JPS62120468A - Manufacture of titanium alloy material excellent in strength and ductility - Google Patents

Manufacture of titanium alloy material excellent in strength and ductility

Info

Publication number
JPS62120468A
JPS62120468A JP25857085A JP25857085A JPS62120468A JP S62120468 A JPS62120468 A JP S62120468A JP 25857085 A JP25857085 A JP 25857085A JP 25857085 A JP25857085 A JP 25857085A JP S62120468 A JPS62120468 A JP S62120468A
Authority
JP
Japan
Prior art keywords
alloy material
processing
working
temperature
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25857085A
Other languages
Japanese (ja)
Other versions
JPH0135069B2 (en
Inventor
Chiaki Ouchi
大内 千秋
Hiroyoshi Suenaga
末永 博義
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP25857085A priority Critical patent/JPS62120468A/en
Publication of JPS62120468A publication Critical patent/JPS62120468A/en
Publication of JPH0135069B2 publication Critical patent/JPH0135069B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To easily manufacture a Ti alloy material excellent in mechanical properties such as strength, ductility, etc., at a low cost by applying hot working to a stock having a specific composition consisting of V, Cr, Sn, Al, and Ti under proper conditions. CONSTITUTION:In manufacturing Ti alloy material consisting of, by weight, 14-16% V, 2.5-3.5% Cr, 2.5-3.5% Sn, 2.5-3.5% Al, and the balance Ti with inevitable impurities and further containing, if necessary, <=0.3% O, a stock for hot working is heated to 900-1,050 deg.C and then working is started. Successively, above-mentioned working stock is subjected to working at >=50% draft at a temp. between the beta-transformation point and 900 deg.C, where at >=30% draft at a temp. between the beta-transformation point and 850 deg.C, followed by rapid cooling from a temp. of beta-transformation point or above to 400 deg.C or below at a cooling rate of >=2 deg.C/sec. In this way, Ti-15V-3Cr-3Sn-3Al alloy material having superior mechanical properties and structure can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は強度、延性などの機械的性質に潰れたチタン合
金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing a titanium alloy material that has poor mechanical properties such as strength and ductility.

〔従来の技術とその問題点I Ti −15V−3Cr −3Sn−3A、Q合金は高
強度でかつ冷間加工性に浸れtごβ型チタン合金として
最近利用が広がる傾向にある。これは、該チタン合金が
Ti−6All−4V合金等のα+βへ°!チタン合金
と比較して冷間加工性が大幅に優れ、冷間ブレス等の採
用が可能で、加]lJ−程の省力1ヒを図り得るからで
ある。
[Prior art and its problems I Ti-15V-3Cr-3Sn-3A, Q alloy has high strength and good cold workability, and its use as a β-type titanium alloy has recently been expanding. This means that the titanium alloy changes to α+β such as Ti-6All-4V alloy. This is because cold workability is significantly superior to that of titanium alloys, and cold pressing and the like can be employed, resulting in labor savings of approximately 1 J-.

しかしながら、上記Ti −15V−3Cr −3Sn
−3AJ合金材(以下中に本合金材と称す〉は、熱間加
工工程による製造が困難どされていた。
However, the above Ti-15V-3Cr-3Sn
-3AJ alloy material (hereinafter referred to as the present alloy material) has been difficult to manufacture using a hot working process.

それは、本合金材の製造上、機械的性質及び組織の不均
一性がネックどなり、熱間加コニのみでは、十分な機械
的性質と組織の均一性を得るのが難しいとされていたか
らである。
This is because the non-uniformity of mechanical properties and structure was a bottleneck in the production of this alloy material, and it was considered difficult to obtain sufficient mechanical properties and uniformity of structure using only hot-tempered steel.

そのため、本合金材は熱間加工工程まま利用されること
はほとんどなく、従来では一般に、熱間加工工程−溶体
化処狸■稈−冷間加工工程の3工程により製造し、熱間
加工工程後の冷間加工工程の付加により、機械的性質の
向上、機械的性質及び組織の均一性向上を図っていた。
Therefore, this alloy material is rarely used as is after the hot working process, and in the past, it was generally produced through a three-step process: hot working process - solution treatment - cold working process, and then the hot working process. By adding a subsequent cold working step, the aim was to improve the mechanical properties and the uniformity of the mechanical properties and structure.

しかし、この方法では工程数が多いため製造が容易でな
く生産性、−F産コストに問題があった。
However, this method requires a large number of steps and is not easy to manufacture, resulting in problems in productivity and -F production cost.

し問題点を解決するだめの手段] 本発明は上記したような従来の問題点を解消するため研
究と実験を重ねて創案されたもので、その目的とすると
ころは、熱間加工工程のみにより、従来方法〈熱間加エ
エ稈−溶体化処理工程一冷間加1■稈)による場合と同
等の優れた機械的性質及び組織を持つ本合金材を容易に
製造できる方法を提供することにある。
[Means for Solving the Problems] The present invention was created through repeated research and experiments in order to solve the above-mentioned conventional problems. To provide a method for easily producing the present alloy material having excellent mechanical properties and structure equivalent to the conventional method (hot working culm - solution treatment step - cold working 1 culm). be.

この[1的を達成するため、本発明は、本合金材の製造
にあたり、特に熱間加工用素材(スラブ、ビレット等)
の加熱温度と熱間加工条件を厳密に制御して加工を行い
、かつ熱間加工後厳密に1IIJTi1した急速冷却を
行う手法としたものである。
In order to achieve this goal, the present invention provides a method for manufacturing the present alloy material, especially for hot processing materials (slabs, billets, etc.).
This is a method in which processing is performed by strictly controlling the heating temperature and hot working conditions, and rapid cooling is performed strictly at 1IIJTi1 after hot working.

すなわち本発明の特徴とりるところは、V:14〜IG
wt%、Cr :  2.5−3.5wt%、Sn:2
.5〜3、5wt%、A、Q :  2.5−3.5w
t%、残部Ti及び不可避的不純物からなるチタン合金
材を製造するにあたり、熱間加工用素材4900℃以上
1050℃以下の温度に加熱俊加■を開始し、少くとも
β変態点以上900℃以下で加工率50%以上、かつそ
のうちβ変態点以上850℃以下で加工率30%以上の
加工を加え、引続いて同加]−材をβ変態点以上の温度
から400℃以下の温度よ′c2℃/ sec以上の冷
却速度で冷却ηることにある。
That is, the feature of the present invention is that V:14 to IG
wt%, Cr: 2.5-3.5wt%, Sn: 2
.. 5-3, 5wt%, A, Q: 2.5-3.5w
When producing a titanium alloy material consisting of t%, the balance Ti and unavoidable impurities, the material for hot working is heated to a temperature of 4900°C or higher and 1050°C or lower, and at least the β transformation point or higher and 900°C or lower. 50% or more of processing at a temperature above the β-transformation point and below 850°C, followed by further processing] The purpose is to perform cooling η at a cooling rate of c2°C/sec or higher.

この方法により、冷間加工工程を付加することなく熱間
加工工程だけで、従来法の熱間加工後冷間加工を行った
場合と同様の優れた機械的性質と同性質及び組織の均一
性に優れたチタン合金材が製造される。
With this method, only a hot working process is required without adding a cold working process, and the same excellent mechanical properties and uniformity of structure as in the case of performing cold working after hot working in the conventional method can be achieved. A titanium alloy material with excellent properties is manufactured.

また、本発明にお()るチタン合金材には、酸素を0.
3%以下まで含有させてもよく、これにより同合金材の
強度をさらに増すことができる。
In addition, the titanium alloy material according to the present invention (2) has 0.0% oxygen.
It may be contained up to 3% or less, thereby further increasing the strength of the alloy material.

以下本発明を詳述する。The present invention will be explained in detail below.

まず、本発明で製造目的とするチタン合金材は、V:1
4〜16wt%、Cr :  2.5〜3.5wt%、
Sn:2.5〜3.5wt%、Ajl :  2.5〜
3.5wt%、残部T i及び不可避的不純物からなる
もので、真空アーク炉等で溶製したインゴットを、鍛造
あるいは分塊加工することにより熱間加工用素材を得る
First, the titanium alloy material to be manufactured in the present invention has a V:1
4 to 16 wt%, Cr: 2.5 to 3.5 wt%,
Sn: 2.5~3.5wt%, Ajl: 2.5~
It consists of 3.5 wt%, the balance Ti and unavoidable impurities, and a material for hot working is obtained by forging or blooming an ingot produced in a vacuum arc furnace or the like.

本合金材はまた酸素を0,3%まで含有することができ
る。酸素の添加により本合金材の強度を上昇さけること
が可能であるが、0.3%を越えると冷間加工性(冷間
成形性)が著しく劣化する。即ら溶体化処理(800℃
x20min→水冷)において、酸素:0.3%以下含
有の場合密着面げが可能であるが、0.3%を越えると
曲げ半径R=iotにおいても破断が認められ実用上適
用不可能である。
The alloy material can also contain up to 0.3% oxygen. Although it is possible to avoid increasing the strength of the present alloy material by adding oxygen, if it exceeds 0.3%, the cold workability (cold formability) will deteriorate significantly. That is, solution treatment (800℃
x 20 min → water cooling), if the oxygen content is 0.3% or less, it is possible to form a close contact surface, but if it exceeds 0.3%, breakage is observed even at the bending radius R = iot, making it practically unapplicable. .

この熱間加工用素材を熱間加工するに際し、バッチ炉又
は連続炉で900℃以上1050℃以下の温度に加熱し
た後加工を開始する。上記のように、熱間加工用素材の
加熱温度をit、+TiTiすることが本発明のひとつ
の中型なポイントである。
When hot working this material for hot working, processing is started after heating it to a temperature of 900° C. or more and 1050° C. or less in a batch furnace or continuous furnace. As mentioned above, one medium-sized point of the present invention is to increase the heating temperature of the material for hot processing by it, +TiTi.

本合金材は、通常熱間加工工程後、溶体化処理、時効処
理を施して使用されるが、時効処理時に組織の不均一化
が生じやすく、このことが本合金材の機械的性質の小鈎
−及び機械的性質の低下を招く。これは、時効析出挙動
の不均一・に括くものであって、端的には添加元素の偏
析が主なる原因である。
This alloy material is usually used after being subjected to solution treatment and aging treatment after the hot working process, but the structure tends to become non-uniform during the aging treatment, which reduces the mechanical properties of this alloy material. This leads to deterioration of hook and mechanical properties. This is due to non-uniformity of aging precipitation behavior, and the main cause is simply the segregation of added elements.

従来では■熱間加工、■溶体化処理、■冷間加工、■溶
体化処理、■時効処理を軽で最終製品どしており、熱間
加工工程に続き冷間加工■稈を加え、それぞれ加工復に
溶体化処理1稈(加ニー再結晶過程)を繰返t(計2回
)ことにより、最終製品の均質化を図っている。
Conventionally, ■hot processing, ■solution treatment, ■cold processing, ■solution treatment, and ■aging treatment are used to produce the final product. The final product is homogenized by repeating the solution treatment (kneading recrystallization process) twice (total of 2 times) after processing.

これに対し、本発明は熱間加工用木材加熱温度を一定条
盲に制御することにより、添加元素の均質化、組織の均
一化を図るもので、すなわらβ変濡域の900℃以上1
050℃以下の温度に熱間加工用素材を加熱りることに
より添加元素の拡散均質化を得るものである。
On the other hand, the present invention aims to homogenize the added elements and the structure by controlling the heating temperature of wood for hot processing in a fixed and blind manner, that is, at 900°C or higher in the β change wet region. 1
By heating the material for hot working to a temperature of 050° C. or lower, the added elements can be diffused and homogenized.

ここで、熱間加工用素材の加熱温度の上限を1050℃
と限定したのは、これを越えた加熱温度とした場合、β
粒の粒成長が著しくなり、その結果最Itlf品のβ粒
の粗大化、不均一化を生じさせ、機械的性質の低下を招
くためである。
Here, the upper limit of the heating temperature of the material for hot processing is 1050°C.
The reason for this is that if the heating temperature exceeds this, β
This is because grain growth becomes significant, resulting in coarsening and non-uniformity of the β grains in the Itlf product, resulting in a decrease in mechanical properties.

また、熱間加工用素材の加熱温度の下限を900℃どじ
たのは、これ未満の加熱では添加元素の拡散均一化が不
十分となり、最終製品の機械的性質及び組織の不均一性
の問題が生ずると共に、機械的性質そのものの低下を招
くからである。
In addition, the lower limit of the heating temperature for hot processing materials was set at 900°C because heating below this temperature would result in insufficient uniform diffusion of the added elements, resulting in non-uniformity of the mechanical properties and structure of the final product. This is because, along with this, the mechanical properties themselves deteriorate.

なお本発明は、場合によれば熱間加工用素材を上配渇度
条着で加熱後圧延を開始し、900℃以上の再結晶域で
の加工を行うことによりβ結晶の再結晶を図り、再結晶
を通しての添加元素の均質化をさらに図ることも可能で
ある。
In addition, the present invention aims at recrystallizing β crystals by starting rolling after heating the material for hot processing in upper dryness conditioning and performing processing in a recrystallization region of 900 ° C. or higher. It is also possible to further homogenize the added elements through recrystallization.

次いで本発明は、上記のように温度範囲に加熱された熱
間加工用素材を、少なくともβ変態点以上900℃以下
で加工率50%以上、かつそのうちβ変態点以上850
℃以下で加工率30%以上の熱間加工を加え、β変態点
以上の温度で加工を終了する。
Next, the present invention provides a material for hot working heated to a temperature range as described above, at a processing rate of 50% or more at a temperature of at least the β transformation point or higher and 900°C or lower, and of which a processing rate of at least 850° C.
Hot working is applied at a working rate of 30% or more at a temperature below 0.degree. C., and the working is completed at a temperature above the β transformation point.

このように加工工程の厳密な制御を行うことが本発明の
ひとつの重要なポイントである。
One important point of the present invention is to strictly control the processing steps in this way.

従来法においCは、熱間加土王程に続く冷間hロエ工程
で加工材に加T↑を与え、これに続く溶体化熱理工稈で
の再結晶挙動を通して0品の均−微細化及び添加元素の
均質化、そして時効時の機械的性質の改413を図って
いる。
In the conventional method, C applies a stress T↑ to the processed material in the cold rolling process following the hot rolling process, and then homogenizes and refines the zero product through recrystallization behavior in the subsequent solution heat treatment process. The aim is to homogenize the additive elements, and to improve the mechanical properties during aging.

本発明はこの発想を転換し、熱間加]−そのらのでの低
湿域の加工率の制御で冷間加工と同様の効果を与えるも
のであり、具体的な加工条例を上記のように規定したの
は、最終製品のβ粒の微細化及び機械的性質の改善を図
るには、未再結晶温度域である900℃以下での加工率
の制御が必要だからである。加に温度を含め加工仕上d
シ度をβ変態点以」二と規定したのは、加工仕上温度が
これ未満となると、熱間加工中に該加Jにより形成され
た変形帯に不均一に1品の析出を生じてしまい、次工程
の加速冷却による1品の析出防止の効果が失われてしま
うからである。
The present invention changes this idea and provides the same effect as cold processing by controlling the processing rate in the low humidity region of hot processing, and specifies the specific processing regulations as described above. This is because it is necessary to control the processing rate at 900° C. or lower, which is the non-recrystallization temperature range, in order to refine the β grains and improve the mechanical properties of the final product. In addition, processing and finishing including temperature
The reason for specifying the degree of deformation to be above the β-transformation point is that if the finishing temperature is lower than this, precipitation of one product will occur unevenly in the deformation zone formed by the J during hot working. This is because the effect of preventing precipitation in one product due to accelerated cooling in the next step is lost.

少なくともβ変態点以上900℃以下で50%以J、の
加工率とし、かつβ変態点以上850℃以下で30%以
上の加工率とした場合にのみ、均一な圧延変形組織とな
り熱間圧延後の溶体化組織、溶体化組織も均一微細とな
る。その結果、これら熱処理材の機械的性質及び均一性
の向上を生じる。すなわち加工率が小さい場合、熱間圧
延後の溶体化熱処理において、不均一な再結晶、回復組
織となり、この結果、続く時効熱処理における時効析出
が不均一となる。
Only when the processing rate is at least 50% J at a temperature above the β transformation point and below 900°C, and at least 30% at a temperature above the β transformation point and below 850°C, a uniform rolling deformation structure will be obtained after hot rolling. The solution-treated structure and solution-treated structure also become uniform and fine. The result is an improvement in the mechanical properties and uniformity of these heat treated materials. That is, when the working rate is small, non-uniform recrystallization and recovery structure occur in the solution heat treatment after hot rolling, and as a result, aging precipitation in the subsequent aging heat treatment becomes non-uniform.

次に上記のように熱間加工された加工材をひき続き、β
変態点以上の温度より、400℃以下の温度まで2℃/
 3eC以上の冷TA速度で冷却する。このように熱間
加工復加速冷fJlを行うことが本発明のひとつの特徴
である。
Next, the hot-worked workpiece as described above is
2℃/from the temperature above the transformation point to the temperature below 400℃
Cool at a cold TA rate of 3eC or higher. One of the features of the present invention is to perform hot working reaccelerated cooling fJl in this manner.

本合金のβ変態点は730℃であり、熱間加工後の冷却
開始温度と冷却速度が不適切である場合には、熱間加工
により形成された変形帯に不均一に1品の析出が生じ、
この析出α晶の痕跡が次工程の溶体化処II!後および
時効処理後も残存し、組織や別械的性貿の不均一化及び
機械的性質の低下の原因の一つとなる。
The β-transformation point of this alloy is 730°C, and if the cooling start temperature and cooling rate after hot working are inappropriate, a single product may precipitate unevenly in the deformation zone formed by hot working. arise,
Traces of this precipitated α-crystal are present in the next step, solution treatment II! It remains even after aging treatment and is one of the causes of uneven structure and mechanical properties and deterioration of mechanical properties.

本発明は熱間加工後に加速冷却を採用することで、熱間
加工後の空冷時の0品析出を防止するものである。
The present invention employs accelerated cooling after hot working to prevent 0-product precipitation during air cooling after hot working.

冷却開始温度をβ変(ぶ点以上の温度と規定したのは、
冷却開始温度がβ変態点以下の場合、加工終了から冷却
開始までの間に、前工程の加工で形成された変形帯に不
均一な0品析出が生じ、加速冷却によるα品析出防止効
果が失われてしまうからである。
The reason why the cooling start temperature was defined as the temperature above the β change point was because
If the cooling start temperature is below the β transformation point, non-uniform 0-product precipitation will occur in the deformation zone formed in the previous process between the end of processing and the start of cooling, and the effect of accelerated cooling to prevent α-product precipitation will be reduced. Because it will be lost.

冷却速度を2℃/ sec以上と規定したのは、これ未
満の冷却速度では冷u1途中ぐ1品の析出が生じるため
であり、冷却停止温度を400℃以下と規定したのは、
この温度を越えて冷却を停止すると、冷却停止後室温ま
での空冷過程で1品の析出が生ずるためである。
The reason why the cooling rate was specified as 2°C/sec or more is that if the cooling rate is less than this, one product will precipitate during cooling u1, and the reason why the cooling stop temperature is specified as 400°C or less is because
This is because if cooling is stopped above this temperature, one product will be precipitated during the air cooling process to room temperature after cooling is stopped.

[実施例] 次に本発明の実施例を示す。[Example] Next, examples of the present invention will be shown.

■、第1表は供試材の化学成分(wt%)を示Mもので
、Ti −15V−3Cr −3Sn  3△9合金イ
ンゴットの直径は直径550mである。
(2) Table 1 shows the chemical composition (wt%) of the sample material, and the diameter of the Ti-15V-3Cr-3Sn 3Δ9 alloy ingot is 550 m.

第   1   表 ■、上記成分のインゴットを1050℃に加熱した後、
10 (1、の厚さに鍛造し、熱間加工用素材を得しめ
、この熱間加工用素材を種々の熱間加T条件、冷7JI
条件をとって加工し、それぞれの機械的性質を調べた。
Table 1 ■, After heating the ingot of the above ingredients to 1050°C,
Forged to a thickness of 10 (1) to obtain a hot working material, and subjected to various hot working T conditions and cold 7JI.
They were processed under various conditions and their mechanical properties were investigated.

その結果を第2表に丞す。The results are shown in Table 2.

なお、熱間加工は、上記熱間加工用素材より試験片を析
出し、該試験j4をTi00℃から815℃の温度範囲
に加熱後、仕上温度800℃から740℃の温度範囲で
実施した。仕上板厚は25mと15mmの2種とした。
In addition, the hot working was performed by precipitating a test piece from the above-mentioned hot working material, heating the Ti to a temperature range of 00°C to 815°C, and then carrying out the finishing temperature in a temperature range of 800°C to 740°C. There were two types of finished plate thickness: 25 m and 15 mm.

熱間加工後の溶体化処理条件は、800℃×20m1n
→水冷であり、時効処理条件(よ、480℃×14hr
−+空冷(STAI)、510’Cx 1/Ihr →
空冷(ST△2)の2条件とした。また、一部の材料〈
第2表中庵24)について、比較のため、熱間加工後、
溶体化〜冷間加工(L方向5%)を行ってみた。
The solution treatment conditions after hot working are 800℃ x 20m1n
→Water cooling and aging treatment conditions (480°C x 14hr)
-+ Air cooling (STAI), 510'Cx 1/Ihr →
Two conditions were set: air cooling (ST△2). In addition, some materials
Regarding Table 2 Chuan24), for comparison, after hot processing,
I tried solution treatment and cold working (5% in the L direction).

■、第2表中の各加工材の機械的性質は、板厚中心より
板厚7 rtrttr、平行部12.5in、Q、 l
−、50mの板状引張試験片をL方向に各々加工条件U
−10本採取しで調査したデータである。また、同表中
のβ粒径は、各々の加工条件について、LZ而〈圧延方
向に平行な板厚断面)におけるβ粒径を線分法で測定し
て求めた。
■The mechanical properties of each processed material in Table 2 are: board thickness 7 rtrttr from the center of board thickness, parallel part 12.5 inches, Q, l
−, 50m plate-shaped tensile test piece in the L direction under processing conditions U.
- This is data obtained by collecting 10 samples. Further, the β grain size in the same table was determined by measuring the β grain size in the LZ (thickness section parallel to the rolling direction) using a line segment method for each processing condition.

■、第2表から明らかなように、熱間加工用素材を9(
10℃以上1(150′C以下の温度に加熱後加工を開
始し、少なくともβ変態点以上900以下で加工率50
%以−ト、かつそのうちβ変態点以上850℃以下で加
工率30%以上とし、ひき続きfijl加工材をβ変態
点以上の温度から400℃以下まで2’C/ sec以
十の冷u1速度で冷UNI、た場合(へ1〜14)にの
み、ST△1で強1哀135Kg f / tsta 
2以上、伸び5%以上、S T A 2 T:強D 1
30に9 r/ mm 2以上、伸び5%以上の侵れた
強度や延付値が得られている。また、強度の標準偏差も
(1,3以下で、ばらつきも小さい。
■As is clear from Table 2, the material for hot processing is 9 (
Processing is started after heating to a temperature of 10°C or higher (150'C or lower), and the processing rate is 50 at least at the β transformation point or higher and 900° or lower.
% or more, and among these, the processing rate is 30% or more at a temperature above the β transformation point and below 850°C, and then the fijl processed material is cooled at a rate of 2'C/sec or more from a temperature above the β transformation point to below 400°C. If it is cold UNI, only in case (to 1 to 14), ST△1 is strong 1 135Kg f / tsta
2 or more, elongation 5% or more, S T A 2 T: Strong D 1
The eroded strength and elongation values of 30 to 9 r/mm2 or more and elongation of 5% or more have been obtained. In addition, the standard deviation of the intensity is 1.3 or less, and the variation is small.

これらの機械的f’J貿は、第2表中陥24の熱間加■
工稈後、冷間加エエ稈を加えた従来法による材料の機械
的PU質と同等である。これにλJL、熱間加エエ稈で
の加熱条f1、加工率、仕上温度などの加工条件及び冷
力)条目を本発明規定外にした場合には、強度及び延性
の両tIL貿をバランスよく(qることができず、強度
のばらつきも大きい。
These mechanical f'J trades are shown in Table 2, Table 2.
The mechanical PU quality is equivalent to that of the material produced by the conventional method, which includes cold-working culms after milling. In addition, if processing conditions such as λJL, heating strip f1 in the hot-worked culm, processing rate, finishing temperature, and cold force) are made outside the provisions of the present invention, it is possible to balance both the strength and ductility. (It is impossible to do so, and there is a large variation in strength.

[発明の効果] 以上説明した本発明によるときには、′Ti−15V−
3Cr −3Sn−3A、l1合金材の製造において、
特に該合金の熱間加工用素材を加熱温度と加工条件を厳
密に制御して加工した((、所定条件で急速冷fJlを
行うことにより、熱間加工工程のみで容易に優れた機械
的性質を有するこの種チタン合金材を製造できるという
すぐれた効果が得られる。
[Effect of the invention] According to the present invention explained above, 'Ti-15V-
In the production of 3Cr-3Sn-3A, l1 alloy material,
In particular, the material for hot working of this alloy was processed by strictly controlling the heating temperature and processing conditions. The excellent effect of being able to manufacture this type of titanium alloy material having .

Claims (2)

【特許請求の範囲】[Claims] (1)V:14〜16wt%、Cr:2.5〜3.5w
t%、Sn:2.5〜3.5wt%、Al:2.5〜3
.5wt%、残部Ti及び不可避的不純物からなるチタ
ン合金材を製造するにあたり、熱間加工用素材を900
℃以上1050℃以下の温度に加熱後加工を開始し、少
くともβ変態点以上900℃以下で加工率50%以上、
かつそのうちβ変態点以上850℃以下で加工率30%
以上の加工を加え、ひき続いて同加工材をβ変態点以上
の温度から400℃以下の温度まで2℃/sec以上の
冷却速度で冷却することを特徴とする強度、延性に優れ
たチタン合金材の製造方法。
(1) V: 14-16wt%, Cr: 2.5-3.5w
t%, Sn: 2.5-3.5wt%, Al: 2.5-3
.. In producing a titanium alloy material consisting of 5wt%, balance Ti and unavoidable impurities, 900% of the material for hot processing was used.
Processing is started after heating to a temperature of 1050°C or higher, at least the β transformation point or higher and 900°C or lower, with a processing rate of 50% or more,
And the processing rate is 30% above the β transformation point and below 850℃
A titanium alloy with excellent strength and ductility characterized by applying the above processing and subsequently cooling the processed material from a temperature above the β transformation point to a temperature below 400°C at a cooling rate of 2°C/sec or more. Method of manufacturing wood.
(2)前記チタン合金材中に酸素0.3%以下を含有す
る特許請求の範囲第1項記載のチタン合金材の製造方法
(2) The method for producing a titanium alloy material according to claim 1, wherein the titanium alloy material contains 0.3% or less of oxygen.
JP25857085A 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility Granted JPS62120468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25857085A JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25857085A JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Publications (2)

Publication Number Publication Date
JPS62120468A true JPS62120468A (en) 1987-06-01
JPH0135069B2 JPH0135069B2 (en) 1989-07-24

Family

ID=17322076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25857085A Granted JPS62120468A (en) 1985-11-20 1985-11-20 Manufacture of titanium alloy material excellent in strength and ductility

Country Status (1)

Country Link
JP (1) JPS62120468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171476A (en) * 1988-12-23 1990-07-03 Nissan Shatai Co Ltd Key material and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171476A (en) * 1988-12-23 1990-07-03 Nissan Shatai Co Ltd Key material and manufacture thereof

Also Published As

Publication number Publication date
JPH0135069B2 (en) 1989-07-24

Similar Documents

Publication Publication Date Title
JPS62120468A (en) Manufacture of titanium alloy material excellent in strength and ductility
KR20030055286A (en) Method for producing a cold rolled strip that is cold formed with low degrees of deformation
JP2000080417A (en) Manufacture of hot rolled austenitic stainless steel strip
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH0135070B2 (en)
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing
JPS634914B2 (en)
JPH0225553A (en) Manufacture of alpha and hear-alpha titanium-alloy plate
JPS61204336A (en) Manufacture of steel sheet for working having superior ridging resistance
JPH09143569A (en) Production of high purity ferritic stainless steel sheet excellent in surface quality
JPH1177212A (en) Manufacture of titanium slab
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPH05295503A (en) Production of alpha plus beta titanium alloy sheet
JPS61204333A (en) Manufacture of steel sheet for working having small plane anisotropy and superior ridging resistance
JPS6067627A (en) Preparation of steel plate for soft surface treatment excellent in fluting resistance by continuous annealing
JPS6345356A (en) Manufacture of alpha+beta type titanium alloy plate
JPS6075519A (en) Manufacture of cold rolled steel sheet for continuous annealing
JPH0781177B2 (en) Method for manufacturing β-type titanium alloy strip
JPS62127455A (en) Manufacture of heat treatment-type aluminum-alloy rolled sheet
JPS61204338A (en) Manufacture of steel sheet for working having superior ridging resistance and strength-elongation balance
JPS60234956A (en) Manufacture of titanium alloy plate
JPH06330166A (en) Manufacture of cold rolled steel strip surerior in surface condition and excellent in homogeneity in longitudinal direction
JPS61204337A (en) Manufacture of steel sheet for working having superior ridging resistance and bulgeability
JPH0641644A (en) Manufacture of cr-ni series stainless steel thin sheet excellent in material and surface quality
JPS63238241A (en) Cold-rolled steel sheet excellent in workability and its production