JPH0136681B2 - - Google Patents

Info

Publication number
JPH0136681B2
JPH0136681B2 JP57043317A JP4331782A JPH0136681B2 JP H0136681 B2 JPH0136681 B2 JP H0136681B2 JP 57043317 A JP57043317 A JP 57043317A JP 4331782 A JP4331782 A JP 4331782A JP H0136681 B2 JPH0136681 B2 JP H0136681B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
nonlinear resistor
heat treatment
voltage nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57043317A
Other languages
Japanese (ja)
Other versions
JPS58159303A (en
Inventor
Toyohiko Okuyoshi
Yoshio Takada
Ken Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57043317A priority Critical patent/JPS58159303A/en
Publication of JPS58159303A publication Critical patent/JPS58159303A/en
Publication of JPH0136681B2 publication Critical patent/JPH0136681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 この発明は、酸化亜鉛を主成分とし、酸化ビス
マスなどの金属酸化物を含む電圧非直線抵抗体の
製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a voltage non-linear resistor containing zinc oxide as a main component and a metal oxide such as bismuth oxide.

電圧非直線抵抗体はサージ吸収素子、電圧安定
化素子、避雷器等に広く用いられているが、近年
酸化亜鉛を主成分とする酸化物焼結体の電圧非直
線抵抗体が開発された。この電圧非直線抵抗体は
一般的に酸化亜鉛と微量添加物である酸化ビスマ
ス、酸化コバルト、酸化クロム、酸化アンチモン
などとを混合、加圧成形した後1100〜1300℃で焼
結したものに電極を取付けて作られる。配合組
成、製法などの詳細は例えばジヤパニーズ・ジヤ
ーナル・オブ・アプライド・フイジツクス誌
〔M・Matsuoka、“Nonohmic Properties of
Zinc Oxide Ceramics”、Jap.J.Appl.Phys.、10
〔1971)736〕に述べられている。
Voltage nonlinear resistors are widely used in surge absorbing elements, voltage stabilizing elements, lightning arresters, etc., and in recent years, voltage nonlinear resistors made of oxide sintered bodies containing zinc oxide as a main component have been developed. This voltage nonlinear resistor is generally made by mixing zinc oxide with trace additives such as bismuth oxide, cobalt oxide, chromium oxide, antimony oxide, etc., press-forming it, and then sintering it at 1,100 to 1,300°C. It is made by attaching. For details on compounding compositions, manufacturing methods, etc., see Japanese Journal of Applied Physics [M. Matsuoka, “Nonohmic Properties of
Zinc Oxide Ceramics”, Jap.J.Appl.Phys., 10
[1971) 736].

この酸化亜鉛を主成分とする電圧非直線抵抗体
は酸化亜鉛粒子を酸化ビスマスを主成分とした境
界層(粒界層)が取り囲む構造を持つており、電
圧を印加するとこの粒界層と酸化亜鉛粒子との間
に形成される電気的障壁により、優れた電圧非直
線性が現われると考えられている。
This voltage nonlinear resistor whose main component is zinc oxide has a structure in which zinc oxide particles are surrounded by a boundary layer (grain boundary layer) whose main component is bismuth oxide.When a voltage is applied, this grain boundary layer It is believed that excellent voltage nonlinearity appears due to the electrical barrier formed between the zinc particles.

一般に電圧非直線抵抗体の電圧―電流特性は近
似的に次式で示される I=KV〓 …(1) (1)式中Iは電流、Kは定数、Vは電圧、αは非
直線係数である。上記の酸化亜鉛を主成分とする
電圧非直線抵抗体はαの値が5〜60というように
従来の炭化ケイ素からなる非直線抵抗体のαの値
3〜4よりも相当大きく、また非直線領域におい
て酸化亜鉛粒子間にかかる電圧がほぼ一定である
ため単に電圧非直線抵抗体の厚みを変えるだけで
V1mA(1mAの電流を流すのに要する電圧)を自
由に変えられるという特徴があり、その用途はま
すます拡大されつつある。
In general, the voltage-current characteristics of a voltage nonlinear resistor are approximately expressed by the following formula: I=KV〓 …(1) (1) In the formula, I is current, K is a constant, V is voltage, and α is a nonlinear coefficient. It is. The voltage nonlinear resistor whose main component is zinc oxide has an α value of 5 to 60, which is considerably larger than the α value of 3 to 4 for the conventional nonlinear resistor made of silicon carbide. Since the voltage applied between the zinc oxide particles is almost constant in the region, simply changing the thickness of the voltage nonlinear resistor
It has the characteristic of being able to freely change V1mA (the voltage required to flow 1mA of current), and its applications are increasingly being expanded.

しかしながら、このような利点を有するこの電
圧非直線抵抗体素子にも直流あるいは交流一定電
圧を印加すると一般には素子に流れるもれ電流は
時間とともに増大していき、もれ電流の増大に伴
なう素子の発熱のために熱暴走現象を示し、つい
には素子破壊に至るなどといつた寿命上での限界
があつた。特にギヤツプレス酸化亜鉛型避雷器の
場合、もれ電流の増大による素子破壊が極めて重
要な問題であるだけに、上記のような課電による
素子の劣化はできるだけ抑制し、もれ電流の増大
ができるだけ小さい長寿命化素子を得ることが望
ましい。
However, when a constant DC or AC voltage is applied to this voltage nonlinear resistor element, which has such advantages, the leakage current flowing through the element generally increases with time, and as the leakage current increases, Due to the heat generation of the element, thermal runaway occurred, which eventually led to element destruction, which resulted in a limit to its lifespan. Particularly in the case of gear press zinc oxide type lightning arresters, element destruction due to increased leakage current is an extremely important issue, so the deterioration of the elements due to the above-mentioned voltage application should be suppressed as much as possible to minimize the increase in leakage current. It is desirable to obtain long-life devices.

上記のような直流あるいは交流電圧印加時にお
ける電圧非直線抵抗体の寿命を改善する方法とし
て、1100℃以上で焼結した後、この焼結体を400
℃より低い温度まで降温速度100℃/時で冷却し
た後、400〜700℃の温度範囲に再加熱し、次いで
室温まで再冷却するいわゆる焼成後の熱処理を実
施する方法が知られている。(特開昭52―87695号
公報)ところが、この熱処理方法では約1100℃と
いう高い焼結温度から400℃より低い温度まで冷
却しなければならず、しかも降温速度が1時間あ
たり約100℃であるために冷却するのに長時間を
要する上、エネルギー的にもロスが多いという欠
点を有している。
As a method to improve the life of the voltage nonlinear resistor when DC or AC voltage is applied as described above, after sintering at 1100℃ or higher, this sintered body is heated to 400℃.
A method is known in which a so-called post-firing heat treatment is performed in which the material is cooled to a temperature lower than 100°C at a rate of 100°C/hour, then reheated to a temperature range of 400 to 700°C, and then recooled to room temperature. (Japanese Unexamined Patent Publication No. 52-87695) However, in this heat treatment method, it is necessary to cool the sintering temperature from a high sintering temperature of about 1100°C to a temperature lower than 400°C, and the cooling rate is about 100°C per hour. Therefore, it takes a long time to cool down, and it also has the drawback that there is a lot of energy loss.

本発明ではこの冷却温度、再加熱温度および降
温速度について第1図に示されるような温度パタ
ーンを用いて検討を重ねた結果、降温速度R1
よびR2が焼結温度T1から600℃の温度範囲で1時
間あたり約100〜300℃の範囲では、その速度に関
係なく冷却温度T2を400〜530℃、再加熱温度T3
を600〜900℃の範囲にとれば上記の課電寿命特性
に改善を持たらす効果的な熱処理が実施できるこ
とが判明し、この発明を完成するに至つた。しか
も、前記の熱処理方法と比較して冷却時間が大幅
に短縮できるためにエネルギー損失が少ない熱処
理が可能となつた。
In the present invention, as a result of repeated studies regarding the cooling temperature, reheating temperature, and temperature decreasing rate using the temperature pattern shown in Figure 1, the temperature decreasing rates R 1 and R 2 have changed from the sintering temperature T 1 to 600℃. In the temperature range approximately 100-300 ° C per hour, cooling temperature T 2 is 400-530 ° C, reheating temperature T 3 regardless of its speed.
It has been found that an effective heat treatment that improves the above-mentioned energized life characteristics can be carried out by setting the temperature in the range of 600 to 900°C, leading to the completion of this invention. Moreover, since the cooling time can be significantly shortened compared to the heat treatment method described above, it has become possible to perform heat treatment with less energy loss.

また、この熱処理条件は、焼結体の組成にも大
きく依存することが知られているが(特開昭54―
61214号公報)、本発明による焼処理を行なつた結
果、酸化亜鉛を主成分とし、酸化ビスマス、酸化
アンチモンなど種々の金属酸化物を含む添加物の
他に、さらにホウケイ酸亜鉛ガラスあるいはホウ
ケイ酸ビスマスガラスを添加した組成のものが課
電寿命特性の改善に更に効果的であることが判明
した。
Furthermore, it is known that the heat treatment conditions greatly depend on the composition of the sintered body (Japanese Unexamined Patent Application Publication No. 1989-1999).
61214), as a result of the firing treatment according to the present invention, in addition to additives containing zinc oxide as a main component and various metal oxides such as bismuth oxide and antimony oxide, zinc borosilicate glass or borosilicate It was found that a composition containing bismuth glass was more effective in improving the charging life characteristics.

本発明は上記のような従来の熱処理方法の持つ
ていた欠点を除去するためになされたもので、焼
成プロセスに検討を加え、特に焼結後の冷却温度
および再加熱温度と組成好ましい範囲に選ぶこと
により、酸化亜鉛を主成分とする電圧非直線抵抗
体素子の課電寿命特性を改善し、しかも歩留りよ
く生産でき、エネルギー損失の少ない製造方法を
提供することを目的としている。
The present invention was made in order to eliminate the drawbacks of the conventional heat treatment method as described above, and by considering the firing process, in particular, the cooling temperature after sintering, the reheating temperature, and the composition are selected within a preferable range. The purpose of this invention is to provide a manufacturing method that improves the energized life characteristics of a voltage nonlinear resistor element containing zinc oxide as a main component, can be produced with high yield, and has little energy loss.

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

実施例 1 出発原料として純度99%以上の酸化亜鉛
(ZnO)、酸化ビスマス(Bi2O3)、酸化コバルト
(Co2O3)、炭酸マンガン(MnCO3)、酸化クロム
(Cr2O3)、酸化アンチモン(Sb2O3)および二酸
化ケイ素(SiO2)およびホウケイ酸ビスマスガ
ラスあるいはホウケイ酸亜鉛ガラスの各粉末を用
いた。なおホウケイ酸ビスマスガラスおよびホウ
ケイ酸亜鉛ガラスはそれぞれ1200〜1300℃で加熱
溶融後急冷して作成したもので、粉砕後400メツ
シユのフルイを通し、粒径のそろつた微粉末のみ
を用いた。
Example 1 Starting materials include zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese carbonate (MnCO 3 ), and chromium oxide (Cr 2 O 3 ) with a purity of 99% or more. , antimony oxide (Sb 2 O 3 ), silicon dioxide (SiO 2 ), and powders of bismuth borosilicate glass or zinc borosilicate glass. Note that the bismuth borosilicate glass and the zinc borosilicate glass were each created by heating and melting at 1200 to 1300°C and then rapidly cooling, and after crushing, they were passed through a 400-mesh sieve, and only fine powders with uniform particle sizes were used.

これらの粉末を所定量だけ秤量し、混合、造
粒、加圧成型後空気中1200℃で約2時間焼結した
後、1時間あたり約200℃の降温速度で焼結体を
冷却した。500℃まで冷却した後ただちに再加熱
を始め600〜900℃で約1時間保持し、次いで1時
間あたり約200℃の降温速度で冷却した。このよ
うにして得られた焼結体に電極を取付けて電圧非
直線抵抗体素子を形成した。
A predetermined amount of these powders were weighed, mixed, granulated, pressure molded, and then sintered in air at 1200°C for about 2 hours, and then the sintered body was cooled at a rate of temperature drop of about 200°C per hour. Immediately after cooling to 500°C, reheating was started and maintained at 600 to 900°C for about 1 hour, followed by cooling at a temperature decreasing rate of about 200°C per hour. Electrodes were attached to the sintered body thus obtained to form a voltage nonlinear resistor element.

上記の酸化亜鉛を主成分とする電圧非直線抵抗
体素子に対して直流課電を実施し、その際に素子
に流れるもれ電流の経時変化を第2図に示す。な
お課電条件としては課電率(=印加電圧/素子に
1mA流れる時の電圧)=0.8、周囲温度100℃とし
た。図中1は焼成後室温まで冷却し熱処理を施さ
ない素子、2,3,4は上記の本発明による熱処
理を施したもので、再加熱温度T3がそれぞれ600
℃、700℃、800℃である素子を示す。また2′,
3′,4′はそれぞれ400℃より低い温度まで冷却
した後600℃、700℃、800℃まで再加熱する従来
の熱処理を施した素子である。
Direct current was applied to the voltage nonlinear resistor element whose main component was zinc oxide, and FIG. 2 shows the change over time in the leakage current flowing through the element at that time. The charging condition is the charging rate (=applied voltage/device
The voltage when 1mA flows) = 0.8, and the ambient temperature was 100°C. In the figure, 1 is an element that is cooled to room temperature after firing and is not subjected to heat treatment, and 2, 3, and 4 are elements that have been subjected to heat treatment according to the above-mentioned invention, and each has a reheating temperature T 3 of 600.
℃, 700℃, and 800℃ are shown. Also 2′,
3' and 4' are elements that have been subjected to conventional heat treatment in which the elements are cooled to a temperature lower than 400°C and then reheated to 600°C, 700°C, and 800°C, respectively.

図から熱処理を施さない素子の場合はもれ電流
の経時変化が大きく短時間で熱暴走現象を示すの
に対し、上記の本発明による熱処理を施した素子
はもれ電流の経時変化が小さく、従来の熱処理法
による素子と比較してもほとんど変わらず、寿命
特性の優れたものであることがわかる。
As can be seen from the figure, in the case of an element that is not subjected to heat treatment, the change in leakage current over time is large and a thermal runaway phenomenon occurs in a short time, whereas the element subjected to the above-mentioned heat treatment according to the present invention has a small change in leakage current over time. It can be seen that there is almost no difference when compared with elements made using conventional heat treatment methods, and that the life characteristics are excellent.

実施例 2 焼結後の冷却温度T2を510℃に保ち、再加熱温
度T3を550℃〜1000℃に変え、降温速度を200
℃/時として熱処理を実施した素子に対して直流
課電を行なつた際のもれ電流の経時変化を第3図
に示す。なお課電条件は実施例1に準じる。図中
1〜6はそれぞれT3が550℃、600℃、700℃、
800℃、900℃,1000℃である素子を示す。
Example 2 The cooling temperature T2 after sintering was kept at 510°C, the reheating temperature T3 was changed from 550°C to 1000°C, and the cooling rate was set at 200°C.
FIG. 3 shows the change in leakage current over time when direct current was applied to the heat-treated element at a rate of .degree. C./hour. Note that the charging conditions are the same as in the first embodiment. In the figure, T3 is 550℃, 600℃, 700℃, respectively.
Shows elements at 800℃, 900℃, and 1000℃.

図からT3が600℃〜900℃のものはもれ電流の
経時変化が小さく課電寿命特性が良好であるが、
T3が550℃、1000℃のものはともにもれ電流の経
時変化が大きく短時間で熱暴走現象を示し、好ま
しくない。
As shown in the figure, those with T3 of 600℃ to 900℃ have a small change in leakage current over time and have good charging life characteristics.
Those with T 3 of 550°C and 1000°C are both undesirable because the leakage current changes significantly over time and thermal runaway occurs in a short period of time.

したがつて最適な再加熱温度T3は600℃〜900
℃の範囲である。
Therefore, the optimal reheating temperature T3 is 600℃~900℃
℃ range.

実施例 3 焼結後の冷却温度T2を400℃〜550℃まで変え
て、再加熱温度T3を600℃とし、降温速度を200
℃/時とした時の素子に対して直流課電を実施し
た際のもれ電流の経時変化を第4図に示す。課電
条件は実施例1に準じる。図中1〜5はそれぞれ
T2が400℃、450℃、500℃、530℃、550℃である
素子を示す。図からT2が530℃以下のものは全て
もれ電流の経時変化が小さく、課電寿命特性が良
好であるが、550℃のものはもれ電流の経時変化
が大きくなり好ましくない。したがつて冷却温度
T2は少なくとも530℃以下にしなければならない
ことがわかる。
Example 3 The cooling temperature T2 after sintering was changed from 400°C to 550°C, the reheating temperature T3 was 600°C, and the cooling rate was 200°C.
FIG. 4 shows the change in leakage current over time when direct current was applied to the device at ℃/hour. The charging conditions are the same as in the first embodiment. 1 to 5 in the figure are respectively
Devices with T 2 of 400°C, 450°C, 500°C, 530°C, and 550°C are shown. As can be seen from the figure, all those with T 2 of 530°C or less have small changes in leakage current over time and have good charging life characteristics, but those with T 2 of 550°C have large changes in leakage current over time, which is not preferable. Therefore the cooling temperature
It can be seen that T 2 must be at least 530°C or lower.

実施例 4 焼結後および再加熱後の降温速度R1,R2を1
時間あたり100℃〜300℃と変えて冷却して熱処理
を施した場合の素子に対して直流課電を実施した
際のもれ電流の経時変化を第5図に示す。課電条
件は実施例1に準じる。図中1,2,3はそれぞ
れR1(=R2)が100℃/時、200℃/時、300℃/
時を示す。図から、もれ電流の経時変化に対する
降温速度の大小による差異はほとんど見られず、
課電寿命特性はほぼ同等であると判断できる。
Example 4 Temperature cooling rate R 1 and R 2 after sintering and reheating were set to 1
FIG. 5 shows the change in leakage current over time when direct current is applied to the device when heat treatment is performed by cooling the device at a temperature varying from 100° C. to 300° C. per hour. The charging conditions are the same as in the first embodiment. In the figure, 1, 2, and 3 have R 1 (=R 2 ) of 100℃/hour, 200℃/hour, and 300℃/hour, respectively.
Show the time. From the figure, there is almost no difference in the temperature decrease rate with respect to the change in leakage current over time.
It can be determined that the charging life characteristics are almost the same.

なお本実施例では冷却温度を500℃、再加熱温
度は600℃としたが、冷却温度を400〜530℃、再
加熱温度を600〜900℃の範囲に制限すれば上記と
ほぼ同様な結果が得られ、降温速度を100〜300
℃/時とするとその速度に関係なく課電寿命特性
の良好な素子を得る熱処理が実施できることがわ
かつた。降温速度を300℃/時より大きくすると
素子間の特性(電圧非直線性、課電寿命特性な
ど)のバラつきが生じることがあり好ましくなか
つた。
In this example, the cooling temperature was 500°C and the reheating temperature was 600°C, but if the cooling temperature was limited to 400 to 530°C and the reheating temperature to 600 to 900°C, almost the same results as above could be obtained. obtained, the cooling rate is 100~300
It has been found that when the heating rate is set to ℃/hour, heat treatment can be performed to obtain an element with good charging life characteristics regardless of the speed. It is not preferable to increase the cooling rate to more than 300° C./hour because it may cause variations in characteristics (voltage nonlinearity, energized life characteristics, etc.) between elements.

実施例 5 出発原料として用いたホウケイ酸亜鉛ガラスの
添加量を0〜1.0重量と変えて作成した酸化亜鉛
を主成分とする電圧非直線抵抗体素子に対して直
流課電を実施した際に素子に流れるもれ電流の経
時変化を第6図に示す。なお熱処理条件はT2
480℃、T3が800℃、R1,R2はともに150℃/時で
ある。また課電条件は実施例1に準じる。図中1
〜6はそれぞれ上記のガラスの添加量が0、
0.01、0.05、0.1、0.5、1.0重量%である素子を示
す。図からガラスの添加量が0.01〜0.5重量%の
ものはもれ電流の経時変化が小さく課電寿命特性
が良好であるが、0.01重量%より少なくなると熱
処理を施しているにもかかわらずもれ電流の経時
変化が大きくなり比較的短時間で熱暴走現象を示
す。また0.5重量%より多くするともれ電流の経
時変化は小さいが、電圧非直線性が悪くなるため
に電力用素子として不適当になる。
Example 5 When direct current was applied to a voltage nonlinear resistor element whose main component was zinc oxide, which was created by varying the amount of zinc borosilicate glass added as a starting material from 0 to 1.0 weight, Fig. 6 shows the change over time in the leakage current flowing in the capacitor. The heat treatment conditions are T2
480°C, T 3 is 800°C, and R 1 and R 2 are both 150°C/hour. Further, the charging conditions are the same as in the first embodiment. 1 in the diagram
~6, the amount of the above glass added is 0,
Elements with 0.01, 0.05, 0.1, 0.5, and 1.0% by weight are shown. As shown in the figure, when the amount of glass added is 0.01 to 0.5% by weight, the change in leakage current over time is small and the charging life characteristics are good, but when it is less than 0.01% by weight, leakage occurs despite heat treatment. The change in current over time becomes large and thermal runaway occurs in a relatively short period of time. If the amount exceeds 0.5% by weight, the change in leakage current over time is small, but the voltage nonlinearity deteriorates, making it unsuitable as a power device.

したがつて課電寿命特性を改善する上で本発明
による熱処理を最も効果的にする上記のガラスの
添加量は0.01〜0.5重量%の範囲である。
Therefore, the amount of the glass added that makes the heat treatment according to the present invention most effective in improving the charging life characteristics is in the range of 0.01 to 0.5% by weight.

本実施例ではガラス添加物としてホウケイ酸亜
鉛ガラスを用いたが、ホウケイ酸ビスマスを用い
ても同様な結果が得られ、本発明による熱処理方
法を実施することにより課電寿命特性の優れた素
子が得られることがわかつた。
Although zinc borosilicate glass was used as the glass additive in this example, similar results were obtained using bismuth borosilicate, and by implementing the heat treatment method of the present invention, an element with excellent charging life characteristics was obtained. I found out what I could get.

ところで以上述べてきた熱処理を施した電圧非
直線抵抗体素子に対して交流課電を実施した際の
素子に流れるもれ電流の経時変化も直流課電時の
場合とほぼ同様な特性を示し、上記の熱処理効果
が認められた。
By the way, when AC voltage is applied to the voltage nonlinear resistor element that has been subjected to the heat treatment described above, the leakage current flowing through the element changes over time, showing almost the same characteristics as when DC voltage is applied. The above heat treatment effect was observed.

上記実施例1〜5で述べたような熱処理を実施
する場合、連続炉を使用した際にも炉中の一定区
域で強制冷却を併用して冷却ゾーンなるものを設
ければ、短時間でエネルギー損失も少なく連続的
に焼結、冷却、再加熱、再冷却を行なうことがで
き、バツチ炉を使用した場合と同様な効果があ
る。
When performing heat treatment as described in Examples 1 to 5 above, even if a continuous furnace is used, if a cooling zone is provided by using forced cooling in a certain area of the furnace, energy can be saved in a short time. Sintering, cooling, reheating, and recooling can be performed continuously with little loss, and the same effect as using a batch furnace is obtained.

なおこれらの熱処理効果は、境界層の主成分で
ある酸化ビスマスの結晶相と強く関連しており、
X線回折法、又は高温X線回折法等の検討を加え
た結果、焼成後は熱処理をしなければ面心立方晶
と正方晶酸化ビスマスであり、本発明の熱処理を
すれば体心立方晶酸化ビスマスに変化する。熱処
理温度T3の上限と下限は正方晶及び面心立方晶
酸化ビスマスから体心方晶酸化ビスマスの生じる
範囲と対応することも判明している。
These heat treatment effects are strongly related to the crystalline phase of bismuth oxide, which is the main component of the boundary layer.
After considering X-ray diffraction method, high-temperature X-ray diffraction method, etc., we found that if no heat treatment is performed after firing, bismuth oxide will be face-centered cubic and tetragonal, but if heat treated according to the present invention, it will be body-centered cubic. Changes to bismuth oxide. It has also been found that the upper and lower limits of the heat treatment temperature T 3 correspond to the range in which body-centered cubic bismuth oxide is produced from tetragonal and face-centered cubic bismuth oxides.

また、ガラスの添加の有用性は、他に結晶の転
移を安定に起させることにより、熱処理による素
子電気特性のばらつきを小さくすることにも有効
であることもあわせてわかつた。
It was also found that the addition of glass is also effective in reducing variations in device electrical characteristics due to heat treatment by stably causing crystal transition.

以上のように、この発明によれば焼結後の冷却
温度、再加熱温度および冷却時の降温速度と焼結
体の組成との相互関連により効果的な熱処理方法
を実現したので焼成工程の時間が大幅に短縮でき
るとともに、課電寿命特性の優れた電圧非直線抵
抗体素子が歩留り良く生産できる効果がある。
As described above, according to the present invention, an effective heat treatment method has been realized through the correlation between the cooling temperature after sintering, the reheating temperature, the cooling rate during cooling, and the composition of the sintered body. In addition to being able to significantly shorten the time, voltage nonlinear resistor elements with excellent energized life characteristics can be produced with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化亜鉛を主成分とする電圧非直線抵
抗体の焼成パターンを示す図、第2図は直流課電
時におけるもれ電流の経時変化を示す特性図、第
3図は直流課電時におけるもれ電流の経時変化と
再加熱温度T3との関係を示す特性図、第4図は
直流課電時におけるもれ電流の経時変化と冷却温
度T2との関係を示す特性図、第5図は直流課電
時におけるもれ電流の経時変化と降温速度(R1
=R2)との関係を示す特性図、第6図は直流課
電時におけるもれ電流の経時変化と組成との関係
を示す特性図である。
Figure 1 is a diagram showing the firing pattern of a voltage nonlinear resistor whose main component is zinc oxide, Figure 2 is a characteristic diagram showing the change in leakage current over time when DC voltage is applied, and Figure 3 is a diagram showing the change in leakage current over time when DC voltage is applied. Fig. 4 is a characteristic diagram showing the relationship between the change in leakage current over time and the reheating temperature T 3 when applying direct current; Figure 5 shows the change in leakage current over time and the cooling rate (R 1
= R 2 ), and FIG. 6 is a characteristic diagram showing the relationship between the change in leakage current over time and the composition when DC current is applied.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とする電圧非直線抵抗体の
原料成型物を1050℃以上の温度で焼結した後、こ
の焼結体を400〜530℃の温度範囲に冷却し、再び
600〜900℃の温度範囲に加熱し、次いで室温まで
再冷却することを特徴とする電圧非直線抵抗体の
製造方法。 2 焼結後および再加熱後の降温速度が少なくと
も焼結温度から600℃の温度範囲で100〜300℃/
時であることを特徴とする特許請求の範囲第1項
記載の電圧非直線抵抗体の製造方法。 3 原料成型物はホウケイ酸ビスマスガラスまた
はホウケイ酸亜鉛ガラスを全量に対して0.01〜
0.5重量%含有した酸化亜鉛を主成分とする粉末
成型物からなることを特徴とする特許請求の範囲
第1項または第2項記載の電圧非直線抵抗体の製
造方法。
[Claims] 1. After sintering a raw material molded product of a voltage nonlinear resistor containing zinc oxide as a main component at a temperature of 1050°C or higher, the sintered body is cooled to a temperature range of 400 to 530°C. ,again
A method for manufacturing a voltage nonlinear resistor, which comprises heating to a temperature range of 600 to 900°C and then recooling to room temperature. 2 The temperature cooling rate after sintering and reheating is at least 100 to 300℃/300℃ in the temperature range of 600℃ from the sintering temperature.
2. A method of manufacturing a voltage nonlinear resistor according to claim 1, wherein the voltage nonlinear resistor is manufactured at a time. 3 The raw material molded product contains bismuth borosilicate glass or zinc borosilicate glass in a proportion of 0.01 to 0.01 to the total amount.
3. A method for manufacturing a voltage nonlinear resistor according to claim 1 or 2, characterized in that the material is made of a powder molded product whose main component is zinc oxide containing 0.5% by weight.
JP57043317A 1982-03-17 1982-03-17 Method of producing voltage nonlinear resistor Granted JPS58159303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043317A JPS58159303A (en) 1982-03-17 1982-03-17 Method of producing voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043317A JPS58159303A (en) 1982-03-17 1982-03-17 Method of producing voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS58159303A JPS58159303A (en) 1983-09-21
JPH0136681B2 true JPH0136681B2 (en) 1989-08-02

Family

ID=12660425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043317A Granted JPS58159303A (en) 1982-03-17 1982-03-17 Method of producing voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS58159303A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667626A3 (en) * 1994-02-10 1996-04-17 Hitachi Ltd Voltage non-linear resistor and fabricating method thereof.

Also Published As

Publication number Publication date
JPS58159303A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
JPH0136681B2 (en)
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JP2623188B2 (en) Varistor and manufacturing method thereof
JP2816258B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPH025001B2 (en)
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH0249521B2 (en)
JPH06204006A (en) Manufacture of zinc oxide varistor
JPS6249961B2 (en)
JP2985619B2 (en) Method of manufacturing voltage non-linear resistor and lightning arrester
JPS58159302A (en) Voltage nonlinear resistor
JPS62268102A (en) Voltage nonlinear resistance element
JPH0216003B2 (en)
JPS61294803A (en) Manufacture of voltage non-linear resistor
JPS58200507A (en) Method of producing nonlinear resistor
JPS648442B2 (en)
CN115512916A (en) Zinc oxide piezoresistor material suitable for low-temperature sintering and preparation method thereof
JPS6028203A (en) Method of producing voltage nonlinear resistor
JPS6138602B2 (en)
JPH10312909A (en) Manufacture of low-voltage voltage non-linear resistor
JPH02285601A (en) Manufacture of non-linear resistor
JP2002305105A (en) Method for manufacturing voltage nonlinear resistor
JPH0136961B2 (en)
JPS5975604A (en) Method of producing voltage nonlinear resistor
JPH10154604A (en) Method for manufacturing positive temperature coefficient thermistor