサエン酸に
は、学習能を高める作用があると言われている。エイコ
サペンタエン酸やドコサヘキサエン酸など又はそれらの
アルキルエステルなどの工業的な製造は、化学合成では
極めて困難であり、海産動植物油などを原料に用いて分
別、精製しなければならない。海産動植物油などには、
炭素数と二重結合数が異なる各種の不飽和脂肪酸が含ま
れており、その中から所望の高度不飽和脂肪酸又はその
誘導体を単離するためには、高度な技術が必要である。
2. Description of the Related Art It has been known that ethyl eicosapentaenoate having a purity of 90% by weight or more is useful as a drug for improving hyperlipidemia. In addition, it is said that docosahexaenoic acid has an effect of enhancing learning ability. Industrial production of eicosapentaenoic acid, docosahexaenoic acid, or the like or alkyl esters thereof is extremely difficult by chemical synthesis, and must be separated and purified using marine animal and vegetable oils as raw materials. For marine animal and vegetable oils,
Various unsaturated fatty acids having different numbers of carbon atoms and double bonds are contained, and high technology is required to isolate a desired highly unsaturated fatty acid or a derivative thereof from them.

【0003】これまでに、高度不飽和脂肪酸であるエイ
コサペンタエン酸、ドコサヘキサエン酸及びそれらの誘
導体の精製方法が数多く提案されている。このような精
製方法としては、蒸留法、薄膜蒸留法、尿素付加法、超
臨界ガス抽出法、超臨界クロマトグラフ法、液−液抽出
法、液体クロマトグラフ法などが知られている。蒸留法
は、沸点の差を利用して分別を行う方法であり、脂肪酸
のアシル基の炭素数差による分離が可能であるが、純度
90重量%を超えるエイコサペンタエン酸エチルを製造
するには至っていない。また、蒸留法と液−液抽出法を
組み合わせて、エイコサペンタエン酸の純度を80重量
%以上にする濃縮方法が提案されている(特開平4−1
28250号公報)。しかし、蒸留法の最大の欠点は、
蒸留時に約200℃の高温を伴うために熱変性体が生成
するという問題である。熱変性体は、温度が高いと蒸留
時間が長びくにつれて生成量が増加するものであり、装
置の改良により蒸留時間の短縮を図っても、高温で運転
を行うかぎり熱変性体の生成を完全に防止することはで
きない。薄膜蒸留法は、液を薄膜状として加熱するた
め、分子の飛程距離が短くなり、熱履歴が小さいため、
蒸留法より低温(沸点以下)で留出させることができ、
熱変性を低減することができる。しかし、精留効果が低
いために、蒸留法より分離能が低いという問題がある。
[0003] Many methods have been proposed for the purification of polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid and derivatives thereof. As such a purification method, a distillation method, a thin film distillation method, a urea addition method, a supercritical gas extraction method, a supercritical chromatography method, a liquid-liquid extraction method, a liquid chromatography method, and the like are known. The distillation method is a method of performing fractionation utilizing a difference in boiling point, and can be separated by a difference in carbon number of an acyl group of a fatty acid. However, it has been impossible to produce ethyl eicosapentaenoate having a purity of more than 90% by weight. Not in. In addition, a concentration method has been proposed in which the purity of eicosapentaenoic acid is increased to 80% by weight or more by combining the distillation method and the liquid-liquid extraction method (Japanese Patent Laid-Open No. 4-1 / 1991).
No. 28250). However, the biggest disadvantage of the distillation method is that
There is a problem that a heat denatured product is formed due to the high temperature of about 200 ° C. during the distillation. When the temperature is high, the amount of the heat-denatured product increases as the distillation time increases, and even if the distillation time is shortened by improving the equipment, the production of the heat-denatured product is completely completed as long as the operation is performed at a high temperature. It cannot be prevented. In the thin film distillation method, the liquid is heated as a thin film, so that the range of the molecule is short and the heat history is small,
It can be distilled at a lower temperature (below the boiling point) than the distillation method,
Thermal denaturation can be reduced. However, there is a problem that the separation power is lower than that of the distillation method because the rectification effect is low.

【0004】尿素付加法は、尿素と飽和脂肪酸及びモノ
不飽和脂肪酸が、包接化合物を容易に形成することを利
用した分別法である。しかし、脂肪酸又はその誘導体混
合物から、飽和脂肪酸又はモノ不飽和脂肪酸を分別し得
るに過ぎず、尿素付加法のみで高度不飽和脂肪酸を高純
度化させることは極めて困難である(特開昭58−80
37号公報、特開昭62−72793号公報)。超臨界
ガス抽出法及び超臨界クロマトグラフ法は、超臨界状態
の二酸化炭素を抽出剤として用い、抽出塔又はカラムに
より、目的とする高度不飽和脂肪酸又はその誘導体を分
別する方法である。圧力条件又は温度条件を変化させ
て、高度不飽和脂肪酸又はその誘導体に対する溶解度を
変化させることにより、蒸留と同様に脂肪酸のアシル基
の炭素数差による分離が可能であるが、超臨界ガス抽出
法又は超臨界クロマトグラフ法のみで、90重量%以上
の高純度の高度不飽和脂肪酸又はその誘導体を得ること
は困難である。
The urea addition method is a fractionation method utilizing the fact that urea, a saturated fatty acid and a monounsaturated fatty acid easily form an inclusion compound. However, only saturated fatty acids or monounsaturated fatty acids can be separated from a mixture of fatty acids or derivatives thereof, and it is extremely difficult to highly purify highly unsaturated fatty acids only by the urea addition method (Japanese Patent Laid-Open No. 58-1983). 80
No. 37, JP-A-62-72793). The supercritical gas extraction method and the supercritical chromatography method are methods in which carbon dioxide in a supercritical state is used as an extractant, and a target highly unsaturated fatty acid or a derivative thereof is separated by an extraction tower or a column. By changing the solubility in polyunsaturated fatty acids or derivatives thereof by changing the pressure conditions or temperature conditions, it is possible to separate the fatty acid acyl groups by the difference in the number of carbon atoms as in the case of distillation. Alternatively, it is difficult to obtain a highly unsaturated polyunsaturated fatty acid or a derivative thereof having a purity of 90% by weight or more only by supercritical chromatography.

【0005】超臨界クロマトグラム法においては、カラ
ム充填剤として硝酸銀−シリカゲルを用いるドコサヘキ
サエン酸又はその誘導体の高純度化が提案されている
が、硝酸銀を大量に使用するため、実験室的に小規模に
行われるものであり、安全性などの点から、工業的な方
法として実施することは困難である(特開昭60−21
4757号公報、特開昭64−7906号公報)。ま
た、カラム充填剤として、オクタデシル化シリカゲルの
表面の修飾剤としてアミノプロピル基、テトラクロルフ
タルイミド基、ニトロ基、シアノ基などの分子内に自由
電子対又は多重結合を有する化合物を用いて不飽和脂肪
酸を分離する方法が開示されているが、実験室的規模で
のクロマトグラムの分離パターンのみの例示しかなく、
高純度化に関して検討されておらず、工業的に大量に製
造するには至っていない(特開平6−25694号公
報)。
[0005] In the supercritical chromatogram method, it has been proposed to purify docosahexaenoic acid or a derivative thereof using silver nitrate-silica gel as a column packing material. It is difficult to implement the method as an industrial method from the viewpoint of safety and the like (Japanese Patent Laid-Open No. 60-21).
4747, JP-A-64-7906). In addition, as a column packing material, a compound having a free electron pair or a multiple bond in a molecule such as an aminopropyl group, a tetrachlorophthalimide group, a nitro group, or a cyano group as a modifier for the surface of octadecylated silica gel is used as an unsaturated fatty acid. Is disclosed, but there is only an example of only the separation pattern of the chromatogram on a laboratory scale,
No consideration has been given to high purity, and no industrial mass production has been achieved (Japanese Patent Application Laid-Open No. Hei 6-25694).

【0006】液−液抽出法は、高度不飽和脂肪酸又はそ
の誘導体混合物を、極性溶媒と非極性溶媒との混合物に
溶解したとき、それぞれの溶媒に対する高度不飽和脂肪
酸又はその誘導体の分配率が脂肪酸の種類によって異な
ることを利用して、極性溶媒中に高度不飽和脂肪酸又は
その誘導体を濃縮する方法であるが、エイコサペンタエ
ン酸とドコサヘキサエン酸を分離することはできない
(特開平4−159398号公報、特開平4−2185
96号公報、特開平4−243849号公報)。また、
液−液抽出法において、極性溶媒中に硝酸銀を共存させ
て高度不飽和脂肪酸又はその誘導体を濃縮する方法も提
案されているが、硝酸銀を用いる方法を工業的規模で経
済的に実現することは困難であり、炭素数の差を利用し
て分離することもできない(特開昭64−83043号
公報)。液体クロマトグラフ法は、オクタデシル化シリ
カゲルやシリカゲル−硝酸銀を担体として使用し、炭素
数の差又は二重結合数の差により分離を行う方法である
が、大量製造設備の実現は、大型カラムの設計、溶媒の
回収などの点で工業的な製造方法として実施困難である
(特開昭60−208940号公報、特開昭63−29
0845号公報、特開平5−287295号公報)。
In the liquid-liquid extraction method, when a mixture of a polyunsaturated fatty acid or a derivative thereof is dissolved in a mixture of a polar solvent and a nonpolar solvent, the partition ratio of the polyunsaturated fatty acid or a derivative thereof to each solvent is determined by the fatty acid. Is a method of concentrating a polyunsaturated fatty acid or a derivative thereof in a polar solvent by utilizing the difference depending on the type of eicosapentaenoic acid and docosahexaenoic acid (JP-A-4-159398, JP-A-4-2185
96, JP-A-4-243849). Also,
In the liquid-liquid extraction method, a method of concentrating silver nitrate in a polar solvent and concentrating a polyunsaturated fatty acid or a derivative thereof has also been proposed.However, it is impossible to economically realize a method using silver nitrate on an industrial scale. It is difficult and cannot be separated by utilizing the difference in the number of carbon atoms (JP-A-64-83043). The liquid chromatography method uses octadecylated silica gel or silica gel-silver nitrate as a carrier and separates them according to the difference in the number of carbon atoms or the number of double bonds. It is difficult to implement as an industrial production method in terms of solvent recovery (Japanese Patent Application Laid-Open Nos. 60-208940 and 63-29).
0845, JP-A-5-287295).

【0007】上述のいずれの製造方法によっても、海産
動植物油を原料として、エイコサペンタエン酸、ドコサ
ヘキサエン酸などの高度不飽和脂肪酸又はその誘導体を
高純度に濃縮するには技術的な限界があり、工業的な実
施は困難であった。このために、実用化にあたっては、
種々の分別精製法を適宜組み合わせる方法を選択するこ
とが好ましいとされている。このような分別精製法の組
み合わせとして、蒸留法と尿素付加法とを組み合わせる
ことにより、エイコサペンタエン酸を純度85重量%以
上まで濃縮する方法(特開平4−41457号公報)、
あるいは、蒸留法と液−液抽出法を組み合わせて、エイ
コサペンタエン酸を純度80重量%以上とする濃縮方法
が提案されている(特公平3−47259号公報)。し
かし、これらの方法は蒸留法を用いるために、高度不飽
和脂肪酸又はその誘導体が塔底部分で約200℃の高温
にさらされることになり、熱変性体である異性化物及び
重合物の生成が問題となる。すなわち、これらの製造方
法によると、エイコサペンタエン酸の異性化物がエイコ
サペンタエン酸の製品中に混入し、純度低下をもたらす
ことから、異性化物の少ない高純度品を製造する方法と
しては適当ではない。また、熱変性体は天然には存在し
ない化合物であり、生体内に取り込まれたときに毒性を
有する可能性があり、熱異性体の製品中への混入は避け
ることが好ましい。
[0007] In any of the above production methods, there is a technical limit in concentrating highly unsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid or derivatives thereof with high purity from marine animal and vegetable oils as raw materials. Implementation was difficult. For this reason, in practical use,
It is said that it is preferable to select a method that appropriately combines various fractionation purification methods. A method of concentrating eicosapentaenoic acid to a purity of 85% by weight or more by combining a distillation method and a urea addition method as a combination of such fractional purification methods (JP-A-4-41457).
Alternatively, a concentration method in which eicosapentaenoic acid has a purity of 80% by weight or more by combining a distillation method and a liquid-liquid extraction method has been proposed (Japanese Patent Publication No. 3-47259). However, since these methods use a distillation method, the polyunsaturated fatty acid or a derivative thereof is exposed to a high temperature of about 200 ° C. at the bottom of the column, and the formation of heat-modified isomers and polymers is not caused. It becomes a problem. That is, according to these production methods, an isomer of eicosapentaenoic acid is mixed into a product of eicosapentaenoic acid, resulting in a decrease in purity. Therefore, it is not suitable as a method for producing a high-purity product with less isomerate. In addition, the heat denatured compound is a compound that does not exist in nature, and may have toxicity when taken into a living body. Therefore, it is preferable to avoid mixing a heat isomer into a product.

【0008】一方、尿素付加法と、温度勾配抽出塔によ
る超臨界ガス抽出法とを組み合わせ、熱変性体である異
性化物を含まない、純度90重量%程度のエイコサペン
タエン酸誘導体の製造法が開示されている。しかし、こ
の方法は、エイコサペンタエン酸の含有量が高く、ドコ
サヘキサエン酸の含有量が低い特殊な脂肪酸組成の原料
魚油を用いるため、このような原料魚油は現在では入手
不可能であるばかりか、エイコサペンタエン酸とドコサ
ヘキサエン酸の分離が不十分で、この方法で得られるエ
イコサペンタエン酸誘導体の純度は90重量%程度が限
界であり、工業的に収率よく得るまでには至っていない
(特開平1−249102号公報、特開平1−2497
42号公報)。また、尿素付加法、薄膜蒸留法及び超臨
界ガス抽出法を組み合わせたエイコサペンタエン酸及び
ドコサヘキサエン酸のエステルの精製方法が開示されて
いる。しかし、この方法は、エイコサペンタエン酸及び
ドコサヘキサエン酸を少なくとも80重量%以上含有
し、その重量比が1:2〜2:1である混合物を製造す
る方法であり、高純度のエイコサペンタエン酸若しくは
ドコサヘキサエン酸又はそれらの誘導体を、単一成分と
して製造することはできない(特開平2−104522
号公報)。
On the other hand, there is disclosed a method for producing an eicosapentaenoic acid derivative having a purity of about 90% by weight, which does not contain a heat denatured isomer, by combining a urea addition method and a supercritical gas extraction method using a temperature gradient extraction column. Have been. However, this method uses a raw fish oil having a special fatty acid composition having a high content of eicosapentaenoic acid and a low content of docosahexaenoic acid. The separation of eicosapentaenoic acid and docosahexaenoic acid is insufficient, and the purity of the eicosapentaenoic acid derivative obtained by this method is limited to about 90% by weight, and it has not been possible to obtain industrially with a high yield (Japanese Unexamined Patent Publication No. No. 249102, JP-A 1-2497
No. 42). Also disclosed is a method for purifying esters of eicosapentaenoic acid and docosahexaenoic acid by combining a urea addition method, a thin film distillation method and a supercritical gas extraction method. However, this method is a method for producing a mixture containing at least 80% by weight of eicosapentaenoic acid and docosahexaenoic acid and having a weight ratio of 1: 2 to 2: 1. An acid or a derivative thereof cannot be produced as a single component (JP-A-2-104522).
No.).

【0009】[0009]

【発明が解決しようとする課題】本発明は、高度不飽和
脂肪酸又はそのアルキルエステルを含有する混合物か
ら、熱変性体を生成することなく、高純度の高度不飽和
脂肪酸又はそのアルキルエステルを、工業的に容易に、
かつ収率よく得ることができる高度不飽和脂肪酸又はそ
のアルキルエステルの製造方法を提供することを目的と
してなされたものである。
DISCLOSURE OF THE INVENTION The present invention relates to a process for producing a highly pure polyunsaturated fatty acid or an alkyl ester thereof from a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof without producing a heat-denatured product. Easily
Another object of the present invention is to provide a method for producing a highly unsaturated fatty acid or an alkyl ester thereof which can be obtained with a high yield.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、高度不飽和脂肪
酸又はそのアルキルエステルを含有する混合物を、薄膜
蒸留法、超臨界ガス抽出法及び尿素付加法を組み合わ
せ、かつ薄膜蒸留法より後に超臨界ガス抽出法を行う工
程により、熱変性体を生成することなく、高純度の高度
不飽和脂肪酸又はそのアルキルエステルを、高収率で得
ることが可能となることを見いだし、この知見に基づい
て本発明を完成するに至った。すなわち、本発明は、
(1)高度不飽和脂肪酸又はそのアルキルエステルを含
有する混合物を、薄膜蒸留法、超臨界ガス抽出法及び尿
素付加法により処理し、かつ薄膜蒸留法より後の工程に
おいて超臨界ガス抽出法を行うことにより、高度不飽和
脂肪酸又はそのアルキルエステルを分別、濃縮すること
を特徴とする高度不飽和脂肪酸又はそのアルキルエステ
ルの製造方法、(2)高度不飽和脂肪酸が、エイコサペ
ンタエン酸又はドコサヘキサエン酸であり、アルキルエ
ステルのアルキル基の炭素数が1〜4である第(1)項記
載の高度不飽和脂肪酸又はそのアルキルエステルの製造
方法、及び、(3)分別、濃縮された高度不飽和脂肪酸
又はそのアルキルエステルの純度が、90重量%以上で
ある第(1)項又は第(2)項記載の高度不飽和脂肪酸又は
そのアルキルエステルの製造方法、を提供するものであ
る。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof can be obtained by a thin film distillation method, By combining the extraction method and the urea addition method, and performing a supercritical gas extraction method after the thin film distillation method, a highly pure polyunsaturated fatty acid or an alkyl ester thereof can be produced at a high yield without generating a heat-denatured product. And found that the present invention was completed based on this finding. That is, the present invention
(1) A mixture containing a polyunsaturated fatty acid or an alkyl ester thereof is treated by a thin film distillation method, a supercritical gas extraction method and a urea addition method, and a supercritical gas extraction method is performed in a step subsequent to the thin film distillation method. The method for producing a polyunsaturated fatty acid or an alkyl ester thereof is characterized by separating and concentrating the polyunsaturated fatty acid or an alkyl ester thereof, (2) the polyunsaturated fatty acid is eicosapentaenoic acid or docosahexaenoic acid. The method for producing a polyunsaturated fatty acid or an alkyl ester thereof according to item (1), wherein the alkyl group of the alkyl ester has 1 to 4 carbon atoms, and (3) a polyunsaturated fatty acid separated or concentrated or The highly unsaturated fatty acid or the alkyl ester thereof according to item (1) or (2), wherein the purity of the alkyl ester is 90% by weight or more. The method of manufacturing, there is provided a.

【0011】[0011]

【発明の実施の形態】本発明方法は、高度不飽和脂肪酸
又はそのアルキルエステルに適用することができる。本
発明方法において、高度不飽和脂肪酸とは、脂肪酸二重
結合数/(脂肪酸炭素数−10)で表される二重結合度が
0.45以上の不飽和脂肪酸であり、このような脂肪酸
としては、例えば、エイコサペンタエン酸(EPA、C
20:5)、ドコサヘキサエン酸(DHA、C22:
6)などを挙げることができる。炭素数1〜4のアルキ
ル基を有するアルキルエステルとしては、高度不飽和脂
肪酸と、メタノール、エタノール、プロパノール、イソ
プロパノール、ブタノール、イソブタノール、sec−ブ
タノール、tert−ブタノールのような炭素数1〜4の
アルコールとのエステル化物を挙げることができる。高
度不飽和脂肪酸のアルキルエステルのアルキル基の炭素
数が5以上になると、本発明方法によっても十分な高純
度、高収率を達成することが困難となるおそれがある。
本発明方法において、原料として用いる高度不飽和脂肪
酸又はそのアルキルエステルを含有する混合物には特に
制限はなく、例えば、マイワシ油、アンチョビー油、サ
ンマ油、タラ油などの魚油に代表される海産動物油や、
植物プランクトンから得られる海産植物油など、海産動
植物由来のものを挙げることができる。
DETAILED DESCRIPTION OF THE INVENTION The method of the present invention can be applied to a polyunsaturated fatty acid or an alkyl ester thereof. In the method of the present invention, the polyunsaturated fatty acid is an unsaturated fatty acid having a degree of double bond represented by fatty acid double bond number / (fatty acid carbon number−10) of 0.45 or more. Is, for example, eicosapentaenoic acid (EPA, C
20: 5), docosahexaenoic acid (DHA, C22:
6). Examples of the alkyl ester having an alkyl group having 1 to 4 carbon atoms include polyunsaturated fatty acids and 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol and tert-butanol. Esters with alcohols can be mentioned. When the number of carbon atoms in the alkyl group of the alkyl ester of the polyunsaturated fatty acid is 5 or more, it may be difficult to achieve sufficient high purity and high yield even by the method of the present invention.
In the method of the present invention, there is no particular limitation on the mixture containing the polyunsaturated fatty acid or its alkyl ester used as a raw material, for example, sardine oil, anchovy oil, saury oil, marine animal oils represented by fish oils such as cod oil, and the like. ,
Examples include those derived from marine animals and plants, such as marine vegetable oil obtained from phytoplankton.

【0012】エイコサペンタエン酸、ドコサヘキサエン
酸などの高度不飽和脂肪酸又はそれらのアルキルエステ
ルをより高純度で得るためには、海産動植物油のケン化
物、そのエステル化物又は海産動植物油をアルコリシス
して得られる脂肪酸エステルなどを用いることができ、
魚油脂肪酸のエチルエステルを特に好適に使用すること
ができる。また、海産動植物油のケン化物、そのエステ
ル化物又は海産動植物油をアルコリシスして得られる脂
肪酸エステルなどを、200℃以下の温度で薄膜蒸留又
は精密蒸留したものや、尿素付加処理により精製、濃縮
を行ったものを使用することができる。特にエイコサペ
ンタエン酸含有量が90重量%以上である高純度エイコ
サペンタエン酸又はそのアルキルエステルを製造すると
きは、エイコサテトラエン酸(C20:4)の含有量が
最終製品の純度に影響するため、エイコサペンタエン酸
含有量8重量%以上の原料を使用することが好ましく、
エイコサペンタエン酸含有量10重量%以上の原料を使
用することがより好ましい。また、原料中のエイコサテ
トラエン酸/エイコサペンタエン酸の重量比が0.12
以下であることが好ましく、エイコサテトラエン酸/エ
イコサペンタエン酸の重量比が0.1以下であることが
より好ましい。
In order to obtain a highly unsaturated fatty acid such as eicosapentaenoic acid or docosahexaenoic acid or an alkyl ester thereof with higher purity, a saponified marine animal or vegetable oil, its esterified product or marine animal or vegetable oil is obtained by alcoholysis. Fatty acid esters and the like can be used,
Ethyl esters of fish oil fatty acids can be used particularly preferably. In addition, saponified marine animal and vegetable oils, esterified products thereof, or fatty acid esters obtained by alcoholysis of marine animal and vegetable oils, are subjected to thin-film distillation or precision distillation at a temperature of 200 ° C. or lower, or purified and concentrated by urea addition treatment. You can use what you did. In particular, when producing a high-purity eicosapentaenoic acid or an alkyl ester thereof having an eicosapentaenoic acid content of 90% by weight or more, the content of eicosatetraenoic acid (C20: 4) affects the purity of the final product. It is preferable to use a raw material having an eicosapentaenoic acid content of 8% by weight or more,
It is more preferable to use a raw material having an eicosapentaenoic acid content of 10% by weight or more. The weight ratio of eicosatetraenoic acid / eicosapentaenoic acid in the raw material is 0.12.
The weight ratio of eicosatetraenoic acid / eicosapentaenoic acid is more preferably 0.1 or less.

【0013】本発明方法においては、高度不飽和脂肪酸
又はそのアルキルエステルを、薄膜蒸留法、超臨界ガス
抽出法及び尿素付加法を組み合わせて分別、濃縮し、か
つ薄膜蒸留法より後の工程において超臨界ガス抽出法を
行う。薄膜蒸留法は、高度不飽和脂肪酸又はそのアルキ
ルエステルを含有する混合物を、真空条件下で加温した
伝熱面を薄膜状で通過させる際、蒸発して凝縮器により
凝縮される留分と、蒸発しなかった残渣に分別する工程
よりなるものである。薄膜蒸留工程において、エイコサ
ペンタエン酸より沸点の低い、脂肪酸炭素数が20以下
であり、二重結合数が4以下である脂肪酸成分を除去す
るときは、低温度、低真空度条件で、残渣画分を分取す
る。エイコサペンタエン酸含有量を高めるためには、こ
の残渣画分を繰り返しつつ薄膜蒸留を行う。また、エイ
コサペンタエン酸より沸点の高い、脂肪酸の炭素数が2
1以上、二重結合数0以上又は脂肪酸の炭素数が20以
上、二重結合数が6以上である脂肪酸成分を除去すると
きは、高温度、高真空度条件で、留分画分を分取する。
エイコサペンタエン酸含有量を高めるには、この留分画
分を繰り返しつつ薄膜蒸留を行う。
In the method of the present invention, the polyunsaturated fatty acid or its alkyl ester is fractionated and concentrated by a combination of a thin-film distillation method, a supercritical gas extraction method and a urea addition method, and the ultra-unsaturated fatty acid or its alkyl ester is treated in a step subsequent to the thin-film distillation method. A critical gas extraction method is performed. The thin film distillation method is a process in which a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof is evaporated and condensed by a condenser when a mixture containing a highly unsaturated fatty acid or an alkyl ester thereof is passed through a heat transfer surface heated under vacuum conditions. It consists of a step of separating into residues that have not evaporated. In the thin-film distillation step, when removing fatty acid components having a boiling point lower than that of eicosapentaenoic acid, having a fatty acid carbon number of 20 or less and a double bond number of 4 or less, the residue fraction is removed at low temperature and low vacuum. Take a minute. In order to increase the eicosapentaenoic acid content, thin film distillation is performed while repeating the residue fraction. In addition, fatty acids having a boiling point higher than eicosapentaenoic acid and having a carbon number of 2
When removing a fatty acid component having 1 or more, 0 or more double bonds, or 20 or more carbon atoms of a fatty acid and 6 or more double bonds, the fractionated fraction is separated under high temperature and high vacuum conditions. Take.
In order to increase the eicosapentaenoic acid content, thin-film distillation is performed while repeating this fractionation.

【0014】これらの残渣分取、留分分取の操作からな
る薄膜蒸留工程は、それぞれを繰り返すか、あるいはそ
れぞれを適宜組み合わせて繰り返すことができるが、残
渣分取の薄膜蒸留の繰り返し、又は留分分取の薄膜蒸留
の繰り返しを行うことが好ましい。これらの操作からな
る薄膜蒸留工程の繰り返しは、バッチ式で蒸留操作を繰
り返すことにより、あるいは連続的に蒸留操作を繰り返
すことにより行うことができる。収率の低下を避けるた
めには、繰り返し回数は2〜10回であることが好まし
く、2〜7回であることがより好ましい。薄膜蒸留器の
伝熱面の温度は、50〜200℃であることが好まし
く、60〜180℃であることがより好ましい。また、
残渣画分を分取するときは、60〜150℃であること
が好ましく、留分画分を分取するときは、70〜180
℃であることが好ましい。薄膜蒸留器内の真空度は、1
-4〜10Torrであることが好ましく、5×10-4〜5
Torrであることがより好ましい。残渣画分を分取すると
きは、10-3〜5Torrであることが好ましく、留分画分
を分取するときは、5×10-4〜1Torrであることが好
ましい。薄膜蒸留時の流下速度は、0.05〜150リ
ットル/hr・m2であることが好ましく、0.1〜120
リットル/hr・m2であることがより好ましい。薄膜蒸留
法に用いる装置の型式には特に制限はなく、例えば、流
下膜式薄膜蒸留装置や遠心式分子蒸留装置などの公知の
装置を用いることができる。
The thin-film distillation process comprising the residue fractionation and distillate fractionation operations can be repeated, or each can be repeated in an appropriate combination. It is preferable to repeat thin-film distillation of fractionation. Repetition of the thin-film distillation step composed of these operations can be performed by repeating the distillation operation in a batch system or by continuously repeating the distillation operation. In order to avoid a decrease in the yield, the number of repetitions is preferably 2 to 10 times, more preferably 2 to 7 times. The temperature of the heat transfer surface of the thin film still is preferably 50 to 200 ° C, more preferably 60 to 180 ° C. Also,
When the residual fraction is fractionated, the temperature is preferably 60 to 150 ° C., and when the fraction fraction is fractionated, 70 to 180 ° C.
C. is preferred. The degree of vacuum in the thin film still is 1
It is preferably 0 -4 to 10 Torr, and 5 × 10 -4 to 5
More preferably, it is Torr. When the residual fraction is fractionated, the pressure is preferably 10 −3 to 5 Torr, and when the fraction fraction is fractionated, the pressure is preferably 5 × 10 −4 to 1 Torr. The flow rate at the time of thin film distillation is preferably 0.05 to 150 l / hr · m 2 , and 0.1 to 120 l / hr · m 2.
More preferably, it is liter / hr · m 2 . The type of the apparatus used for the thin film distillation method is not particularly limited, and for example, a known apparatus such as a falling film type thin film distillation apparatus or a centrifugal molecular distillation apparatus can be used.

【0015】本発明方法において、超臨界ガス抽出法に
用いる抽出剤には特に制限はなく、例えば、二酸化炭
素、エチレン、プロピレン、エタン、プロパン、一酸化
二窒素、クロロジフルオロメタン、クロロトリフルオロ
メタンなどを使用することができるが、最終製品が食品
や医薬品であるときには、取り扱い上や安全性、製品へ
の混入による毒性の問題などを考慮すると、二酸化炭素
を使用することが好ましい。抽出圧力は、使用する抽出
剤の超臨界温度に応じて適宜選定することができるが、
通常は30〜300kg/cm2であることが好ましく、特
に二酸化炭素を使用するときは72〜300kg/cm2
あることが好ましい。抽出温度は、使用する抽出剤の超
臨界温度に応じて適宜選定することができるが、通常は
25〜180℃であることが好ましく、特に抽出剤とし
て二酸化炭素を使用するときは32〜100℃であるこ
とが好ましい。また、抽出温度は、抽出塔全体の温度を
一定の温度とすることができ、あるいは抽出塔の縦方向
に温度勾配を設けることができる。温度勾配は、塔底温
度32〜70℃、塔頂温度40〜120℃で、塔頂と塔
底の温度差が10〜80℃になるように設定することが
好ましい。抽出塔は、塔方向に温度勾配を付与し得るよ
うに多段構造を有し、各段毎に加熱装置を設けて温度制
御を可能とし、抽出塔の高さ位置に応じて任意の温度勾
配を設定可能とすることが好ましい。抽出塔の原料導入
部は、塔底又は塔中段に設けることができる。また、抽
出相は、抽出塔上部から取り出すが、各段ごとに取り出
し口を設けて、任意の段から採取することができる。装
置の具体的な例としては、特開平1−249102号公
報に記載の装置などを挙げることができる。
In the method of the present invention, the extractant used in the supercritical gas extraction method is not particularly limited, and examples thereof include carbon dioxide, ethylene, propylene, ethane, propane, nitrous oxide, chlorodifluoromethane, chlorotrifluoromethane and the like. However, when the final product is a food or pharmaceutical, it is preferable to use carbon dioxide in consideration of handling, safety, toxicity problems due to contamination with the product, and the like. The extraction pressure can be appropriately selected according to the supercritical temperature of the extractant used,
Usually, it is preferably 30 to 300 kg / cm 2 , and particularly preferably 72 to 300 kg / cm 2 when carbon dioxide is used. The extraction temperature can be appropriately selected according to the supercritical temperature of the extractant to be used, but is usually preferably from 25 to 180 ° C, particularly from 32 to 100 ° C when carbon dioxide is used as the extractant. It is preferred that In addition, the extraction temperature can be a constant temperature of the entire extraction column, or a temperature gradient can be provided in the longitudinal direction of the extraction column. The temperature gradient is preferably set so that the tower bottom temperature is 32 to 70 ° C and the tower top temperature is 40 to 120 ° C, and the temperature difference between the tower top and the tower bottom is 10 to 80 ° C. The extraction column has a multi-stage structure so that a temperature gradient can be imparted in the direction of the column, and a heating device is provided for each stage to enable temperature control, and an arbitrary temperature gradient can be set according to the height position of the extraction column. Preferably, it can be set. The raw material introduction section of the extraction column can be provided at the bottom or middle of the column. The extraction phase is taken out from the upper part of the extraction column, but can be taken out from any stage by providing a take-out port for each stage. As a specific example of the apparatus, an apparatus described in Japanese Patent Application Laid-Open No. 1-249102 can be mentioned.

【0016】超臨界ガス抽出の操作においては、温度と
圧力を制御することによって、超臨界ガス状態における
高度不飽和脂肪酸又はそのアルキルエステルの溶解度の
差を利用して分離を行う。特にエイコサペンタエン酸と
ドコサヘキサエン酸との分別を効率よく行うには、圧力
を一定条件とし、塔方向に温度勾配を設ける運転条件と
することが好ましい。高純度のエイコサペンタエン酸又
はそのアルキルエステルを製造するときは、前記の温度
勾配は、塔底温度32〜70℃、塔頂温度40〜120
℃、塔頂と塔底の温度差10〜80℃の範囲で運転を行
うことが好ましい。あるいは、温度を一定に保ち圧力を
変化させることにより脂肪酸混合物の溶解度を変化させ
て分別することができる。高純度のエイコサペンタエン
酸又はそのアルキルエステルを製造するときは、カラム
全体の温度設定は32〜120℃の任意の温度を選択
し、圧力条件を72〜300kg/cm2に変化させること
により運転を行うことが好ましい。塔方向の温度勾配を
設け、かつ圧力を変化させることにより脂肪酸混合物の
溶解度を変化させて分別することが出来る。高純度のエ
イコサペンタエン酸またはそのアルキルエステルを製造
するときは、前記の温度勾配は塔底温度32〜70℃、
塔頂温度40〜120℃、塔頂と塔底の温度差10〜8
0℃の任意の範囲で選択し、圧力条件を72〜300kg
/cm2に変化させることにより運転を行うことが好まし
い。
In the operation of supercritical gas extraction, separation is carried out by controlling the temperature and pressure to take advantage of the difference in the solubility of the polyunsaturated fatty acid or its alkyl ester in the supercritical gas state. In particular, in order to efficiently separate eicosapentaenoic acid and docosahexaenoic acid, it is preferable that the pressure is kept constant and the operating conditions are such that a temperature gradient is provided in the column direction. When producing high-purity eicosapentaenoic acid or its alkyl ester, the above-mentioned temperature gradient is such that the bottom temperature is 32 to 70 ° C and the top temperature is 40 to 120 ° C.
The operation is preferably performed at a temperature of 10 ° C. and a temperature difference between the top and bottom of the tower of 10 to 80 ° C. Alternatively, it is possible to separate the fatty acid mixture by changing the solubility by changing the pressure while keeping the temperature constant. When producing high-purity eicosapentaenoic acid or its alkyl ester, the operation is performed by selecting an arbitrary temperature of 32 to 120 ° C. for the entire column and changing the pressure condition to 72 to 300 kg / cm 2. It is preferred to do so. By providing a temperature gradient in the column direction and changing the pressure, the solubility of the fatty acid mixture can be changed to separate the mixture. When producing high-purity eicosapentaenoic acid or an alkyl ester thereof, the above-mentioned temperature gradient is set at a column bottom temperature of 32 to 70 ° C,
Top temperature 40 to 120 ° C, temperature difference between top and bottom 10 to 8
Select in an arbitrary range of 0 ° C and set the pressure condition to 72 to 300 kg.
The operation is preferably performed by changing to / cm 2 .

【0017】エイコサペンタエン酸純度が90重量%以
上である高純度エイコサペンタエン酸又はそのアルキル
エステルを収率よく製造するためには、1回目の超臨界
ガス抽出操作で得られたエイコサペンタエン酸画分以外
の前留分及び後留分のエイコサペンタエン酸濃度の高い
画分を合わせて、又は、それぞれ前留分あるいは後留分
のエイコサペンタエン酸濃度の高い画分をあわせて、ふ
たたび超臨界ガス抽出を行い高純度のエイコサペンタエ
ン酸画分を採取し、1回目で得られた画分と合わせるこ
とが好ましい。また、この操作をさらに繰り返すことに
より収率がさらに向上するが、運転効率の点からは5回
程度までの繰り返しとすることが好ましい。本発明方法
において、超臨界ガス抽出法により処理する高度不飽和
脂肪酸又はそのアルキルエステルは、薄膜蒸留法又は薄
膜蒸留法と尿素付加法により処理された高度不飽和脂肪
酸又はそのアルキルエステルである。超臨界ガス抽出法
を行ってエイコサペンタエン酸純度90重量%以上の高
純度のエイコサペンタエン酸又はそのアルキルエステル
を得るためには、混合物中のエイコサペンタエン酸又は
そのアルキルエステルが含有率40重量%以上であるこ
とが好ましく、エイコサテトラエン酸/エイコサペンタ
エン酸の重量比が0.1以下であることが好ましく、か
つドコサヘキサエン酸/エイコサペンタエン酸の重量比
が0.4以下であることが好ましい。
In order to produce a high-purity eicosapentaenoic acid or an alkyl ester thereof having a purity of eicosapentaenoic acid of 90% by weight or more, the eicosapentaenoic acid fraction obtained by the first supercritical gas extraction operation is required. The supercritical gas extraction is performed again by combining the fractions with high eicosapentaenoic acid concentration of the forerunner and the later fraction other than the above, or combining the fractions with higher eicosapentaenoic acid concentration of the forerunner or the later fraction, respectively. To collect a high-purity eicosapentaenoic acid fraction and combine it with the fraction obtained in the first time. The yield is further improved by further repeating this operation, but it is preferable to repeat the operation up to about 5 times from the viewpoint of operating efficiency. In the method of the present invention, the polyunsaturated fatty acid or its alkyl ester treated by the supercritical gas extraction method is a polyunsaturated fatty acid or its alkyl ester treated by the thin film distillation method or the thin film distillation method and the urea addition method. In order to obtain a high-purity eicosapentaenoic acid or its alkyl ester having a purity of eicosapentaenoic acid of 90% by weight or more by performing a supercritical gas extraction method, the content of eicosapentaenoic acid or its alkyl ester in the mixture is 40% by weight or more. Preferably, the weight ratio of eicosatetraenoic acid / eicosapentaenoic acid is 0.1 or less, and the weight ratio of docosahexaenoic acid / eicosapentaenoic acid is 0.4 or less.

【0018】本発明方法において、尿素付加法は、高度
不飽和脂肪酸若しくはそのアルキルエステルを含有する
混合物、薄膜蒸留後の高度不飽和脂肪酸若しくはそのア
ルキルエステルを含有する混合物又は超臨界ガス抽出後
の高度不飽和脂肪酸若しくはそのアルキルエステルを含
有する混合物1重量部に対して、メタノール、エタノー
ル、プロパノール、ブタノールなどの低級アルコール3
〜8重量部及び尿素1〜5重量部を加え、50〜60℃
で0.5〜3時間撹拌し、その後0〜10℃に冷却し、
析出した飽和脂肪酸及びモノ不飽和脂肪酸の尿素付加体
をろ別したのち、ろ液を濃縮することにより行うことが
できる。また、ろ液を水洗したものを使用することもで
きる。尿素は正方晶形の結晶を生成するが、ある種の有
機化合物が存在すると、これを包接して六方晶系の結晶
を生成する性質がある。一般に脂肪酸では、二重結合の
数が少なく、鎖長が長いものほど安定な付加体を生成す
るので、高度不飽和脂肪酸中に混在する飽和脂肪酸及び
モノ不飽和脂肪酸を、尿素付加体として除去することが
できる。
In the method of the present invention, the urea addition method comprises the steps of: using a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof, a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof after thin-film distillation, or a mixture containing a highly unsaturated fatty acid or an alkyl ester thereof after supercritical gas extraction. Lower alcohols such as methanol, ethanol, propanol and butanol are added to 1 part by weight of a mixture containing unsaturated fatty acids or alkyl esters thereof.
-8 parts by weight and 1-5 parts by weight of urea,
And stir for 0.5-3 hours, then cool to 0-10 ° C,
After filtering out the urea adduct of the precipitated saturated fatty acid and monounsaturated fatty acid, the filtrate can be concentrated. Moreover, the thing which washed the filtrate with water can also be used. Urea forms tetragonal crystals, but when a certain organic compound is present, it has the property of including it and forming hexagonal crystals. In general, in fatty acids, the smaller the number of double bonds and the longer the chain length, the more stable adducts are generated. Therefore, saturated fatty acids and monounsaturated fatty acids mixed in highly unsaturated fatty acids are removed as urea adducts. be able to.

【0019】本発明方法においては、高度不飽和脂肪酸
又はそのアルキルエステルを含有する混合物を、薄膜蒸
留法、超臨界ガス抽出法及び尿素付加法の3種の方法を
組み合わせて処理することにより、高度不飽和脂肪酸又
はそのアルキルエステルを高純度化する。これらの3種
の方法のうち、超臨界ガス抽出法は、薄膜蒸留法より後
の工程において行い、尿素付加法は工程の任意の位置に
おいて行うことができる。すなわち、尿素付加法、薄膜
蒸留法、超臨界ガス抽出法の順、薄膜蒸留法、尿素付加
法、超臨界ガス抽出法の順、あるいは、薄膜蒸留法、超
臨界ガス抽出法、尿素付加法の順などにより処理するこ
とができる。また、本発明方法においては、3種の方法
のうち1種又はそれ以上の方法を2回以上繰り返して行
うことができる。例えば、薄膜蒸留法、尿素付加法、薄
膜蒸留法、超臨界ガス抽出法の順のように、薄膜蒸留法
を2回繰り返して行うことができる。また、超臨界ガス
抽出法を2回以上繰り返すときは、少なくともその1回
を薄膜蒸留法の後の工程とすることにより、本発明の効
果を得ることができる。
In the method of the present invention, a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof is treated by a combination of three methods, namely, a thin film distillation method, a supercritical gas extraction method and a urea addition method. Purify unsaturated fatty acids or alkyl esters thereof. Among these three methods, the supercritical gas extraction method is performed in a step subsequent to the thin film distillation method, and the urea addition method can be performed at any position in the step. That is, urea addition method, thin film distillation method, supercritical gas extraction method, thin film distillation method, urea addition method, supercritical gas extraction method, or thin film distillation method, supercritical gas extraction method, urea addition method The processing can be performed in order. In the method of the present invention, one or more of the three methods can be repeated twice or more. For example, the thin film distillation method can be repeated twice, such as a thin film distillation method, a urea addition method, a thin film distillation method, and a supercritical gas extraction method. When the supercritical gas extraction method is repeated two or more times, the effect of the present invention can be obtained by performing at least one of the steps as a step after the thin film distillation method.

【0020】[0020]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。なお、実施例におけるガスクロ
マトグラフィーの条件及び評価方法を下記に示す。 ガスクロマトグラフ:ヒューレットパッカード社製、H
P5890A キャリアガス及び流量:ヘリウム、1ml/min サンプル濃度:8mg/ml(ヘキサン) 注入量:1μl インジェクション温度:250℃ カラム温度:140℃から210℃まで、5℃/minで
昇温 検出器温度:250℃ 検出器:FID 使用カラム:DB−WAX(J&W)、30m×0.2
5mm×0.25μmFilm スプリット比:100:1 異性化物の含有率は、ガスクロマトグラムの、エイコサ
ペンタエン酸エチルとヘンエイコサペンタエン酸エチル
のピークの間にある、原料には認められないピークを異
性化物として、全脂肪酸に対する割合を重量%で示し
た。二重結合度[脂肪酸二重結合数/(脂肪酸炭素数−
10)で表される]の差による分離能は、最も分離の困
難である二重結合度0.4のエイコサテトラエン酸(C
20:4)と二重結合度0.5のエイコサペンタエン酸
(EPA、C20:5)の比、C20:4/EPAを求
めることにより評価した。炭素数分離能は、ドコサヘキ
サエン酸(DHA、C22:6)とエイコサペンタエン
酸(EPA、C20:5)の比、DHA/EPAを求め
ることにより評価した。 実施例1 エイコサペンタエン酸(EPA、C20:5)含有率1
9.4重量%、C20:4脂肪酸含有率1.1重量%(C
20:4/EPA=0.057)、ドコサヘキサエン酸
(DHA、C22:6)含有率7.4重量%(DHA/
EPA=0.378)、炭素数19以下の脂肪酸含有率
62.1重量%、炭素数20の脂肪酸の含有率26.6重
量%、炭素数21以上の脂肪酸含有率11.3重量%の
魚油のエチルエステル2.0kgを、薄膜蒸留器を用いて
温度110℃、減圧度0.5mmHgの条件で薄膜蒸留を行
い、残渣画分を採取した。この残渣画分について、さら
に同じ条件の蒸留を合計5回繰り返し、残渣画分を得
た。次に、この残渣画分を、温度145℃、減圧度0.
05mmHgの条件で薄膜蒸留を行って留分を採取し、さら
にこの留分について、同じ条件の蒸留を合計5回繰り返
し、最後に得られた留分を採取して、EPA含有率4
3.7重量%のエチルエステル577gを得た。なお、
C20:4脂肪酸含有率2.8重量%、C20:4/E
PA=0.065であり、DHA含有率8.5重量%、D
HA/EPA=0.195であった。このEPA含有率
43.7重量%のエチルエステル577gに、エタノー
ル2.6kg、尿素1.7kgを加えて60℃で撹拌した。溶
液を10℃まで冷却したのち、析出した尿素付加体をろ
別した。ろ液を減圧下で濃縮して、EPA含有率67.
3重量%のエチルエステル367gを得た。なお、C2
0:4脂肪酸含有率4.0重量%、C20:4/EPA
=0.060であり、DHA含有率13.0重量%、DH
A/EPA=0.193であった。次に、このEPA含
有率67.3重量%のエチルエステル367gを、薄膜
蒸留器を用いて、温度110℃、減圧度0.5mmHgの条
件で薄膜蒸留を行い、残渣画分を採取した。さらに、こ
の残渣画分について、温度145℃、減圧度0.05mmH
gの条件で薄膜蒸留を行い留分を採取し、EPA含有率
75.9重量%のエチルエステル244gを得た。な
お、C20:4脂肪酸含有率4.3重量%、C20:4
/EPA=0.056であり、DHA含有率9.9重量
%、DHA/EPA=0.130であった。このEPA
含有率75.9重量%のエチルエステル244gを、段
数6段の超臨界ガス抽出塔を用い、塔頂温度70℃、塔
底温度40℃になるように温度勾配を設定し、抽出塔中
段の原料導入部より供給した。また、溶媒として120
kg/cm2の高圧炭酸ガスを抽出塔底部から通過させ、抽
出塔上部より抽出相を取り出し、高圧炭酸ガスに溶解し
ているエチルエステルを分取した。全フラクションの4
0〜70重量%の部分を採取し、さらに前留分及び後留
分のEPA含有率の高いフラクションを合わせたものを
抽出塔原料部に戻し、同じ条件で超臨界ガス抽出を行っ
てEPA画分を分取し、1回目で得られたEPA画分と
合わせてEPA純度96.1重量%のエチルエステル1
54gを得た。なお、C20:4脂肪酸含有率3.2重
量%、C20:4/EPA=0.033であり、DHA
/EPA=0.003であった。原料、薄膜蒸留後、尿
素付加後、薄膜蒸留後及び超臨界ガス抽出後の脂肪酸組
成、並びに、二重結合度分離能、炭素数分離能及び各段
階におけるエイコサペンタエン酸収率を、第1表に示
す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. The gas chromatography conditions and evaluation methods in the examples are shown below. Gas chromatograph: Hewlett-Packard Company, H
P5890A Carrier gas and flow rate: helium, 1 ml / min Sample concentration: 8 mg / ml (hexane) Injection amount: 1 μl Injection temperature: 250 ° C. Column temperature: From 140 ° C. to 210 ° C., heated at 5 ° C./min Detector temperature: 250 ° C. Detector: FID Column used: DB-WAX (J & W), 30 m × 0.2
5 mm × 0.25 μm Film Split ratio: 100: 1 The content of the isomerate is determined by using the peak not found in the raw material between the peaks of ethyl eicosapentaenoate and ethyl eicosapentaenoate in the gas chromatogram as an isomerate. The ratio to the total fatty acids was shown by weight%. Double bond degree [fatty acid double bond number / (fatty acid carbon number−
10)], the most difficult separation is eicosatetraenoic acid (C) having a double bond degree of 0.4.
20: 4) and the ratio of eicosapentaenoic acid (EPA, C20: 5) having a double bond degree of 0.5, C20: 4 / EPA, was evaluated. The carbon number separation ability was evaluated by determining the ratio of docosahexaenoic acid (DHA, C22: 6) to eicosapentaenoic acid (EPA, C20: 5) and DHA / EPA. Example 1 Eicosapentaenoic acid (EPA, C20: 5) content 1
9.4% by weight, C20: 4 fatty acid content 1.1% by weight (C
20: 4 / EPA = 0.057), docosahexaenoic acid (DHA, C22: 6) content 7.4% by weight (DHA /
EPA = 0.378), a content of fatty acids having 19 or less carbon atoms: 62.1% by weight, a content of fatty acids having 20 carbon atoms: 26.6% by weight, and a fatty acid having 21 or more carbon atoms: 11.3% by weight of fish oil 2.0 kg of ethyl ester was subjected to thin film distillation using a thin film still under the conditions of a temperature of 110 ° C. and a reduced pressure of 0.5 mmHg, and a residue fraction was collected. With respect to this residue fraction, distillation under the same conditions was further repeated a total of 5 times to obtain a residue fraction. Next, this residue fraction was subjected to a temperature of 145 ° C. and a reduced pressure of 0.
A thin film was distilled under a condition of 05 mmHg to collect a distillate. Further, with respect to this distillate, distillation under the same conditions was repeated 5 times in total, and a distillate obtained at the end was collected to obtain an EPA content of 4%.
577 g of 3.7% by weight of ethyl ester were obtained. In addition,
C20: 4 fatty acid content 2.8% by weight, C20: 4 / E
PA = 0.065, DHA content 8.5% by weight, D
HA / EPA = 0.195. 2.6 kg of ethanol and 1.7 kg of urea were added to 577 g of the ethyl ester having an EPA content of 43.7% by weight, followed by stirring at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to an EPA content of 67.
367 g of a 3% by weight ethyl ester were obtained. Note that C2
0: 4 fatty acid content 4.0% by weight, C20: 4 / EPA
= 0.060, DHA content 13.0% by weight, DH
A / EPA = 0.193. Next, 367 g of the ethyl ester having an EPA content of 67.3% by weight was subjected to thin film distillation using a thin film still under the conditions of a temperature of 110 ° C. and a degree of vacuum of 0.5 mmHg, and a residue fraction was collected. Further, the residue fraction was subjected to a temperature of 145 ° C. and a degree of vacuum of 0.05 mmH.
The thin film was distilled under the condition of g, and a fraction was collected to obtain 244 g of ethyl ester having an EPA content of 75.9% by weight. In addition, C20: 4 fatty acid content of 4.3% by weight, C20: 4
/EPA=0.056, DHA content: 9.9% by weight, DHA / EPA = 0.130. This EPA
Using a 6-stage supercritical gas extraction column, a temperature gradient was set to 244 g of ethyl ester having a content of 75.9% by weight so that the top temperature was 70 ° C. and the bottom temperature was 40 ° C. It was supplied from the raw material introduction section. In addition, 120 as a solvent
A high-pressure carbon dioxide gas of kg / cm 2 was passed from the bottom of the extraction tower, an extraction phase was taken out from the upper part of the extraction tower, and ethyl ester dissolved in the high-pressure carbon dioxide gas was separated. 4 of all fractions
A fraction of 0 to 70% by weight was collected, and a fraction having a high EPA content in the fore fraction and the after fraction was returned to the raw material part of the extraction column, and subjected to supercritical gas extraction under the same conditions to perform EPA extraction. And the ethyl ester 1 having an EPA purity of 96.1% by weight was combined with the EPA fraction obtained in the first step.
54 g were obtained. The C20: 4 fatty acid content was 3.2% by weight, C20: 4 / EPA was 0.033, and the DHA
/EPA=0.003. Table 1 shows the fatty acid composition of the raw materials, after the thin film distillation, after the addition of urea, after the thin film distillation and after the extraction of the supercritical gas, as well as the double bond separation ability, the carbon number separation ability and the eicosapentaenoic acid yield in each stage. Shown in

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 実施例1と同じ魚油エチルエステル2.0kgに、エタノ
ール10kg及び尿素6kgを加えて60℃で撹拌した。溶
液を10℃まで冷却したのち、析出した尿素付加体をろ
別した。ろ液を減圧下で濃縮して、EPA含有率53.
6重量%のエチルエステル710gを得た。このEPA
含有率53.6重量%のエチルエステル710gを、薄
膜蒸留器を用いて温度110℃、減圧度0.5mmHgの条
件で薄膜蒸留を行い、残渣画分を採取した。この残渣画
分について、さらに同じ条件の蒸留を合計5回繰り返
し、残渣画分を得た。次に、この残渣画分について、温
度145℃、減圧度0.05mmHgの条件で薄膜蒸留を行
い、留分を採取し、この留分について、同じ条件の蒸留
を合計5回繰り返し、最後に得られた留分を採取して、
EPA含有率67.3重量%のエチルエステルを328
g得た。このEPA含有率67.3重量%のエチルエス
テルを、段数6段の超臨界ガス抽出塔を用い、塔頂温度
70℃、塔底温度40℃になるように温度勾配を設定
し、抽出塔中段の原料導入部より供給した。また、溶媒
として120kg/cm2の高圧炭酸ガスを抽出塔底部から
通過させ、抽出塔上部より抽出相を取り出し、高圧炭酸
ガスに溶解しているエチルエステルを分取した。全フラ
クションの40〜70重量%の部分を採取し、さらに前
留分及び後留分のEPA含有率の高いフラクションを合
わせたものを抽出塔原料部に戻し、同じ条件で超臨界ガ
ス抽出を行ってEPA画分を分取し、1回目で得られた
EPA画分を合わせてEPA純度93.1重量%のエチ
ルエステル190gを得た。なお、C20:4脂肪酸含
有率4.4重量%、C20:4/EPA=0.048であ
り、DHA含有率1.0重量%、DHA/EPA=0.0
11であった。原料、尿素付加後、薄膜蒸留後及び超臨
界ガス抽出後の脂肪酸組成、並びに、二重結合度分離
能、炭素数分離能及び各段階におけるエイコサペンタエ
ン酸収率を、第2表に示す。
Example 2 To 2.0 kg of the same fish oil ethyl ester as in Example 1, 10 kg of ethanol and 6 kg of urea were added and stirred at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to give an EPA content of 53.
710 g of a 6% by weight ethyl ester were obtained. This EPA
710 g of ethyl ester having a content of 53.6% by weight was subjected to thin-film distillation using a thin-film evaporator at a temperature of 110 ° C. and a reduced pressure of 0.5 mmHg, and a residue fraction was collected. With respect to this residue fraction, distillation under the same conditions was further repeated a total of 5 times to obtain a residue fraction. Next, the residue fraction was subjected to thin-film distillation under the conditions of a temperature of 145 ° C. and a degree of reduced pressure of 0.05 mmHg to collect a distillate. Collect the distillate collected,
Ethyl ester having an EPA content of 67.3% by weight
g was obtained. This ethyl ester having an EPA content of 67.3% by weight was prepared by using a supercritical gas extraction column having 6 stages and setting a temperature gradient so that the top temperature was 70 ° C. and the bottom temperature was 40 ° C. From the raw material introduction section. In addition, a high-pressure carbon dioxide gas of 120 kg / cm 2 as a solvent was passed through the bottom of the extraction tower, an extraction phase was taken out from the top of the extraction tower, and ethyl ester dissolved in the high-pressure carbon dioxide was fractionated. A fraction of 40 to 70% by weight of all fractions is collected, and a fraction obtained by combining a fraction having a high EPA content in the fore fraction and the after fraction is returned to the raw material part of the extraction column, and supercritical gas extraction is performed under the same conditions. The EPA fraction was collected by fractionation, and the EPA fractions obtained in the first cycle were combined to obtain 190 g of ethyl ester having an EPA purity of 93.1% by weight. The C20: 4 fatty acid content was 4.4% by weight, C20: 4 / EPA was 0.048, the DHA content was 1.0% by weight, and DHA / EPA was 0.0.
It was 11. Table 2 shows the fatty acid composition after the addition of the raw material, urea, thin-film distillation and supercritical gas extraction, as well as the double bond separation ability, carbon number separation ability, and eicosapentaenoic acid yield in each stage.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例3 実施例1と同じ魚油エチルエステル2.0kgについて、
薄膜蒸留器を用いて温度110℃、減圧度0.5mmHgの
条件で薄膜蒸留を行い、残渣画分を採取した。この残渣
画分について、さらに同じ条件の薄膜蒸留を合計5回繰
り返し、残渣画分を採取し、EPA含有率43.7重量
%のエチルエステル488gを得た。このEPA含有率
43.7重量%のエチルエステル488gに、エタノー
ル2.2kg及び尿素1.5kgを加え60℃で撹拌した。溶
液を10℃まで冷却したのち、析出した尿素付加体をろ
別した。ろ液を減圧下で濃縮して、EPA含有率67.
1重量%のエチルエステル310gを得た(C20:4
脂肪酸含有率4.0重量%、C20:4/EPA=0.0
61)。このEPA含有率67.1重量%のエチルエス
テル310gを、段数6段の超臨界ガス抽出塔を用い、
塔頂温度70℃、塔底温度40℃になるように温度勾配
を設定し、抽出塔中段の原料導入部より供給した。ま
た、溶媒として120kg/cm2の高圧炭酸ガスを抽出塔
底部から通過させ、抽出塔上部より抽出相を取り出し、
高圧炭酸ガスに溶解しているエチルエステルを分取し
た。全フラクションの40〜70重量%の部分を採取
し、さらに前留分及び後留分のEPA含有率の高いフラ
クションを合わせたものを抽出塔原料部に戻し、同じ条
件で超臨界ガス抽出を行いEPA画分を分取し、1回目
で得られたEPA画分を合わせてEPA純度93.0重
量%のエチルエステル180gを得た。なお、C20:
4脂肪酸含有率4.6重量%、C20:4/EPA=0.
049であり、DHA含有率1.0重量%、DHA/E
PA=0.010であった。原料、薄膜蒸留後、尿素付
加後及び超臨界ガス抽出後の脂肪酸組成、並びに、二重
結合度分離能、炭素数分離能及び各段階におけるエイコ
サペンタエン酸収率を、第3表に示す。
Example 3 For 2.0 kg of the same fish oil ethyl ester as in Example 1,
Thin film distillation was performed using a thin film still under the conditions of a temperature of 110 ° C. and a degree of vacuum of 0.5 mmHg, and a residue fraction was collected. The residue fraction was further subjected to thin-film distillation under the same conditions five times in total, and the residue fraction was collected to obtain 488 g of an ethyl ester having an EPA content of 43.7% by weight. To 488 g of the ethyl ester having a EPA content of 43.7% by weight, 2.2 kg of ethanol and 1.5 kg of urea were added, followed by stirring at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to an EPA content of 67.
310 g of 1% by weight of ethyl ester were obtained (C20: 4
Fatty acid content: 4.0% by weight, C20: 4 / EPA = 0.0
61). 310 g of the ethyl ester having an EPA content of 67.1% by weight was used in a supercritical gas extraction column having 6 stages,
The temperature gradient was set so that the tower top temperature was 70 ° C. and the tower bottom temperature was 40 ° C., and the mixture was supplied from the raw material introduction section in the middle stage of the extraction column. In addition, a high-pressure carbon dioxide gas of 120 kg / cm 2 was passed through the bottom of the extraction column as a solvent, and the extraction phase was taken out from the top of the extraction column.
Ethyl ester dissolved in high-pressure carbon dioxide was separated. A fraction of 40 to 70% by weight of all the fractions is collected, and a combined fraction having a high EPA content of the fore fraction and the after fraction is returned to the raw material portion of the extraction column, and supercritical gas extraction is performed under the same conditions. The EPA fractions were collected, and the EPA fractions obtained in the first cycle were combined to obtain 180 g of ethyl ester having an EPA purity of 93.0% by weight. C20:
(4) Fatty acid content: 4.6% by weight, C20: 4 / EPA = 0.
049, DHA content 1.0% by weight, DHA / E
PA = 0.010. Table 3 shows the raw materials, the fatty acid composition after thin-film distillation, urea addition, and supercritical gas extraction, as well as the double bond separation ability, carbon number separation ability, and eicosapentaenoic acid yield in each stage.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例4 実施例1と同じ魚油エチルエステル2.0kgについて、
薄膜蒸留器を用いて温度110℃、減圧度0.5mmHgの
条件で薄膜蒸留を行い、残渣画分を採取した。この残渣
画分について、さらに同じ条件の薄膜蒸留を合計5回繰
り返し、残渣画分を採取し、EPA含有率43.7重量
%のエチルエステル488gを得た。このEPA含有率
43.7重量%のエチルエステル488gを、段数6段
の超臨界ガス抽出塔を用い、塔頂温度70℃、塔底温度
40℃になるように温度勾配を設定し、抽出塔中段の原
料導入部より供給した。また、溶媒として120kg/cm
2の高圧炭酸ガスを抽出塔底部から通過させ、抽出塔上
部より抽出相を取り出し、高圧炭酸ガスに溶解している
エチルエステルを分取した。全フラクションの40〜7
0重量%の部分を採取し、さらに前留分及び後留分のE
PA含有率の高いフラクションを合わせたものを抽出塔
原料部に戻し、同じ条件で超臨界ガス抽出を行いEPA
画分を分取し、1回目で得られたEPA画分を合わせて
EPA含有率75.3重量%のエチルエステル186g
を得た。このEPA含有率75.3重量%のエチルエス
テル186gに、エタノール850g及び尿素560g
を加え60℃で撹拌した。溶液を10℃まで冷却したの
ち、析出した尿素付加体をろ別した。ろ液を減圧下で濃
縮して、EPA含有率91.0重量%のエチルエステル
151gを得た。なお、C20:4脂肪酸含有率4.3
重量%、C20:4/EPA=0.047であり、DH
A含有率1.7重量%、DHA/EPA=0.019であ
った。原料、薄膜蒸留後、超臨界ガス抽出後及び尿素付
加後の脂肪酸組成、並びに、二重結合度分離能、炭素数
分離能及び各段階におけるエイコサペンタエン酸収率
を、第4表に示す。
Example 4 For 2.0 kg of the same fish oil ethyl ester as in Example 1,
Thin film distillation was performed using a thin film still under the conditions of a temperature of 110 ° C. and a degree of vacuum of 0.5 mmHg, and a residue fraction was collected. The residue fraction was further subjected to thin-film distillation under the same conditions five times in total, and the residue fraction was collected to obtain 488 g of an ethyl ester having an EPA content of 43.7% by weight. Using a supercritical gas extraction column having 6 stages, a temperature gradient was set to 488 g of the ethyl ester having an EPA content of 43.7% by weight so that the top temperature was 70 ° C. and the bottom temperature was 40 ° C. It was supplied from the raw material introduction section in the middle stage. In addition, 120 kg / cm as a solvent
The high-pressure carbon dioxide gas of No. 2 was passed from the bottom of the extraction tower, the extraction phase was taken out from the upper part of the extraction tower, and ethyl ester dissolved in the high-pressure carbon dioxide gas was separated. 40-7 of all fractions
A portion of 0% by weight was collected, and the E
The combined fractions having a high PA content are returned to the raw material section of the extraction column, and supercritical gas extraction is performed under the same conditions to perform EPA.
The fractions were collected, and the EPA fractions obtained in the first run were combined to form 186 g of ethyl ester having an EPA content of 75.3% by weight.
I got Ethanol 850 g and urea 560 g are added to 186 g of the ethyl ester having an EPA content of 75.3% by weight.
Was added and stirred at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to obtain 151 g of an ethyl ester having an EPA content of 91.0% by weight. In addition, C20: 4 fatty acid content 4.3
Wt%, C20: 4 / EPA = 0.047, DH
The A content was 1.7% by weight, and DHA / EPA was 0.019. Table 4 shows the raw material, the fatty acid composition after the thin film distillation, the supercritical gas extraction, and the urea addition, the double bond separation ability, the carbon number separation ability, and the eicosapentaenoic acid yield in each stage.

【0027】[0027]

【表4】 [Table 4]

【0028】比較例1 実施例1と同じ魚油エチルエステル2.0kgに、エタノ
ール10kg及び尿素7kgを加え60℃で撹拌した。溶液
を10℃まで冷却したのち、析出した尿素付加体をろ別
した。ろ液を減圧下で濃縮して、EPA含有率53.6
重量%のエチルエステル709gを得た。このEPA含
有率53.6重量%のエチルエステル709gを、段数
6段の超臨界ガス抽出塔を用い、塔頂温度70℃、塔底
温度40℃になるように温度勾配を設定し、抽出塔中段
の原料導入部より供給した。また、溶媒として120kg
/cm2の高圧炭酸ガスを抽出塔底部から通過させ、抽出
塔上部より抽出相を取り出し、高圧炭酸ガスに溶解して
いるエチルエステルを分取した。全フラクションの40
〜55重量%の部分を採取し、EPA純度88.9重量
%のエチルエステル103gを得た。なお、C20:4
脂肪酸含有率4.3重量%、C20:4/EPA=0.0
48であり、DHA含有率1.8重量%、DHA/EP
A=0.021であった。原料、尿素付加後及び超臨界
ガス抽出後の脂肪酸組成、並びに、二重結合度分離能、
炭素数分離能及び各段階におけるエイコサペンタエン酸
収率を、第5表に示す。
Comparative Example 1 To 2.0 kg of the same fish oil ethyl ester as in Example 1, 10 kg of ethanol and 7 kg of urea were added and stirred at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to an EPA content of 53.6.
709 g of a% by weight ethyl ester were obtained. 709 g of the ethyl ester having an EPA content of 53.6% by weight was set in a supercritical gas extraction column having 6 stages, and the temperature gradient was set so that the top temperature was 70 ° C. and the bottom temperature was 40 ° C. It was supplied from the raw material introduction section in the middle stage. In addition, 120kg as a solvent
/ Cm 2 high-pressure carbon dioxide gas was passed through the bottom of the extraction tower, the extracted phase was taken out from the top of the extraction tower, and the ethyl ester dissolved in the high-pressure carbon dioxide gas was separated. 40 of all fractions
A portion of .about.55% by weight was collected to obtain 103 g of ethyl ester having an EPA purity of 88.9% by weight. C20: 4
Fatty acid content: 4.3% by weight, C20: 4 / EPA = 0.0
48, DHA content 1.8% by weight, DHA / EP
A = 0.021. Raw material, fatty acid composition after urea addition and supercritical gas extraction, and the degree of double bond separation,
Table 5 shows the carbon number separation ability and the yield of eicosapentaenoic acid at each stage.

【0029】[0029]

【表5】 [Table 5]

【0030】比較例2 実施例1と同じ魚油エチルエステル2.0kgに、エタノ
ール10kg及び尿素6kgを加えて60℃で撹拌した。溶
液を10℃まで冷却したのち、析出した尿素付加体をろ
別した。ろ液を減圧下で濃縮して、EPA含有率53.
6重量%のエチルエステル709gを得た。このEPA
含有率53.6重量%のエチルエステル709gを、段
数6段の超臨界ガス抽出塔を用い、塔頂温度70℃、塔
底温度40℃になるように温度勾配を設定し、抽出塔中
段の原料導入部より供給した。また、溶媒として120
kg/cm2の高圧炭酸ガスを抽出塔底部から通過させ、抽
出塔上部より抽出相を取り出し、高圧炭酸ガスに溶解し
ているエチルエステルを分取した。全フラクションの4
0〜55重量%の部分を採取し、EPA含有率88.9
重量%のエチルエステル103gを得た。このEPA含
有率88.9重量%のエチルエステル103gを、薄膜
蒸留器を用いて温度110℃、減圧度0.5mmHgの条件
で薄膜蒸留を行い、残渣画分を採取した。この残渣画分
について、さらに同じ条件の蒸留を合計5回繰り返し、
残渣画分を得た。次に、この残渣画分について、温度1
45℃、減圧度0.05mmHgの条件で薄膜蒸留を行い、
留分を採取し、この留分について、同じ条件の蒸留を合
計5回繰り返し、最後に得られた留分を採取して、EP
A純度91.6重量%のエチルエステル60gを得た。
なお、C20:4脂肪酸含有率4.1重量%、C20:
4/EPA=0.045であり、DHA含有率1.3重量
%、DHA/EPA=0.014であった。原料、尿素
付加後、超臨界ガス抽出後及び薄膜蒸留後の脂肪酸組
成、並びに、二重結合度分離能、炭素数分離能及び各段
階におけるエイコサペンタエン酸収率を、第6表に示
す。
Comparative Example 2 To 2.0 kg of the same fish oil ethyl ester as in Example 1, 10 kg of ethanol and 6 kg of urea were added and stirred at 60 ° C. After cooling the solution to 10 ° C., the precipitated urea adduct was filtered off. The filtrate was concentrated under reduced pressure to give an EPA content of 53.
709 g of 6% by weight of ethyl ester were obtained. This EPA
Using a supercritical gas extraction column having 6 stages, a temperature gradient of 709 g of ethyl ester having a content of 53.6% by weight was set so that the top temperature was 70 ° C. and the bottom temperature was 40 ° C. It was supplied from the raw material introduction section. In addition, 120 as a solvent
A high-pressure carbon dioxide gas of kg / cm 2 was passed from the bottom of the extraction tower, an extraction phase was taken out from the upper part of the extraction tower, and ethyl ester dissolved in the high-pressure carbon dioxide gas was separated. 4 of all fractions
A portion of 0 to 55% by weight was collected, and the EPA content was 88.9.
103 g by weight of ethyl ester were obtained. 103 g of the ethyl ester having an EPA content of 88.9% by weight was subjected to thin-film distillation using a thin-film still at a temperature of 110 ° C. and a reduced pressure of 0.5 mmHg, and a residue fraction was collected. For the residue fraction, distillation under the same conditions was further repeated 5 times in total,
A residue fraction was obtained. Next, the residue fraction was subjected to temperature 1
The thin film distillation was performed under the condition of 45 ° C. and a degree of vacuum of 0.05 mmHg,
A fraction was collected, and distillation under the same conditions was repeated about this fraction a total of five times.
60 g of ethyl ester having an A purity of 91.6% by weight was obtained.
In addition, C20: 4 fatty acid content of 4.1% by weight, C20:
4 / EPA = 0.045, DHA content 1.3% by weight, DHA / EPA = 0.014. Table 6 shows the fatty acid composition after addition of the raw materials, urea addition, supercritical gas extraction and thin-film distillation, as well as the double bond separation ability, carbon number separation ability, and eicosapentaenoic acid yield in each stage.

【0031】[0031]

【表6】 [Table 6]

【0032】実施例1〜4及び比較例1〜2で行った工
程の組み合わせを第7表に示し、実施例及び比較例にお
けるEPA純度及びEPA収率についての評価のまとめ
を第8表に示す。ただし、EPA純度は、90重量%未
満を×、90重量%以上92重量%未満を○、92重量
%以上を◎とした。また、EPA収率は、原料の魚油中
のエイコサペンタエン酸エチルに対する最終製品中のエ
イコサペンタエン酸エチルの比で表し、20%未満を
×、20%以上30%未満を△、30%以上40%未満
を○、40%以上を◎とした。
Table 7 shows the combinations of the steps performed in Examples 1 to 4 and Comparative Examples 1 and 2, and Table 8 shows a summary of the evaluations of the EPA purity and the EPA yield in Examples and Comparative Examples. . However, the EPA purity was rated as x for less than 90 wt%, ○ for 90 wt% or more and less than 92 wt%, and ◎ for 92 wt% or more. The EPA yield is represented by a ratio of ethyl eicosapentaenoate in the final product to ethyl eicosapentaenoate in fish oil as a raw material, wherein x is less than 20%, Δ is 20% or more and less than 30%, and 30% or more is 40%. Less than ○ was evaluated as ○, and 40% or more as ◎.

【0033】[0033]

【表7】 [Table 7]

【0034】[0034]

【表8】 [Table 8]

【0035】薄膜蒸留法、尿素付加法、薄膜蒸留法及び
超臨界ガス抽出法の4工程により処理した実施例1で得
られたエイコサペンタエン酸エチルは、特に純度が高
い。尿素付加法、薄膜蒸留法及び超臨界ガス抽出法の順
に3工程で処理した実施例2、薄膜蒸留法、尿素付加法
及び超臨界ガス抽出法の順に3工程で処理した実施例3
で得られたエイコサペンタエン酸エチルは、いずれも高
純度かつ高収率である。薄膜蒸留法、超臨界ガス抽出法
及び尿素付加法の順に3工程で処理した実施例4で得ら
れたエイコサペンタエン酸エチルは、実施例1〜3と比
較すると純度、収率ともにやや劣るものの、なお90重
量%を超える純度を維持している。これに対して、尿素
付加法及び超臨界ガス抽出法を組み合わせた2工程で処
理した比較例1で得られたエイコサペンタエン酸エチル
は、純度は90重量%に達せず、収率も実施例2〜3の
収率の2分の1程度である。薄膜蒸留法、超臨界ガス抽
出法、尿素付加法の3工程を組み合わせているが、薄膜
蒸留法よりも前に超臨界ガス抽出法を行った比較例2で
得られたエイコサペンタエン酸エチルは、純度が90重
量%に達せず、収率も低く、エイコサペンタエン酸エチ
ルを高純度、高収率で得るためには、薄膜蒸留法、超臨
界ガス抽出法及び尿素付加法の3種の方法を組み合わせ
るとともに、薄膜蒸留法より後の工程において超臨界ガ
ス抽出法を行うことが必要であることが分かる。
The ethyl eicosapentaenoate obtained in Example 1 which has been treated by the four steps of the thin film distillation method, the urea addition method, the thin film distillation method and the supercritical gas extraction method has a particularly high purity. Example 2 where treatment was performed in three steps in the order of urea addition method, thin film distillation method and supercritical gas extraction method, and Example 3 where treatment was performed in three steps in the order of thin film distillation method, urea addition method and supercritical gas extraction method
All of the ethyl eicosapentaenoate obtained in the above are high purity and high yield. The ethyl eicosapentaenoate obtained in Example 4 which was treated in three steps in the order of the thin film distillation method, the supercritical gas extraction method and the urea addition method was slightly inferior in both purity and yield as compared with Examples 1 to 3, In addition, purity exceeding 90% by weight is maintained. In contrast, the ethyl eicosapentaenoate obtained in Comparative Example 1, which was treated in two steps in which the urea addition method and the supercritical gas extraction method were combined, had a purity of less than 90% by weight and a yield of Example 2. This is about one half of the yield of 3. Ethyl eicosapentaenoate obtained in Comparative Example 2 in which the supercritical gas extraction method was performed prior to the thin film distillation method although the three steps of the thin film distillation method, the supercritical gas extraction method, and the urea addition method were combined, Purity does not reach 90% by weight and the yield is low. In order to obtain ethyl eicosapentaenoate with high purity and high yield, there are three methods: thin-film distillation, supercritical gas extraction and urea addition. It can be seen that it is necessary to perform the supercritical gas extraction method in a step subsequent to the thin film distillation method in addition to the combination.

【0036】[0036]

【発明の効果】本発明方法によれば、高度不飽和脂肪酸
又はそのアルキルエステルを含有する混合物から、熱変
性体を生成することなく、純度90重量%以上の高純度
の高度不飽和脂肪酸又はそのアルキルエステルを、大量
に高収率で効率よく製造することが可能である。
According to the method of the present invention, from a mixture containing a polyunsaturated fatty acid or an alkyl ester thereof, a highly-purified polyunsaturated fatty acid having a purity of 90% by weight or more or a high-purity unsaturated fatty acid having a purity of 90% by weight or more is produced without producing a heat-denatured product. It is possible to efficiently produce a large amount of alkyl ester in high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 67/60 C07C 67/60 69/587 69/587 C11C 1/08 C11C 1/08 1/10 1/10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 67/60 C07C 67/60 69/587 69/587 C11C 1/08 C11C 1/08 1/10 1/10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高度不飽和脂肪酸又はそのアルキルエステ
ルを含有する混合物を、薄膜蒸留法、超臨界ガス抽出法
及び尿素付加法により処理し、かつ薄膜蒸留法より後の
工程において超臨界ガス抽出法を行うことにより、高度
不飽和脂肪酸又はそのアルキルエステルを分別、濃縮す
ることを特徴とする高度不飽和脂肪酸又はそのアルキル
エステルの製造方法。
A mixture containing a polyunsaturated fatty acid or an alkyl ester thereof is treated by a thin film distillation method, a supercritical gas extraction method and a urea addition method, and a supercritical gas extraction method is carried out in a step subsequent to the thin film distillation method. A method for producing a highly unsaturated fatty acid or an alkyl ester thereof, wherein the highly unsaturated fatty acid or the alkyl ester thereof is separated and concentrated.
【請求項2】高度不飽和脂肪酸が、エイコサペンタエン
酸又はドコサヘキサエン酸であり、アルキルエステルの
アルキル基の炭素数が1〜4である請求項1記載の高度
不飽和脂肪酸又はそのアルキルエステルの製造方法。
2. The method for producing a polyunsaturated fatty acid or an alkyl ester thereof according to claim 1, wherein the polyunsaturated fatty acid is eicosapentaenoic acid or docosahexaenoic acid, and the alkyl group of the alkyl ester has 1 to 4 carbon atoms. .
【請求項3】分別、濃縮された高度不飽和脂肪酸又はそ
のアルキルエステルの純度が、90重量%以上である請
求項1又は請求項2記載の高度不飽和脂肪酸又はそのア
ルキルエステルの製造方法。
3. The process for producing a polyunsaturated fatty acid or an alkyl ester thereof according to claim 1 or 2, wherein the purity of the fractionated and concentrated polyunsaturated fatty acid or an alkyl ester thereof is 90% by weight or more.
JP8271908A 1996-09-20 1996-09-20 Production of highly unsaturated aliphatic acid or its alkyl ester Pending JPH1095744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271908A JPH1095744A (en) 1996-09-20 1996-09-20 Production of highly unsaturated aliphatic acid or its alkyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271908A JPH1095744A (en) 1996-09-20 1996-09-20 Production of highly unsaturated aliphatic acid or its alkyl ester

Publications (1)

Publication Number Publication Date
JPH1095744A true JPH1095744A (en) 1998-04-14

Family

ID=17506567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271908A Pending JPH1095744A (en) 1996-09-20 1996-09-20 Production of highly unsaturated aliphatic acid or its alkyl ester

Country Status (1)

Country Link
JP (1) JPH1095744A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149723A (en) * 1997-08-08 1999-02-23 Shin Etsu Chem Co Ltd Purification of higher unsaturated aliphatic ester
WO2001010809A1 (en) * 1999-08-11 2001-02-15 Norsk Hydro Asa Recovery of polyunsaturated fatty acids from urea adducts
WO2001036369A1 (en) * 1999-11-19 2001-05-25 Kd. Iqa, S.L. Novel method for preparing eicosapentaenoic acid ethyl ester
EP1501782A1 (en) * 2002-04-22 2005-02-02 Industrial Research Limited Improvements in or relating to separation technology
JP2009136239A (en) * 2007-12-10 2009-06-25 Nippon Suisan Kaisha Ltd Method for producing fatty acid lower alcohol ester
WO2013172346A1 (en) * 2012-05-14 2013-11-21 日本水産株式会社 Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US9365800B2 (en) 2012-10-01 2016-06-14 Nisshin Pharma Inc. Method for producing composition containing highly unsaturated fatty acid alkyl ester
JP2017214392A (en) * 2012-01-06 2017-12-07 オムセラ・ファーマシューティカルズ・インコーポレイテッド Dpa-enriched compositions of omega-3 polyunsaturated fatty acid in free acid form
WO2020196749A1 (en) * 2019-03-26 2020-10-01 日清ファルマ株式会社 Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
JP2022046470A (en) * 2009-12-30 2022-03-23 ビーエイエスエフ ファーマ(コーラニッシュ)リミテッド Simulated moving bed type chromatograph separation method
CN114410374A (en) * 2013-12-04 2022-04-29 日本水产株式会社 Microbial oil, method for producing microbial oil, concentrated microbial oil, and method for producing concentrated microbial oil

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149723A (en) * 1997-08-08 1999-02-23 Shin Etsu Chem Co Ltd Purification of higher unsaturated aliphatic ester
WO2001010809A1 (en) * 1999-08-11 2001-02-15 Norsk Hydro Asa Recovery of polyunsaturated fatty acids from urea adducts
US6528669B1 (en) * 1999-08-11 2003-03-04 Norsk Hydro Asa Recovery of polyunsaturated fatty acids from urea adducts
WO2001036369A1 (en) * 1999-11-19 2001-05-25 Kd. Iqa, S.L. Novel method for preparing eicosapentaenoic acid ethyl ester
EP1501782A1 (en) * 2002-04-22 2005-02-02 Industrial Research Limited Improvements in or relating to separation technology
EP1501782A4 (en) * 2002-04-22 2006-11-08 Ind Res Ltd Improvements in or relating to separation technology
JP2009136239A (en) * 2007-12-10 2009-06-25 Nippon Suisan Kaisha Ltd Method for producing fatty acid lower alcohol ester
JP2022046470A (en) * 2009-12-30 2022-03-23 ビーエイエスエフ ファーマ(コーラニッシュ)リミテッド Simulated moving bed type chromatograph separation method
JP2017214392A (en) * 2012-01-06 2017-12-07 オムセラ・ファーマシューティカルズ・インコーポレイテッド Dpa-enriched compositions of omega-3 polyunsaturated fatty acid in free acid form
EP2851361B1 (en) 2012-05-14 2021-11-24 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US11034643B2 (en) 2012-05-14 2021-06-15 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US11603347B2 (en) 2012-05-14 2023-03-14 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US9540306B2 (en) 2012-05-14 2017-01-10 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
JPWO2013172346A1 (en) * 2012-05-14 2016-01-12 日本水産株式会社 Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants and method for producing the same
WO2013172346A1 (en) * 2012-05-14 2013-11-21 日本水産株式会社 Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
CN104302615A (en) * 2012-05-14 2015-01-21 日本水产株式会社 Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US10399923B2 (en) 2012-05-14 2019-09-03 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
US10399922B2 (en) 2012-05-14 2019-09-03 Nippon Suisan Kaisha, Ltd. Highly unsaturated fatty acid or highly unsaturated fatty acid ethyl ester with reduced environmental pollutants, and method for producing same
JP2018012842A (en) * 2012-10-01 2018-01-25 日清ファルマ株式会社 Method for producing highly unsaturated fatty acid alkyl ester-containing composition
JP2020111757A (en) * 2012-10-01 2020-07-27 日清ファルマ株式会社 Method for producing highly unsaturated fatty acid alkyl ester-containing composition
JP2019048902A (en) * 2012-10-01 2019-03-28 日清ファルマ株式会社 Method for producing highly unsaturated fatty acid alkyl ester-containing composition
US9365800B2 (en) 2012-10-01 2016-06-14 Nisshin Pharma Inc. Method for producing composition containing highly unsaturated fatty acid alkyl ester
JPWO2014054435A1 (en) * 2012-10-01 2016-08-25 日清ファルマ株式会社 Method for producing highly unsaturated fatty acid alkyl ester-containing composition
CN114410374A (en) * 2013-12-04 2022-04-29 日本水产株式会社 Microbial oil, method for producing microbial oil, concentrated microbial oil, and method for producing concentrated microbial oil
US11330817B2 (en) 2013-12-04 2022-05-17 Nippon Suisan Kaisha, Ltd. Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil
US11856952B2 (en) 2013-12-04 2024-01-02 Nippon Suisan Kaisha, Ltd. Microbial oil, production method for microbial oil, concentrated microbial oil, and production method for concentrated microbial oil
WO2020196749A1 (en) * 2019-03-26 2020-10-01 日清ファルマ株式会社 Eicosapentaenoic acid alkyl ester-containing composition and method for producing same
US11767491B2 (en) 2019-03-26 2023-09-26 Nisshin Pharma Inc. Eicosapentaenoic acid alkyl ester-containing composition and method for producing same

Similar Documents

Publication Publication Date Title
EP0610506B1 (en) Process for producing high-purity eicosapentaenoic acid or ester thereof
US4377526A (en) Method of purifying eicosapentaenoic acid and its esters
JPH11236591A (en) Preparation of highly pure eicosapentaenoic acid or its ester
JP6465938B2 (en) Method for producing highly unsaturated fatty acid alkyl ester-containing composition
JPH08512336A (en) Fractionation method of fatty acids and their derivatives by chromatography
JP2872986B1 (en) Purification method of lower alcohol ester of high purity highly unsaturated fatty acid
JPS649977B2 (en)
JPH1095744A (en) Production of highly unsaturated aliphatic acid or its alkyl ester
CZ77095A3 (en) Preparation of alpha, beta-unsaturated carboxylic acids containing from 3 to 6 carbon atoms
JPH08218091A (en) Production of high-purity highly unsaturated fatty acid and its derivative
CA2986213C (en) Production method of highly unsaturated fatty acid with high purity/high yield
EP0724557B1 (en) A process for separating lipophilic compounds
JPH1180083A (en) Production of eicosapentaenoic ester
JP3614177B2 (en) Method for producing high-purity docosahexaenoic acid or its ester
JP3040136B2 (en) Method for producing eicosapentaenoic acid or ester thereof
JP2003506423A (en) Recovery of polyunsaturated fatty acids from urea adduct
JP3678317B2 (en) Method for concentrating eicosapentaenoic acid-containing material
JPH0140817B2 (en)
JP3005638B2 (en) Method for producing high concentration eicosapentaenoic acid or ester thereof
JPH09263787A (en) Production of highly unsaturated fatty acid or alkyl ester thereof
JPH07110956B2 (en) Process for producing eicosapentaenoic acid or its ester and docosahexaenoic acid or its ester
JP2988754B2 (en) High vacuum continuous distillation equipment
JPH11246888A (en) Production of highly pure eicosapentaenoic acid or its ester
JP2726828B2 (en) Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters
JPS6137752A (en) Separation and purification of highly unsaturated long-chain fatty acid or its ester