JPS63238241A - Cold-rolled steel sheet excellent in workability and its production - Google Patents
Cold-rolled steel sheet excellent in workability and its productionInfo
- Publication number
- JPS63238241A JPS63238241A JP7119987A JP7119987A JPS63238241A JP S63238241 A JPS63238241 A JP S63238241A JP 7119987 A JP7119987 A JP 7119987A JP 7119987 A JP7119987 A JP 7119987A JP S63238241 A JPS63238241 A JP S63238241A
- Authority
- JP
- Japan
- Prior art keywords
- cold
- rolled
- hot
- steel sheet
- rolled steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 238000000137 annealing Methods 0.000 claims abstract description 28
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 27
- 239000010959 steel Substances 0.000 claims abstract description 27
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 238000005097 cold rolling Methods 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000005098 hot rolling Methods 0.000 abstract description 14
- 238000001953 recrystallisation Methods 0.000 abstract description 9
- 238000001556 precipitation Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000005185 salting out Methods 0.000 abstract description 2
- 229910001208 Crucible steel Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 229910000655 Killed steel Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 108091033322 FsrA Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、加工性、特に深絞り性に優れ、プレス成形そ
の他の加工を受けて使用される冷延鋼板とその製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cold-rolled steel sheet that has excellent workability, particularly deep drawability, and is used after being subjected to press forming or other processing, and a method for manufacturing the same.
(従来の技術とその問題点)
自動車外板をはじめ、家電製品、家具、厨房製品等に広
く使用される冷延鋼板には、優れた加工性が要求される
。従来、かかる冷延鋼板は、C:0.04%程度の^l
キルド鋼を冷間圧延した後、箱焼鈍(バッチ焼鈍)して
製造されており、深絞り加工性の指標であるr値が1.
5〜2.0のものが得られていた0箱焼鈍された上記の
低炭素^lキルド鋼冷延鋼板は、粒径が通常40μ−以
上の展伸粒組織となり、これが高いr値を持つ理由であ
る。(Prior art and its problems) Excellent workability is required for cold-rolled steel sheets that are widely used for automobile exterior panels, home appliances, furniture, kitchen products, and the like. Conventionally, such cold-rolled steel sheets have C: about 0.04%^l
It is manufactured by cold rolling killed steel and then box annealing (batch annealing), and the r value, which is an index of deep drawability, is 1.
The above-mentioned cold-rolled low carbon killed steel sheet which was annealed in a zero-box and had a grain size of 5 to 2.0 has an elongated grain structure with a grain size of usually 40μ or more, which has a high r value. That's the reason.
近年、生産の合理化とコストの低減に大きな効果のある
連続焼鈍プロセスが、箱焼鈍に代わって普及している。In recent years, continuous annealing processes, which are highly effective in streamlining production and reducing costs, have become popular in place of box annealing.
しかし、従来箱焼鈍を施していた同じ材質の鋼板を連続
焼鈍プロセスにかけると、その急速な加熱速度のために
結晶粒は細粒の等軸位となってしまい、硬質でF(11
1,0〜1.5の加工性の劣るものとなってしまう。However, when a steel plate made of the same material that was conventionally subjected to box annealing is subjected to a continuous annealing process, the rapid heating rate causes the crystal grains to become fine and equiaxed, making them hard and F(11
1.0 to 1.5, resulting in poor workability.
連続焼鈍を行ってもr値1,5以上の冷延鋼板を得るた
めのひとつの手段として、素材鋼をC0,01%以下の
橿低炭素へ2キルド鋼とすることが知られている。特公
昭48−25609公報の発明がその一例である。この
ような方法で製造された冷延鋼板では、圧延方向に対し
て0“、45°、95°の三方向のr値(それぞれ、r
、、ras、r、。と表示される)の平均値f、即ち(
re +2 ras十r*o)/4は高いが、rasが
1.1以下と著しく低い、r4.が低いということは、
円筒状の深絞りをした場合には耳が出やすく歩留りが低
下するということであり、その他一般の深絞り成形にお
いては成形時の45°方向での板の流れ込みが少なくな
るように型、形状の設計或いは板取りをしないとその方
向での割れを発生する可能性が高くなるということであ
る。As one means for obtaining a cold-rolled steel sheet with an r value of 1.5 or more even after continuous annealing, it is known to convert the raw material steel into a 2-killed steel with a carbon content of 0.01% or less. An example of this is the invention disclosed in Japanese Patent Publication No. 48-25609. Cold-rolled steel sheets manufactured by this method have r values in three directions of 0", 45°, and 95° with respect to the rolling direction (respectively r
,,ras,r,. ), that is, the average value f of (
re +2 ras + r*o)/4 is high, but ras is extremely low at 1.1 or less, r4. is low, which means that
When deep drawing into a cylindrical shape, ears tend to appear and the yield decreases, and in general deep drawing, the mold and shape are designed to reduce the flow of the plate in the 45° direction during forming. This means that if you do not design or cut out the plates, there is a high possibility that cracks will occur in that direction.
本発明は、連続焼鈍プロセスを使用しながら、箱焼鈍材
に匹敵する優れた加工性を持つ冷延鋼板を得ることを目
的とし、特に従来の連続焼鈍材の欠点であるrtsを大
きく向上させた冷延鋼板とその製造方法を提供するもの
である。The present invention aims to obtain a cold-rolled steel sheet with excellent workability comparable to box-annealed materials while using a continuous annealing process, and in particular, greatly improves the rts, which is a drawback of conventional continuously annealed materials. The present invention provides a cold-rolled steel sheet and a method for manufacturing the same.
(問題点を解決するための手段)
本発明の要旨は、下記の冷延鋼板とその製造方法にある
。(Means for Solving the Problems) The gist of the present invention lies in the following cold-rolled steel sheet and its manufacturing method.
(1) 重量%で、C: 0.0030%以下、Mn
: 0.03〜0.80%、sol、 Al : 0
.04〜0.12%、N:0.0050〜0.012Q
%、Tl : 0.002〜0.025%、残部Feお
よび不可避不純物から成り、
Ti (%)≦(N (%’) −0,003034
8/14である加工性の優れた冷延鋼板。(1) In weight%, C: 0.0030% or less, Mn
: 0.03-0.80%, sol, Al: 0
.. 04-0.12%, N: 0.0050-0.012Q
%, Tl: 0.002-0.025%, the balance consists of Fe and unavoidable impurities, Ti (%)≦(N (%') -0,003034
Cold rolled steel sheet with excellent workability of 8/14.
(2) 重量%で、CF 0.0030%以下、Mn
: 0.03〜0.80%、sol、 A j! :
0.04〜0.12%、N:0.0050〜0.01
20%、Ti : 0.002〜0.025%、残部F
eおよび不可避不純物から成り、
Ti (%)≦(N (%) −0,0030) 48
/14である鋼の連続鋳造スラブを仕上温度700〜9
70℃で熱間圧延して560℃以下の温度で巻取り、圧
下率65〜85%で冷間圧延した後、400℃から70
0℃までの昇温時間15〜300秒、最高加熱温度70
0〜900℃の条件で連続焼鈍することを特徴とする加
工性の優れた冷延鋼板の製造方法。(2) CF 0.0030% or less, Mn in weight%
: 0.03-0.80%, sol, A j! :
0.04-0.12%, N: 0.0050-0.01
20%, Ti: 0.002-0.025%, balance F
Ti (%)≦(N (%) −0,0030) 48
/14 Continuously cast slab of steel finished at a temperature of 700 to 9
After hot rolling at 70°C, coiling at a temperature of 560°C or lower, and cold rolling at a rolling reduction of 65 to 85%,
Heating time to 0℃: 15-300 seconds, maximum heating temperature: 70℃
A method for producing a cold-rolled steel sheet with excellent workability, characterized by continuous annealing under conditions of 0 to 900°C.
(作用)
本発明者は、前記の目的を達成するため、多くの試験研
究を積み重ねて下記の基本的な知見を得た。即ち、連続
焼鈍材のr値、特に14%を高くするためには、■冷延
の前の熱延鋼板の結晶粒を50μm以下にすること、■
冷延の圧下率を65%以上にすること、■更に、連続焼
鈍の加熱時にAINを微細に析出させ、再結晶集合組織
を制御し展伸粒組織にすること、の3要件が重要である
。これら3要件のうち一つだけでも効果はあるが、2要
件、3要件がそろえば更に効果があり、rasが1.3
以上の冷延鋼板の製造も可能となる。(Function) In order to achieve the above-mentioned object, the present inventor has accumulated the following basic knowledge through numerous test studies. That is, in order to increase the r value of the continuously annealed material, especially 14%, it is necessary to (1) reduce the grain size of the hot rolled steel sheet to 50 μm or less before cold rolling;
Three requirements are important: making the reduction ratio in cold rolling 65% or more, and (1) finely precipitating AIN during heating during continuous annealing to control the recrystallized texture and create an elongated grain structure. . Although just one of these three requirements is effective, it is even more effective if two or three requirements are combined, and ras is 1.3.
It is also possible to manufacture the above cold-rolled steel sheets.
しかしながら、上記の3要件を既存の低炭素Mキルド鋼
を用いて達成するのは容易ではない。However, it is not easy to achieve the above three requirements using existing low carbon M-killed steel.
例えば、■の条件を満足するには冷延前の熱延鋼板を厚
くしておかねばならず、そうすると圧延後の冷却速度が
遅くなって結晶粒が大きくなり、■の条件が満たされな
い、また、■の条件を満足するには、熱延の加熱温度を
高(してMNを十分に固溶させておく必要があり、そう
すればやはり■の条件が満たされなくなる。For example, in order to satisfy the condition (■), the hot-rolled steel sheet must be made thicker before cold rolling, but if this happens, the cooling rate after rolling will be slow and the grains will become larger, and the condition (■) will not be satisfied. In order to satisfy the conditions (2), it is necessary to raise the heating temperature of the hot rolling to sufficiently dissolve MN in solid solution, and then the condition (2) will no longer be satisfied.
本発明者は、上述のような相反する諸条件が、素材鋼中
の窒化物系析出物の利用と、熱延から連続焼鈍までの一
貫した条件設定により、極めて合理的に達成できること
を確認した。The present inventor has confirmed that the contradictory conditions described above can be achieved in an extremely rational manner by utilizing nitride precipitates in the steel material and by setting consistent conditions from hot rolling to continuous annealing. .
まず、素材となる鋼は極低炭素AQキルド鋼であり、少
量のTtと比較的高いaol、AQおよびNを含むこと
を特徴とする。このような鋼を連続鋳造法でスラブとな
し、仕上温度700〜950℃として熱間圧延を終了す
ると、得られる熱延鋼板は、板厚が厚くても、また加熱
温度が高くても、TiNの微細析出に助けられて細粒化
されたものとなる。かかる熱延鋼板を圧下率65〜85
%で冷間圧延した後、特定条件の連続焼鈍に付せば、加
熱の過程で析出するAQNが再結晶集合組織を制御し、
?値およびrasの高い展伸粒組織が得られる。即ち、
F165以上、ra31.3以上が得られる。First, the steel used as the material is ultra-low carbon AQ killed steel, and is characterized by containing a small amount of Tt and relatively high amounts of AOL, AQ, and N. When such steel is made into a slab by continuous casting and hot rolling is completed at a finishing temperature of 700 to 950°C, the resulting hot rolled steel plate will be TiN even if the plate thickness is thick or the heating temperature is high. The grains become finer due to the fine precipitation of . Such a hot rolled steel plate is rolled at a rolling reduction ratio of 65 to 85.
% and then subjected to continuous annealing under specific conditions, AQN precipitated during the heating process controls the recrystallized texture,
? An expanded grain structure with high value and ras is obtained. That is,
F165 or higher and RA 31.3 or higher can be obtained.
以下、本発明に定める各条件について、それぞれ詳しく
説明する。Each condition defined in the present invention will be explained in detail below.
まず1.鋼板の組成の限定理由は次のとおりである。First 1. The reasons for limiting the composition of the steel plate are as follows.
C: 連続焼鈍を行っても優れた加工性を得るためには
o、oo3o%以下の極低炭素とする必要がある。即ち
、0.0030%を超えるC量では、連続焼鈍後の結晶
粒が細か(なり鋼板が硬くなる上、歪時効を起こし易く
なる。C: In order to obtain excellent workability even if continuous annealing is performed, it is necessary to have an extremely low carbon content of 30% or less. That is, if the amount of C exceeds 0.0030%, the crystal grains after continuous annealing become fine (and the steel sheet becomes hard), and strain aging is likely to occur.
Mn: Mnは鋼の熱間脆性を防ぎ、AQHの形成を
促す作用がある。これらの効果を持たせるために、0.
03%以上含有させるが、一方ではr値を低下させる成
分でもあるから、上限を0.80%に止める。Mn: Mn has the effect of preventing hot embrittlement of steel and promoting the formation of AQH. In order to have these effects, 0.
However, since it is also a component that lowers the r value, the upper limit is kept at 0.80%.
sol、へQ:下記のNとともにAfllNを形成させ
るために、通常の^2キルド鋼より多く 、0.04%
から0.12%までの範囲で含有させる。 0.12%
を超えると鋼板が硬くなり、加工性がわるくなる。sol, to Q: 0.04% more than normal ^2 killed steel to form AfllN with N below.
The content ranges from 0.12% to 0.12%. 0.12%
If it exceeds this value, the steel plate will become hard and workability will deteriorate.
N:AQNとTiNを形成させるのに十分な量含有させ
なければならない、 o、ooso%未満では両室化物
を必要量析出させるのに不十分である。しかし、0.0
120%を超える量になると窒化物の総量が多くなりす
ぎて鋼板が硬くなってしまう。理想的なNの配分は、八
QNとしてのN7!l(0,006%、TiNとしての
Nが0.002%である。MNとしてのNが0.003
%未満では、再結晶集合&1lVaを制御するに十分な
AIINが形成されない。N: Must be contained in an amount sufficient to form AQN and TiN. If it is less than o, ooso%, it is insufficient to precipitate the required amount of ampholytic compound. However, 0.0
When the amount exceeds 120%, the total amount of nitrides becomes too large and the steel sheet becomes hard. The ideal distribution of N is N7 as 8QN! l(0,006%, N as TiN is 0.002%. N as MN is 0.003%
%, sufficient AIIN is not formed to control recrystallization assembly &11Va.
Ti: TiNとして析出して熱延鋼板を細粒化させ
るのに必須の成分で、TiNとしてN換算で0.000
6%以上、即ちT1としては0.002%以上の含有が
必要である。一方、Tiが0.025%を超えると、部
分的にTic 、 TiSが生成し製品冷延鋼板の伸び
を低下させる。Ti: An essential component to precipitate as TiN and refine the grains of hot rolled steel sheets. TiN is 0.000 in terms of N.
The content must be 6% or more, that is, 0.002% or more as T1. On the other hand, when Ti exceeds 0.025%, Tic and TiS are partially generated, reducing the elongation of the product cold-rolled steel sheet.
Tkの含有量はまたNの含有量と関連させて定めること
が重要である。その関係式が、
Ti (%)≦(N (%)−0,003] 48/1
4である。この式はAQNを形成するNが0.003%
必要であることを示し、Tiが上式の右辺より多いと再
結晶時に形成されるAQNが不足し、再結晶集合組織の
制御が行われず、展伸粒組織が得られない。It is also important to determine the Tk content in relation to the N content. The relational expression is Ti (%)≦(N (%)-0,003] 48/1
It is 4. This formula shows that N forming AQN is 0.003%
If Ti is more than the right side of the above equation, AQN formed during recrystallization will be insufficient, the recrystallized texture will not be controlled, and an elongated grain structure will not be obtained.
添付図は、上記のNとTiの含有量の関係を示したもの
で同図中、斜線部が適正なNとTiの含有量の範囲とな
る。The attached figure shows the relationship between the above-mentioned N and Ti contents, and in the figure, the shaded area is the appropriate range of N and Ti contents.
上記の各成分の外、残部はFeと不可避的な不純物であ
る。代表的な不純物であるPとSは、通常の冷延鋼板と
同レベル、即ちP≦0.03%、S≦0゜02%、に抑
えればよい。In addition to the above components, the remainder is Fe and unavoidable impurities. Typical impurities, P and S, may be kept to the same level as ordinary cold-rolled steel sheets, that is, P≦0.03% and S≦0.02%.
次に、製造方法の各条件について説明する。Next, each condition of the manufacturing method will be explained.
素材は、連続鋳造スラブを使用する。理論上はインゴッ
トからの分塊スラブも使用できるが、製品となる冷延鋼
板が量産品向けであることからみても、生産性の高い連
続鋳造法によるスラブを用いるのが合理的である。鋳造
ラインから来る熱いままのスラブを直接加熱炉に入れる
いわゆるホンチャージや、加熱なしに圧延する直接圧延
の技術も使用できる。The material used is continuous casting slab. In theory, a blooming slab from an ingot can be used, but since the cold-rolled steel sheet that is the product is intended for mass production, it is rational to use a slab made by continuous casting, which is highly productive. It is also possible to use the so-called honcharging technique, in which the hot slab coming from the casting line is placed directly into a heating furnace, and the direct rolling technique, in which the slab is rolled without heating.
スラブ加熱温度と熱間圧延の開始温度は、通常の低炭素
AQキルド鋼におけるそれらと同じであってよい。およ
その目安は、加熱温度1100℃〜1300℃、圧延開
始温度1000℃以上である。The slab heating temperature and hot rolling start temperature may be the same as those in normal low carbon AQ killed steel. A rough guideline is a heating temperature of 1100°C to 1300°C and a rolling start temperature of 1000°C or higher.
熱延の仕上温度は重要である。仕上温度が700℃より
低いと、最終製品の加工性に好ましくない影響を及ぼす
集合組織が発達し、製品冷延鋼板のr値を低下させる。The finishing temperature of hot rolling is important. If the finishing temperature is lower than 700° C., a texture develops that has an unfavorable effect on the workability of the final product, reducing the r value of the product cold rolled steel sheet.
970℃を超える仕上温度になると、TiN析出による
結晶粒微細化の効果も期待できず熱延板の結晶粒が粗大
化し、以後のプロセスを本発明の条件で実施してもr値
、特にr、sが改善できない。When the finishing temperature exceeds 970°C, the effect of grain refinement due to TiN precipitation cannot be expected, and the grains of the hot-rolled sheet become coarse, and even if the subsequent processes are carried out under the conditions of the present invention, the r value, especially r , s cannot be improved.
熱延後の巻取りは、560℃以下で行う。その理由は、
熱延中に固溶したAQNが、巻取り後の徐冷中に析出し
てしまうのを防ぐためである。従って、前記の温度範囲
で熱間圧延を仕上げた後は急速に冷却して、560℃以
下のできるだけ低温で巻取る。Winding after hot rolling is performed at 560°C or lower. The reason is,
This is to prevent AQN dissolved in solid solution during hot rolling from precipitating during slow cooling after winding. Therefore, after finishing hot rolling in the above temperature range, it is rapidly cooled and coiled at the lowest possible temperature of 560° C. or lower.
但し、コイラーの能力や冷却水の残留に起因するコイル
の発錆などの問題があり、現実的な巻取温度の下限は1
00℃程度となろう。However, there are problems with coiler capacity and coil rust caused by residual cooling water, so the lower limit of the realistic winding temperature is 1.
It will be around 00℃.
上記のようにして得られた熱延鋼板は、TiN析出の効
果によって微細な結晶粒をもち、しかもMNは殆ど固溶
した理想的な状態にある。これは、常法により脱スケー
ル等の処理をした後、次の冷延工程に送られる。The hot-rolled steel sheet obtained as described above has fine crystal grains due to the effect of TiN precipitation, and is in an ideal state in which most of the MN is dissolved in solid solution. This is subjected to treatments such as descaling using conventional methods, and then sent to the next cold rolling process.
冷間圧延は、圧下率65〜85%で行う、65%未満の
圧下率ではr、sの向上が小さい、一方、85%を超え
る圧下率を得ようとすると、熱延板を厚くしておかねば
ならず、熱延終了後の急冷効果が失われてr4Sの低下
を招く。Cold rolling is performed at a rolling reduction of 65 to 85%. If the rolling reduction is less than 65%, the improvement in r and s will be small. On the other hand, if you try to obtain a rolling reduction of more than 85%, the hot-rolled sheet must be made thicker. As a result, the quenching effect after hot rolling is lost, leading to a decrease in r4S.
連続焼鈍においては、最初の昇温速度と最高加熱温度を
厳格に管理しなければならない、ます昇温は、400℃
から700℃までの昇温を15〜300秒1で行う、こ
の条件は、再結晶の完了前にAINを十分に析出させる
ために必要なものである。即ち、400℃より低温では
実質的にAnの析出現象は起らず、700℃を超えると
再結晶が進行してしまうので、400〜700℃の間で
昇温速度を制御しなければならない、このうち、特に管
理が必要なのは冶金的には500〜650℃間である。In continuous annealing, the initial heating rate and maximum heating temperature must be strictly controlled.
This condition, in which the temperature is raised from 1 to 700° C. in 15 to 300 seconds, is necessary to sufficiently precipitate AIN before completion of recrystallization. That is, at a temperature lower than 400°C, substantially no precipitation of An occurs, and at a temperature exceeding 700°C, recrystallization proceeds, so the temperature increase rate must be controlled between 400 and 700°C. Among these, the temperature between 500 and 650°C requires particular control from a metallurgical point of view.
この温度範囲でAQN析出と再結晶の速度が大きいから
である。This is because the rate of AQN precipitation and recrystallization is high in this temperature range.
400℃から’700℃まで300℃昇温するのに15
秒未満という短時間では、昇温速度が余りに早すぎて再
結晶前のAfNの析出が十分に起こらない。一方、30
0秒を超えるような遅い加熱速度では連続焼鈍の特質で
ある生産性をI!4ってしまう。15 to raise the temperature by 300℃ from 400℃ to '700℃
In a short period of less than seconds, the temperature increase rate is too fast and sufficient precipitation of AfN before recrystallization does not occur. On the other hand, 30
At a slow heating rate of more than 0 seconds, the productivity, which is a characteristic of continuous annealing, is reduced to I! It ends up being 4.
上記の昇温条件は、言い換えると400℃から700℃
までを平均1〜20℃/秒で昇温するということである
。昇温が定速でなく、途中に1またはそれ以上の保持帯
のある段階的昇温を行うプロセスでも、400から70
0℃まで昇温するのに要する時間が15〜300秒であ
ればよい、たとえば、550℃まで2秒で急速加熱し、
550℃から600℃まで20秒かけて昇温し、次に6
00〜700℃を3.3秒で昇温すれば、400℃から
700℃までの平均昇温速度は上記の範囲に入る。実操
業上は、焼鈍炉の加熱帯入口温度と均熱帯入口温度を計
測し、適当な伝熱計算を行うことによって、上記の平均
昇温速度を管理することができる。In other words, the temperature increase conditions above are from 400℃ to 700℃
This means that the temperature is raised at an average rate of 1 to 20°C/sec. Even in processes where the temperature is not raised at a constant rate but in stages with one or more holding zones in the middle, the
The time required to raise the temperature to 0°C may be 15 to 300 seconds, for example, rapid heating to 550°C in 2 seconds,
Raise the temperature from 550℃ to 600℃ over 20 seconds, then 600℃.
If the temperature is raised from 00 to 700°C in 3.3 seconds, the average temperature increase rate from 400°C to 700°C falls within the above range. In actual operation, the above average temperature increase rate can be controlled by measuring the heating zone inlet temperature and soaking zone inlet temperature of the annealing furnace and performing appropriate heat transfer calculations.
焼鈍時の最高加熱温度は、再結晶が短時間に完了するよ
うに700℃以上とする。これより低いと部分的に未再
結晶粒が残ることがある。最高加熱温度が900℃を超
えるとオーステナイト相が出てr値が低下する。The maximum heating temperature during annealing is set to 700° C. or higher so that recrystallization is completed in a short time. If it is lower than this, some unrecrystallized grains may remain. When the maximum heating temperature exceeds 900°C, an austenite phase appears and the r value decreases.
最高加熱温度からの冷却条件は、特に制限されない、徐
冷、急冷いずれでもよく、又過時効処理を含Uヒートパ
ターンでもよい。The cooling conditions from the maximum heating temperature are not particularly limited, and may be slow cooling or rapid cooling, or may be a U heat pattern including overaging treatment.
焼鈍後の冷延鋼板にiI!質圧延や、メッキ等の表面処
理を施こすことも任意である。溶融亜鉛メッキや錫メッ
キを行う場合には、そのメツキライン内の焼鈍設備で前
述の条件で連続焼鈍を行えばよい。iI for cold rolled steel plate after annealing! It is also optional to perform surface treatments such as rough rolling and plating. When performing hot-dip galvanizing or tin plating, continuous annealing may be performed under the above-mentioned conditions using an annealing equipment within the plating line.
以下、実施例によって本発明の効果を具体的に説明する
。Hereinafter, the effects of the present invention will be specifically explained using Examples.
(実施例1)
C:0.0020%、Mn: 0.18%、5so1.
AQ: 0.082%、N: 0.0QT5%、Ti:
0.010%、P:0.015%、S: 0.004
%、残部Feの鋼の連続鋳造スラブを熱いまま(約95
0℃)で加熱炉に装入し、1150℃で1時間保持した
後、仕上温度910℃として3.2mm厚に熱間圧延し
た。熱延後、直ちに水冷し500℃で巻取って350℃
まで徐冷し、その後室温まで急冷した。(Example 1) C: 0.0020%, Mn: 0.18%, 5so1.
AQ: 0.082%, N: 0.0QT5%, Ti:
0.010%, P: 0.015%, S: 0.004
%, balance Fe, a continuously cast slab of steel is cast hot (approximately 95%
After charging into a heating furnace at 1150°C for 1 hour, it was hot-rolled to a thickness of 3.2 mm at a finishing temperature of 910°C. After hot rolling, it is immediately cooled with water, rolled up at 500°C, and then heated to 350°C.
and then rapidly cooled to room temperature.
上記熱延板を脱スケールし、圧下率75%で0.81厚
に冷延し、次いで第1′*に示す各種の条件で連続焼鈍
を行った。焼鈍後は平均30℃/秒で冷却し、常温で伸
び率0.5%の調質圧延を行し)、引張試験を実施した
。The hot-rolled sheet was descaled and cold-rolled to a thickness of 0.81 at a rolling reduction of 75%, and then continuously annealed under various conditions shown in Section 1'*. After annealing, the material was cooled at an average rate of 30° C./second, temper rolled at room temperature with an elongation rate of 0.5%), and a tensile test was conducted.
第1表に、上記の連続焼鈍の条件とともに得られた冷延
鋼板のr4sと、三方向のr値の平均値(P)を示す、
400〜700℃の昇温速度が大きすぎるA3、A5お
よびA7では、特にrasが低い、又最高加熱温度が低
い八8は、P、r4sとも極めて低し1゜一方、前述し
た本発明の条件を満たしてむ)るものでは、Psr4%
のいずれも大きく改善されU)る。Table 1 shows the r4s of the cold rolled steel sheet obtained with the above continuous annealing conditions and the average value (P) of the r values in three directions.
In A3, A5 and A7, where the temperature increase rate is too high from 400 to 700°C, ras is particularly low, and 88, which has a low maximum heating temperature, has extremely low P and r4s of 1°.On the other hand, under the conditions of the present invention described above, Psr 4% for those that meet
Both of these are greatly improved.
(実施例2)
第2表に、使用した鋼の組成と熱延、冷延の条件を示す
。スラブ加熱温度は全て1200℃、熱延板の厚さは3
.2’m鴎である。(Example 2) Table 2 shows the composition of the steel used and the hot rolling and cold rolling conditions. The heating temperature of all slabs is 1200℃, and the thickness of hot-rolled sheets is 3.
.. It is a 2'm seagull.
連続焼鈍の条件は、賦香B14を除いて全て昇温は8℃
/秒の定速加熱、400〜700℃を100秒で昇温、
最高加熱800℃×40秒、と一定にした。賦香B14
だけ20℃/秒の定速昇温、400〜Too℃を15秒
で昇温し、最高加熱は、他と同じり800℃×40秒と
した。The conditions for continuous annealing were a temperature increase of 8°C for all cases except for fragrance B14.
/second constant rate heating, 400-700℃ heating in 100 seconds,
The maximum heating was kept constant at 800°C x 40 seconds. Incense B14
The temperature was raised at a constant rate of 20°C/second, and the temperature was raised from 400°C to Too°C in 15 seconds, and the maximum heating was 800°C x 40 seconds as in the other cases.
焼鈍後は、伸び率0.5%の調質圧延を施し、引張試験
を行った。After annealing, skin pass rolling with an elongation rate of 0.5% was performed, and a tensile test was conducted.
試験結果を第2表に併記する。The test results are also listed in Table 2.
第2表の試験結果をみれば、製品鋼板の組成がF、r4
%に大きな影響を及ぼすことがわかる。即ち、Fsra
sがともに低いB4、B5、B6はC又はTiの含有量
が多すぎ、同じ<88はsol、AQO量が足りない、
熱延板の巻取温度が高すぎるB12もF、r4sが低い
。これらの鋼板の結晶粒を観察したところ、全て微細な
等軸位組織となっていた。Looking at the test results in Table 2, the composition of the product steel sheet is F, r4
%. That is, Fsra
B4, B5, and B6, which are all low in s, have too much C or Ti content, and the same <88 has insufficient sol and AQO content.
B12, in which the winding temperature of the hot rolled sheet is too high, also has low F and r4s. When the crystal grains of these steel sheets were observed, they all had a fine equiaxed structure.
なお、B7はNの含有量が多すぎるため伸びが小さり、
B9はT1含有量が少なすぎるためPは大きいがr4s
が小さい。さらにBI3は冷間圧延の圧下率が低いため
に’5rJsともや一不満足な値である。In addition, B7 has too much N content, so the elongation is small,
B9 has too little T1 content, so P is large but r4s
is small. Furthermore, BI3 has a low rolling reduction ratio in cold rolling, so it is an unsatisfactory value of '5rJs.
これに対比して、本発明の実施例に当る81〜B3.8
10.814では?が大きいだけでなく rssの向上
が著しい、これら本発明の実施例相当材の結晶構造は全
て展伸粒組織である。In contrast, 81 to B3.8 according to the embodiment of the present invention
What about 10.814? The crystal structures of these materials corresponding to the examples of the present invention, which not only have a large value but also show a remarkable improvement in rss, are all elongated grain structures.
本発明の方法によって、特にr4Sが向上するのは、次
のような理由によるものと考えられる。The reason why the method of the present invention particularly improves r4S is considered to be due to the following reasons.
即ち、微量のTIの添加と熱延条件の管理により、熱延
板の結晶粒径が小さくなり、その結果冷間圧延板におい
ては板面に平行な(1101を有する領域が減り、再結
晶後にrasを下げる(110 )方位粒の発達が減る
。それと重畳して、再結晶時に形成されるAQHの(1
10)方位粒発達抑制効果があり、これらの総合的な効
果によって再結晶焼鈍板中の(1101方位粒が従来の
鋼板より減少してr4Sが上昇し、結果としてfも高く
なるのである。In other words, by adding a small amount of TI and controlling the hot rolling conditions, the grain size of the hot rolled sheet becomes smaller, and as a result, in the cold rolled sheet, the area parallel to the sheet surface (1101) decreases, and after recrystallization, the grain size of the hot rolled sheet decreases. The development of (110) oriented grains that lower the ras decreases.
10) There is an effect of suppressing the development of oriented grains, and due to these comprehensive effects, the (1101 oriented grains in the recrystallized annealed sheet are reduced compared to conventional steel sheets, r4S is increased, and f is also increased as a result.
(発明の効果)
本発明によれば、連続焼鈍という高能率のプロセスを用
いながら、箱焼鈍材に匹敵する優れた加工性をもつ冷延
鋼板が提供される。特に、r4sが高い本発明の鋼板は
、使用時の成形加工工程の合理化と歩留りの向上に大き
く寄与する。(Effects of the Invention) According to the present invention, a cold rolled steel sheet is provided which has excellent workability comparable to box annealed material while using a highly efficient process of continuous annealing. In particular, the steel sheet of the present invention having a high r4s greatly contributes to streamlining the forming process during use and improving yield.
添付図は、本発明の鋼板におけるTiとNの含有量の適
正範囲を示すものである。The attached diagram shows the appropriate range of Ti and N content in the steel sheet of the present invention.
Claims (2)
03〜0.80%、sol.Al:0.04〜0.12
%、N:0.0050〜0.0120%、Ti:0.0
02〜0.025%、残部Feおよび不可避不純物から
成り、 Ti(%)≦〔N(%)−0.0030〕48/14で
ある加工性の優れた冷延鋼板。(1) In weight%, C: 0.0030% or less, Mn: 0.
03-0.80%, sol. Al: 0.04-0.12
%, N: 0.0050-0.0120%, Ti: 0.0
02 to 0.025%, the balance being Fe and unavoidable impurities, and having excellent workability in which Ti (%) ≦ [N (%) - 0.0030] 48/14.
03〜0.80%、sol.Al:0.04〜0.12
%、N:0.0050〜0.0120%、Ti:0.0
02〜0.025%、残部Feおよび不可避不純物から
成り、 Ti(%)≦〔N(%)−0.0030〕48/14で
ある鋼の連続鋳造スラブを仕上温度700〜970℃で
熱間圧延して560℃以下の温度で巻取り、圧下率65
〜85%で冷間圧延した後、400℃から700℃まで
の昇温時間15〜300秒、最高加熱温度700〜90
0℃の条件で連続焼鈍することを特徴とする加工性の優
れた冷延鋼板の製造方法。(2) In weight%, C: 0.0030% or less, Mn: 0.
03-0.80%, sol. Al: 0.04-0.12
%, N: 0.0050-0.0120%, Ti: 0.0
A continuously cast slab of steel, consisting of 02 to 0.025%, the balance Fe and unavoidable impurities, with Ti (%) ≦ [N (%) - 0.0030] 48/14, is hot-cast at a finishing temperature of 700 to 970 °C. Rolled and coiled at a temperature of 560°C or less, reduction rate 65
After cold rolling at ~85%, heating time from 400℃ to 700℃ 15-300 seconds, maximum heating temperature 700-90℃
A method for producing a cold-rolled steel sheet with excellent workability, characterized by continuous annealing at 0°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7119987A JPS63238241A (en) | 1987-03-25 | 1987-03-25 | Cold-rolled steel sheet excellent in workability and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7119987A JPS63238241A (en) | 1987-03-25 | 1987-03-25 | Cold-rolled steel sheet excellent in workability and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63238241A true JPS63238241A (en) | 1988-10-04 |
JPH0586461B2 JPH0586461B2 (en) | 1993-12-13 |
Family
ID=13453762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7119987A Granted JPS63238241A (en) | 1987-03-25 | 1987-03-25 | Cold-rolled steel sheet excellent in workability and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63238241A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005273008A (en) * | 2004-02-25 | 2005-10-06 | Jfe Steel Kk | High strength cold rolled steel sheet having excellent deep drawability and method for manufacturing the same |
-
1987
- 1987-03-25 JP JP7119987A patent/JPS63238241A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005273008A (en) * | 2004-02-25 | 2005-10-06 | Jfe Steel Kk | High strength cold rolled steel sheet having excellent deep drawability and method for manufacturing the same |
JP4613618B2 (en) * | 2004-02-25 | 2011-01-19 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0586461B2 (en) | 1993-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58144430A (en) | Manufacture of cold-rolled steel sheet excellent in press-workability | |
JPS61133322A (en) | Production of thin steel sheet having excellent formability | |
JPS63238241A (en) | Cold-rolled steel sheet excellent in workability and its production | |
JPS5913030A (en) | Manufacture of cold rolled al killed steel plate with superior deep drawability | |
JPH0681045A (en) | Production of cold rolled steel sheet excellent in workability and baking hardenability | |
JPS593528B2 (en) | Manufacturing method of galvanized steel sheet for deep drawing with excellent formability | |
JPS5974237A (en) | Production of galvanized steel sheet for deep drawing having excellent formability | |
JPS5831035A (en) | Production of zinc hot dipped steel plate having excellent workability and baking hardenability | |
JPS59123720A (en) | Production of cold rolled steel sheet for deep drawing | |
JPS61264136A (en) | Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy | |
JPH01177321A (en) | Manufacture of cold rolled steel sheet excellent in deep drawability | |
JPS6323248B2 (en) | ||
JPH03267314A (en) | Production of hot rolled high tensile strength steel plate excellent in workability | |
JPS6362822A (en) | Production of cold rolled steel sheet for deep drawing | |
JPS6067627A (en) | Preparation of steel plate for soft surface treatment excellent in fluting resistance by continuous annealing | |
JPH01188627A (en) | Manufacture of cold rolled steel sheet having superior burning hardenability and press formability | |
JPH01177322A (en) | Manufacture of cold rolled steel sheet extremely excellent in deep drawability | |
JPS6119739A (en) | Preparation of high tensile steel plate having good drawing property by continuous annealing | |
JPS6075519A (en) | Manufacture of cold rolled steel sheet for continuous annealing | |
JPS58130224A (en) | Manufacture of aluminum killed cold rolled steel plate which is excellent in deep drawing property | |
JPS6338525A (en) | Manufacture of cold-rolled steel sheet excellent in press formability | |
JPS61261435A (en) | Production of thin steel sheet for working having excellent ridging resistance and tensile rigidity | |
JPS61204336A (en) | Manufacture of steel sheet for working having superior ridging resistance | |
JPH06158176A (en) | Production of cold rolled steel sheet excellent in press formability | |
JPH0853736A (en) | Thin steel sheet for deep drawing and its production |