JPH0135069B2 - - Google Patents

Info

Publication number
JPH0135069B2
JPH0135069B2 JP25857085A JP25857085A JPH0135069B2 JP H0135069 B2 JPH0135069 B2 JP H0135069B2 JP 25857085 A JP25857085 A JP 25857085A JP 25857085 A JP25857085 A JP 25857085A JP H0135069 B2 JPH0135069 B2 JP H0135069B2
Authority
JP
Japan
Prior art keywords
processing
temperature
hot
cooling
mechanical properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25857085A
Other languages
Japanese (ja)
Other versions
JPS62120468A (en
Inventor
Chiaki Oochi
Hiroyoshi Suenaga
Hideo Sakuyama
Hideo Takatori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP25857085A priority Critical patent/JPS62120468A/en
Publication of JPS62120468A publication Critical patent/JPS62120468A/en
Publication of JPH0135069B2 publication Critical patent/JPH0135069B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は強度、延性などの機械的性質に優れた
チタン合金材の製造方法に関する。 [従来の技術とその問題点] Ti−15V−3Cr−3Sn−3Al合金は高強度でかつ
冷間加工性に優れたβ型チタン合金として最近利
用が広がる傾向にある。これは、該チタン合金が
Ti−6Al−4V合金等のα+β型チタン合金と比
較して冷間加工性が大幅に優れ、冷間プレス等の
採用が可能で、加工工程の省力化を図り得るから
である。 しかしながら、上記Ti−15V−3Cr−3Sn−3Al
合金材(以下単に本合金材と称す)は、熱間加工
工程による製造が困難とされていた。それは、本
合金材の製造上、機械的性質及び組織の不均一性
がネツクとなり、熱間加工のみでは、十分な機械
的性質と組織の均一性を得るのが難しいとされて
いたからである。 そのため、本合金材は熱間加工性まま利用され
ることはほとんどなく、従来では一般に、熱間加
工工程−溶体化処理工程−冷間加工工程の3工程
により製造し、熱間加工工程後の冷間加工工程の
付加により、機械的性質の向上、機械的性質及び
組織の均一性向上を図つていた。しかし、この方
法では工程数が多いため製造が容易でなく生産
性、生産コストに問題があつた。 [問題点を解決するための手段] 本発明は上述したような従来の問題点を解消す
るため研究と実験を重ねて創案されたもので、そ
の目的とするところは、熱間加工工程のみによ
り、従来方法(熱間加工工程−溶体化処理工程−
冷間加工工程)による場合と同等の優れた機械的
性質及び組織を持つ本合金材を容易に製造できる
方法を提供することにある。 この目的を達成するため、本発明は、本合金材
の製造にあたり、特に熱間加工用素材(スラブ、
ビレツト等)の加熱温度と熱間加工条件を厳密に
制御して加工を行い、かつ熱間加工後厳密に制御
した急速冷却を行う方法としたものである。 すなわち本発明の特徴とするところは、V:14
〜16wt%、Cr:2.5〜3.5wt%、Sn:2.5〜3.5wt
%、Al:2.5〜3.5wt%、残部Ti及び不可避的不純
物からなるチタン合金材を製造するにあたり、熱
間加工用素材を900℃以上1050℃以下の温度に加
熱後加工を開始し、少くともβ変態点以上900℃
以下で加工率50%以上、かつそのうちβ変態点以
上850℃以下で加工率30%以上の加工を加え、ひ
き続いて同加工材をβ変態点以上の温度から400
℃以下の温度まで2℃/sec以上の冷却速度で冷
却することにある。 この方法により、冷間加工工程を付加すること
なく熱間加工工程だけで、従来法の熱間加工後冷
間加工を行つた場合と同様の優れた機械的性質と
同性質及び組織の均一性に優れたチタン合金材が
製造される。 また、本発明におけるチタン合金材には、酸素
を0.3%以下まで含有させてもよく、これにより
同合金材の強度をさらに増すことができる。 以下本発明を詳述する。 まず、本発明で製造目的とするチタン合金材
は、V:14〜16wt%、Cr:2.5〜3.5wt%、Sn:
2.5〜3.5wt%、Al:2.5〜3.5wt%、残部Ti及び不
可避的不純物からなるもので、真空アーク炉等で
溶製したインゴツトを、鍛造あるいは分塊加工す
ることにより熱間加工用素材を得る。本合金材は
また酸素を0.3%まで含有することができる。酸
素の添加により本合金材の強度を上昇させること
が可能であるが、0.3%を越えると冷間加工性
(冷間成形性)が著しく劣化する。即ち溶体化処
理(800℃×20min→水冷)において、酸素:0.3
%以下含有の場合密着曲げが可能であるが、0.3
%を越えると曲げ半径R=10tにおいても破断が
認められ実用上適用不可能である。 この熱間加工用素材を熱間加工するに際し、バ
ツチ炉又は連続炉で900℃以上1050℃以下の温度
に加熱した後加工を開始する。上記のように、熱
間加工用素材の加熱温度を制御することが本発明
のひとつの重要なポイントである。 本合金材は、通常熱間加工工程後、溶体化処
理、時効処理を施して使用されるが、時効処理時
に組織の不均一化が生じやすく、このことが本合
金材の機械的性質の不均一及び機械的性質の低下
を招く。これは、時効析出挙動の不均一に基くも
のであつて、端的には添加元素の偏析が主なる原
因である。 従来では熱間加工、溶体化処理、冷間加
工、溶体化処理、時効処理を経て最終製品と
しており、熱間加工工程に続き冷間加工工程を加
え、それぞれ加工後に溶体化処理工程(加工−再
結晶過程)を繰返す(計2回)ことにより、最終
製品の均質化を図つている。 これに対し、本発明は熱間加工用素材加熱温度
を一定条件に制御することにより、添加元素の均
質化、組織の均一化を図るもので、すなわちβ変
温域の900℃以上1050℃以下の温度に熱間加工用
素材を加熱することにより添加元素の拡散均質化
を得るものである。 ここで、熱間加工用素材の加熱温度の上限を
1050℃と限定したのは、これを越えた加熱温度と
した場合、β粒の粒成長が著しくなり、その結果
最終製品のβ粒の粗大化、不均一化を生じさせ、
機械的性質の低下を招くためである。 また、熱間加工用素材の加熱温度の下限を900
℃としたのは、これ未満の加熱では添加元素の拡
散均一化が不十分となり、最終製品の機械的性質
及び組織の不均一性の問題が生ずると共に、機械
的性質そのものの低下を招くからである。 なお本発明は、場合によれば熱間加工用素材を
上記温度条件で加熱後圧延を開始し、900℃以上
の再結晶域での加工を行うことによりβ結晶の再
結晶を図り、再結晶を通しての添加元素の均質化
をさらに図ることも可能である。 次いで本発明は、上記のように温度範囲に加熱
された熱間加工用素材を、少なくともβ変態点以
上900℃以下で加工率50%以上、かつそのうちβ
変態点以上850℃以下で加工率30%以上の熱間加
工を加え、β変態点以上の温度で加工を終了す
る。このように加工工程の厳密な制御を行うこと
が本発明のひとつの重要なポイントである。 従来法においては、熱間加工工程に続く冷間加
工工程で加工材に加工歪を与え、これに続く溶体
化処理工程での再結晶挙動を通してβ晶の均一微
細化及び添加元素の均質化、そして時効時の機械
的性質の改善を図つている。 本発明はこの発想を転換し、熱間加工そのもの
での低温域の加工率の制御で冷間加工と同様の効
果を与えるものであり、具体的な加工条件を上記
のように規定したのは、最終製品のβ粒の微細化
及び機械的性質の改善を図るには、未再結晶温度
域である900℃以下での加工率の制御が必要だか
らである。加工温度を含め加工仕上温度をβ変態
点以上と規定したのは、加工仕上温度がこれ未満
となると、熱間加工中に該加工により形成された
変形帯に不均一にα晶の析出を生じてしまい、次
工程の加速冷却によるα晶の析出防止の効果が失
われてしまうからである。 少なくともβ変態点以上900℃以下で50%以上
の加工率とし、かつβ変態点以上850℃以下で30
%以上の加工率とした場合にのみ、均一な圧延変
形組織となり熱間圧延後の溶体化組織、溶体化組
織も均一微細となる。その結果、これら熱処理材
の機械的性質及び均一性の向上を生じる。すなわ
ち加工率が小さい場合、熱間圧延後の溶体化熱処
理において、不均一な再結晶、回復組織となり、
この結果、続く時効熱処理における時効析出が不
均一となる。 次に上記のように熱間加工された加工材をひき
続き、β変態点以上の温度より、400℃以下の温
度まで2℃/sec以上の冷却速度で冷却する。こ
のように熱間加工後加速冷却を行うことが本発明
のひとつの特徴である。 本合金のβ変態点は730℃であり、熱間加工後
の冷却開始温度と冷却温度が不適切である場合に
は、熱間加工により形成された変形帯に不均一に
α晶の析出が生じ、この析出α晶の痕跡が次工程
の溶体化処理後および時効処理後も残存し、組織
や機械的性質の不均一化及び機械的性質の低下の
原因の一つとなる。 本発明は熱間加工後に加速冷却を採用すること
で、熱間加工後の空冷時のα晶析出を防止するも
のである。 冷却開始温度をβ変態点以上の温度と規定した
のは、冷却開始温度がβ変態点以下の場合、加工
終了から冷却開始までの間に、前工程の加工で形
成された変形域に不均一なα晶析出が生じ、加速
冷却によるα晶析出防止効果が失われてしまうか
らである。 冷却速度を2℃/sec以上と規定したのは、こ
れ未満の冷却速度では冷却途中でα晶の析出が生
じるためであり、冷却停止温度を400℃以下と規
定したのは、この温度を越えて冷却を停止する
と、冷却停止後室温までの空冷過程でα晶の析出
が生ずるためである。 なお、冷却停止温度の下限は、材質上からは特
に限定する必要はないが、工業的にはコスト上室
温が採用される。また、冷却温度の上限も材質上
からは特に限定の必要はないが、工業的に設備、
コスト上の制約から、その上限は50℃/sec程度
となる。 [実施例] 次に本発明の実施例を示す。 第1表は供試材の化学成分(wt%)を示す
もので、Ti−15V−3Cr−3Sn−3Al合金インゴ
ツトの直径は直径550mmである。
[Industrial Application Field] The present invention relates to a method for producing a titanium alloy material having excellent mechanical properties such as strength and ductility. [Prior art and its problems] Ti-15V-3Cr-3Sn-3Al alloy is a β-type titanium alloy with high strength and excellent cold workability, and its use has recently been expanding. This means that the titanium alloy
This is because cold workability is significantly superior to α+β type titanium alloys such as Ti-6Al-4V alloy, and it is possible to employ cold pressing, etc., thereby saving labor in the processing process. However, the above Ti−15V−3Cr−3Sn−3Al
The alloy material (hereinafter simply referred to as the present alloy material) has been considered difficult to manufacture through a hot working process. This is because the non-uniformity of mechanical properties and structure is a bottleneck in the manufacture of this alloy material, and it has been considered difficult to obtain sufficient mechanical properties and uniformity of structure through hot working alone. Therefore, this alloy material is rarely used as it is hot workable, and in the past, it was generally manufactured through three steps: hot working, solution treatment, and cold working. By adding a cold working process, improvements in mechanical properties and uniformity of mechanical properties and structure were attempted. However, this method requires a large number of steps and is not easy to manufacture, resulting in problems in productivity and production costs. [Means for Solving the Problems] The present invention was created through repeated research and experiments in order to solve the above-mentioned conventional problems, and its purpose is to solve the problems by only hot working. , conventional method (hot working process - solution treatment process -
It is an object of the present invention to provide a method for easily manufacturing this alloy material having excellent mechanical properties and structure equivalent to those obtained by cold working process. In order to achieve this objective, the present invention particularly focuses on materials for hot processing (slabs,
This method involves strictly controlling the heating temperature and hot working conditions of the billet (such as billets), and performing rigorously controlled rapid cooling after hot working. In other words, the feature of the present invention is that V:14
~16wt%, Cr: 2.5~3.5wt%, Sn: 2.5~3.5wt
%, Al: 2.5 to 3.5wt%, balance Ti and unavoidable impurities.In producing a titanium alloy material, the material for hot processing is heated to a temperature of 900°C or more and 1050°C or less, and then processing is started, and at least 900℃ above β transformation point
Processing is performed at a processing rate of 50% or more at a processing rate of 30% or more at a temperature above the β-transformation point and below 850°C, and then the same processed material is heated to 400°C from a temperature above the β-transformation point to 850°C or below.
The objective is to cool down to a temperature below 0.degree. C. at a cooling rate of 2.degree. C./sec or more. With this method, only the hot working process is required without adding a cold working process, and the same excellent mechanical properties and uniformity of structure as in the case of performing cold working after hot working in the conventional method can be achieved. A titanium alloy material with excellent properties is manufactured. Further, the titanium alloy material of the present invention may contain oxygen up to 0.3% or less, thereby further increasing the strength of the titanium alloy material. The present invention will be explained in detail below. First, the titanium alloy material to be manufactured in the present invention has V: 14 to 16 wt%, Cr: 2.5 to 3.5 wt%, and Sn:
It consists of 2.5 to 3.5 wt%, Al: 2.5 to 3.5 wt%, the remainder Ti and unavoidable impurities, and is made into a material for hot working by forging or blooming an ingot made in a vacuum arc furnace etc. obtain. The alloy material can also contain up to 0.3% oxygen. Although it is possible to increase the strength of this alloy material by adding oxygen, if it exceeds 0.3%, cold workability (cold formability) will be significantly degraded. In other words, in solution treatment (800℃ x 20min → water cooling), oxygen: 0.3
If the content is less than 0.3%, close bending is possible.
%, breakage is observed even at bending radius R=10t, making it practically unapplicable. When hot-processing this hot-processing material, processing is started after heating it to a temperature of 900°C or more and 1050°C or less in a batch furnace or continuous furnace. As mentioned above, one important point of the present invention is to control the heating temperature of the material for hot processing. This alloy material is usually used after being subjected to solution treatment and aging treatment after the hot working process, but the structure tends to become non-uniform during the aging treatment, which causes the mechanical properties of this alloy material to deteriorate. This results in a decrease in uniformity and mechanical properties. This is due to the non-uniformity of aging precipitation behavior, and is simply the main cause of segregation of added elements. Conventionally, the final product is produced through hot working, solution treatment, cold working, solution treatment, and aging treatment.Following the hot working process, a cold working process is added, and after each process, a solution treatment process (processing - By repeating the recrystallization process (twice in total), the final product is made homogeneous. In contrast, the present invention aims to homogenize the added elements and the structure by controlling the heating temperature of the material for hot processing to a constant condition, that is, in the β variable temperature range of 900°C or more and 1050°C or less. By heating the material for hot working to a temperature of , diffusion homogenization of the added elements is obtained. Here, the upper limit of the heating temperature of the material for hot processing is determined.
The reason why we limited it to 1050℃ is that if the heating temperature exceeds this temperature, the grain growth of β grains will be significant, resulting in coarsening and unevenness of β grains in the final product.
This is because mechanical properties deteriorate. In addition, the lower limit of the heating temperature of materials for hot processing has been set to 900
The temperature was set at ℃ because if the heating temperature is lower than this, the diffusion of the additive elements will not be uniform enough, which will cause problems with the mechanical properties and non-uniformity of the structure of the final product, and will also lead to a decrease in the mechanical properties themselves. be. In addition, according to the present invention, rolling is started after heating the material for hot working under the above temperature conditions, and processing is performed in a recrystallization region of 900°C or higher to recrystallize β crystals. It is also possible to further homogenize the added elements through the process. Next, the present invention provides a hot processing material heated to a temperature range as described above, at least above the β transformation point and below 900°C, at a processing rate of 50% or more, and of which β
Hot working is applied at a processing rate of 30% or more at a temperature above the transformation point and below 850°C, and processing is completed at a temperature above the β transformation point. One important point of the present invention is to strictly control the processing steps in this way. In the conventional method, processing strain is applied to the workpiece in the cold working step that follows the hot working step, and through recrystallization behavior in the subsequent solution treatment step, uniform refinement of β crystals and homogenization of added elements are achieved. We are also working to improve mechanical properties during aging. The present invention changes this idea and provides the same effect as cold processing by controlling the processing rate in the low temperature range during hot processing itself, and the specific processing conditions are defined as above. This is because, in order to refine the β grains and improve the mechanical properties of the final product, it is necessary to control the processing rate below 900°C, which is the non-recrystallization temperature range. The reason why the finishing temperature, including the working temperature, is specified to be above the β transformation point is because if the finishing temperature is lower than this, alpha crystals will precipitate non-uniformly in the deformation zone formed by the hot working. This is because the effect of preventing α-crystal precipitation by accelerated cooling in the next step is lost. The processing rate is at least 50% at temperatures above the β-transformation point and below 900℃, and 30% at temperatures above the β-transformation point and below 850℃.
% or more, the rolling deformation structure becomes uniform, and the solution-treated structure and solution-treated structure after hot rolling also become uniform and fine. The result is an improvement in the mechanical properties and uniformity of these heat treated materials. In other words, if the processing rate is small, non-uniform recrystallization and recovery structure will occur in the solution heat treatment after hot rolling.
As a result, aging precipitation in the subsequent aging heat treatment becomes non-uniform. Next, the workpiece hot worked as described above is successively cooled from a temperature above the β transformation point to a temperature below 400°C at a cooling rate of 2°C/sec or above. One of the features of the present invention is to perform accelerated cooling after hot working. The β transformation point of this alloy is 730℃, and if the cooling start temperature and cooling temperature after hot working are inappropriate, α crystals will precipitate unevenly in the deformation zone formed by hot working. Traces of the precipitated α-crystals remain even after the next step of solution treatment and aging treatment, which is one of the causes of non-uniformity of the structure and mechanical properties and deterioration of the mechanical properties. The present invention employs accelerated cooling after hot working to prevent α crystal precipitation during air cooling after hot working. The reason why the cooling start temperature was specified as a temperature above the β-transformation point is because if the cooling start temperature is below the β-transformation point, the deformation area formed in the previous process will be uneven between the end of processing and the start of cooling. This is because α-crystal precipitation occurs, and the effect of preventing α-crystal precipitation by accelerated cooling is lost. The reason why the cooling rate was specified to be 2℃/sec or more is because α crystals will precipitate during cooling if the cooling rate is less than this. This is because if cooling is stopped at a temperature of 100°C, α crystals will be precipitated during the air cooling process to room temperature after cooling is stopped. Note that the lower limit of the cooling stop temperature does not need to be particularly limited from the viewpoint of the material, but from an industrial standpoint, room temperature is adopted from the viewpoint of cost. In addition, there is no need to limit the upper limit of the cooling temperature from the viewpoint of the material.
Due to cost constraints, the upper limit is approximately 50°C/sec. [Example] Next, an example of the present invention will be shown. Table 1 shows the chemical composition (wt%) of the sample material, and the diameter of the Ti-15V-3Cr-3Sn-3Al alloy ingot is 550 mm.

【表】 上記成分のインゴツトを1050℃に加熱した
後、100mmの厚さに鍛造し、熱間加工用素材を
得しめ、この熱間加工用素材を種々の熱間加工
条件、冷却条件をとつて加工し、それぞれの機
械的性質を調べた。その結果を第2表に示す。 なお、熱間加工は、上記熱間加工用素材より
試験片を析出し、該試験片を1100℃から875℃
の温度範囲に加熱後、仕上温度800℃から740℃
の温度範囲で実施した。仕上板厚は25mmと15mm
の2種とした。 熱間加工後の溶体化処理条件は、800℃×
20min→水冷であり、時効処理条件は、480℃
×14hr→空冷(STA1)、510℃×14hr→空冷
(STA2)の2条件とした。また、一部の材料
(第2表中No.24)について、比較のため、熱間
加工後、溶体化−冷間加工(L方向5%)を行
つてみた。 第2表中の各加工材の機械的性質は、板厚中
心より板厚7mm、平行部12.5mm、G.L.50mmの板
状引張試験片をL方向に各々加工条件で10本採
取して調査したデータである。また、同表中の
β粒径は、各々の加工条件について、LZ面
(圧延方向に平行な板厚断面)におけるβ粒径
を線分法で測定して求めた。
[Table] After heating the ingot with the above ingredients to 1050℃, it was forged to a thickness of 100 mm to obtain a material for hot processing.This material for hot processing was subjected to various hot processing conditions and cooling conditions. The mechanical properties of each were investigated. The results are shown in Table 2. For hot working, a test piece is precipitated from the above hot working material, and the test piece is heated from 1100°C to 875°C.
After heating to a temperature range of 800℃ to 740℃
The tests were carried out over a temperature range of Finished plate thickness is 25mm and 15mm
There are two types. The solution treatment conditions after hot working are 800℃×
20min→Water cooling, aging treatment conditions are 480℃
Two conditions were set: x 14 hr → air cooling (STA1) and 510°C x 14 hr → air cooling (STA2). Further, for comparison, some materials (No. 24 in Table 2) were subjected to hot working and then solution treatment and cold working (5% in the L direction). The mechanical properties of each processed material in Table 2 are data obtained by collecting 10 plate-shaped tensile test pieces in the L direction with a thickness of 7 mm from the center of the plate, a parallel part of 12.5 mm, and a GL of 50 mm under each processing condition. It is. Further, the β grain size in the same table was determined by measuring the β grain size in the LZ plane (thickness section parallel to the rolling direction) using the line segment method for each processing condition.

【表】【table】

【表】 第2表から明らかなように、熱間加工用素材
を900℃以上1050℃以下の温度に加熱後加工を
開始し、少くともβ変態点以上900℃以下で加
工率50%以上、かつそのうちβ変態点以上850
℃以下で加工率30%以上とし、ひき続き同加工
材をβ変態点以上の温度から400℃以下まで2
℃/sec以上の冷却速度で冷却した場合(No.1
〜14)にのみ、STA1で強度135Kgf/mm2以上、
伸び5%以上、STA2で強度130Kgf/mm2以上、
伸び5%以上の優れた強度や延性値が得られて
いる。また、強度の標準偏差も0.3以下で、ば
らつきも小さい。 これらの機械的性質は、第2表中No.24の熱間
加工工程後、冷間加工工程を加えた従来法によ
る材料の機械的性質と同等である。これに対
し、熱間加工工程での加熱条件、加工率、仕上
温度などの加工条件及び冷却条件を本発明規定
外にした場合には、強度及び延性の両性質をバ
ランスよく得ることができず、強度のばらつき
も大きい。 [発明の効果] 以上説明した本発明によるときには、Ti−15V
−3Cr−3Sn−3Al合金材の製造において、特に該
合金の熱間加工用素材を加熱温度と加工条件を厳
密に制御して加工した後、所定条件で急速冷却を
行うことにより、熱間加工工程のみで容易に優れ
た機械的性質を有するこの種チタン合金材を製造
できるというすぐれた効果が得られる。
[Table] As is clear from Table 2, processing is started after heating the material for hot processing to a temperature of 900°C or higher and 1050°C or lower, and the processing rate is at least 50% at at least the β transformation point or higher and 900°C or lower. And eventually, β metamorphosis point or above 850
℃ or less, the processing rate is 30% or more, and the same processed material is then heated from the β transformation point or higher to 400℃ or less.
When cooling at a cooling rate of ℃/sec or higher (No.1
~14) only, STA1 has a strength of 135Kgf/mm2 or more,
Elongation 5% or more, STA2 strength 130Kgf/mm 2 or more,
Excellent strength and ductility values with an elongation of 5% or more have been obtained. In addition, the standard deviation of the intensity is less than 0.3, and the variation is small. These mechanical properties are equivalent to the mechanical properties of the material obtained by the conventional method in which a cold working step was added after the hot working step of No. 24 in Table 2. On the other hand, if the processing conditions such as heating conditions, processing rate, finishing temperature, etc. and cooling conditions in the hot working process are outside the scope of the present invention, it will not be possible to obtain both strength and ductility in a well-balanced manner. , the variation in strength is also large. [Effect of the invention] According to the present invention explained above, Ti-15V
In the production of -3Cr-3Sn-3Al alloy materials, in particular, hot-processing materials of the alloy are processed by strictly controlling the heating temperature and processing conditions, and then rapidly cooled under predetermined conditions. An excellent effect can be obtained in that this type of titanium alloy material having excellent mechanical properties can be easily manufactured through only one process.

Claims (1)

【特許請求の範囲】 1 V:14〜16wt%、Cr:2.5〜3.5wt%、Sn:
2.5〜3.5wt%、Al:2.5〜3.5wt%、残部Ti及び不
可避的不純物からなるチタン合金材を製造するに
あたり、熱間加工用素材を900℃以上1050℃以下
の温度に加熱後加工を開始し、少くともβ変態点
以上900℃以下で加工率50%以上、かつそのうち
β変態点以上850℃以下で加工率30%以上の加工
を加え、ひき続いて同加工材をβ変態点以上の温
度から400℃以下の温度まで2℃/sec以上の冷却
速度で冷却することを特徴とする強度、延性に優
れたチタン合金材の製造方法。 2 前記チタン合金材中に酸素0.3%以下を含有
する特許請求の範囲第1項記載のチタン合金材の
製造方法。
[Claims] 1 V: 14 to 16 wt%, Cr: 2.5 to 3.5 wt%, Sn:
In producing a titanium alloy material consisting of 2.5 to 3.5 wt%, Al: 2.5 to 3.5 wt%, balance Ti and unavoidable impurities, processing begins after heating the material for hot processing to a temperature of 900°C or higher and 1050°C or lower. However, the processed material is processed at least at a processing rate of 50% or more at temperatures above the β-transformation point and below 900°C, and at a processing rate of at least 30% at temperatures above the β-transformation point and below 850°C. A method for producing a titanium alloy material with excellent strength and ductility, characterized by cooling from a temperature of 400°C or less at a cooling rate of 2°C/sec or more. 2. The method for producing a titanium alloy material according to claim 1, wherein the titanium alloy material contains 0.3% or less of oxygen.
JP25857085A 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility Granted JPS62120468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25857085A JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25857085A JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Publications (2)

Publication Number Publication Date
JPS62120468A JPS62120468A (en) 1987-06-01
JPH0135069B2 true JPH0135069B2 (en) 1989-07-24

Family

ID=17322076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25857085A Granted JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Country Status (1)

Country Link
JP (1) JPS62120468A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171476A (en) * 1988-12-23 1990-07-03 Nissan Shatai Co Ltd Key material and manufacture thereof

Also Published As

Publication number Publication date
JPS62120468A (en) 1987-06-01

Similar Documents

Publication Publication Date Title
EP0263503B1 (en) A method for producing beta type titanium alloy materials having excellent strength and elongation
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
US2821475A (en) Titanium base alloys
JPH0135069B2 (en)
JP3769399B2 (en) Low cost manufacturing method for martensitic stainless steel wire with excellent cold workability
JPS6135249B2 (en)
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0135070B2 (en)
JPS634914B2 (en)
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH11335803A (en) Production of near beta type titanium alloy coil
JPS6345356A (en) Manufacture of alpha+beta type titanium alloy plate
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
KR20230095259A (en) Method for manufacturing thin titanium plates with fine and equiaxed grains and thin titanium plates manufactured by using the same
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPH0225553A (en) Manufacture of alpha and hear-alpha titanium-alloy plate
JPS61217563A (en) Manufacture of titanium alloy
JPS59215450A (en) Hot worked plate of ti-base material and its manufacture
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH0530884B2 (en)
JPH0627309B2 (en) High strength, high ductility β type titanium alloy cold rolled sheet manufacturing method
JPS62174358A (en) Manufacture of titanium alloy material
JPH0373624B2 (en)
JPH0285345A (en) Manufacture of alpha+beta titanium alloy material having reduced componental segregation and having excellent homogeneity