JPH0133962B2 - - Google Patents

Info

Publication number
JPH0133962B2
JPH0133962B2 JP58076092A JP7609283A JPH0133962B2 JP H0133962 B2 JPH0133962 B2 JP H0133962B2 JP 58076092 A JP58076092 A JP 58076092A JP 7609283 A JP7609283 A JP 7609283A JP H0133962 B2 JPH0133962 B2 JP H0133962B2
Authority
JP
Japan
Prior art keywords
dielectric resonator
weight
glass
dielectric
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58076092A
Other languages
Japanese (ja)
Other versions
JPS59202701A (en
Inventor
Makoto Ogawa
Hiromitsu Tagi
Toshiharu Noguchi
Shinichiro Ito
Kazuhiro Eguchi
Yoshihiko Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7609283A priority Critical patent/JPS59202701A/en
Publication of JPS59202701A publication Critical patent/JPS59202701A/en
Publication of JPH0133962B2 publication Critical patent/JPH0133962B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、支持台構造の誘電体共振器に関する
ものである。 [従来例の構成とその問題点] 最近、マイクロ波領域における高周波特性のす
ぐれた材料が開発され、従来の導波管を用いた共
振器から、誘電体を用いた共振器が利用されるよ
うになつてきている。これらマイクロ波領域で
は、誘電体材料の特性が非常にすぐれていても、
材料を製品とした時に、加工方法によつては充分
に材料の特性を引き出すことができず、却つて特
性を悪くすることもあつた。例えば、金属導体を
付与しないTEモードを利用した誘電体共振器に
おいては、金属壁からの影響を避けるために、誘
電体共振器本体を支持台に接合して用いるが、こ
の接合方法によつては、却つて特性を悪化させる
ものであつた。例えば従来、接着剤として、熱硬
化性樹脂、或いはシアノアクリレート系の瞬間接
着剤等が用いられているが、これらは誘電体の特
性を悪化させるものであり、実用上好ましくない
ものであつた。 [発明の目的] 本発明は、このような支持台構造の誘電体共振
器において、誘電体の特性を損わずに誘電体共振
器本体とその支持台との接合を行なうことを目的
とするものである。 [発明の構成] この目的を達成するために、本発明は、熱膨張
係数95×10-7〜120×10-7-1の誘電体共振器本
体と熱膨張係数90×10-7〜125×10-7-1のその
支持台との接合部を、SiO20.5〜20重量%、
B2O35〜20重量%、PbF5〜30重量%、PbO50〜
80重量%、Bi2O31〜5重量%の組成範囲で厚さ
が10μm〜100μmのホウケイ酸鉛ガラスで接着す
ることを特徴とするものである。 本発明によれば、従来の接着方式では、無負荷
Qが70%近くまで低下するものが100%近くまで、
誘電体の材料自身の特性に近づけることができる
と共に、熱硬化性樹脂、シアノアクリレート系の
瞬間接着剤の接着方式に比べ、耐溶剤性、耐シヨ
ツク性能が一段と向上し、環境試験、寿命試験に
おいて、すぐれた特性が得られ、工業的に価値の
あるマイクロ波用誘電体共振器を提供することが
できる。 SiO2成分が0.5重量%未満では、ガラス化がし
難くなり接着性を悪くし、20重量%を越えると熱
膨張係数が小さくなると共に、誘電体共振器との
熱膨張係数の差があり、熱応力歪が発生し接着強
度が極端に悪くなる。 B2O3成分が5重量%未満では、ガラス化がし
難くなり、接着強度の低下を起こし、20重量%を
越えると、B2O3成分が結晶化を起こし、全体と
しての接着強度を低下すると共に、無負荷Qを低
下させる。 PbF成分が5重量%未満では、ガラスの結合が
弱くなると共に、機械強度が弱くなり、30重量%
を越えると、ガラスの損失が大きくなると共に無
負荷Qが悪くなる。 PbO成分が50重量%未満では、ガラスの融点が
高くなると共ににガラスの均質性が悪くなり、無
負荷Qが悪化し、80重量%を越えると、熱膨張係
数が大きく、熱応力歪により支持台との接着強度
が悪くなる。 Bi2O3成分が1重量%未満では、グレージング
(glazing)時の共振器本体への濡れ性が悪くなる
とともに、無負荷Qが悪化し、5重量%を越える
と、却つてガラス自体の損失が増大し無負荷Qを
悪化させる。 また、誘電体共振器本体とその支持台との接合
において、ホウケイ酸鉛ガラスを10μm〜100μm
にてグレージングする理由は、10μm未満では、
充分な接着強度が得られず、機械的シヨツクに対
して弱く、100μmを越えると、ガラス相が増え
ることによつて無負荷Qが抵下するからである。 [実施例の説明] 以下、本発明の一実施例を説明する。 ガラスの調合には純度99%の工業薬品を用い、
それぞれ、第1表に示す組成比で調合を行なつ
た。これを白金ルツボにて1000℃で溶解させた
後、冷却し、粉砕して、ガラス微粉末とした。得
られた粉末に、ビヒクル及び溶剤を加え、ペース
ト状にし、これを支持台の端面にペースト塗布し
た。この支持台に誘電体共振器本体を接着し、箱
型電気炉を用いて、500〜800℃の温度で20分間保
持して、誘電体共振器と支持台とをガラス接着し
た。添付図面はこの状態を簡略化して示したもの
である。添付図面において1は誘電体共振器本
体、2はガラス接合部、3は支持台、4は銀電極
である。銀電極4はマイクロ波回路への装着を容
易にするための支持台3の端面に塗布、焼付した
もので、これにより、金属容器、MIC基板等へ
のハンダ接着が可能となる。 誘電体共振器本体は、BaO−ZnO−Ta2O5
Nb2O5系磁器で、熱膨張係数95×10-7〜120×
10-7-1の材料を用い、外径(D)と厚み(L)はL=
(0.3〜0.5)×Dの範囲になるよう素子の加工を行
ない、試料とした。 支持台は熱膨張係数90×10-7〜125×10-7-1
のMgO−SiO2系の磁器材料を用いた。 尚、グレージング後のガラス相の種類を区別す
るために、色調剤として、無負荷Q値等、電気特
性に影響しない量のCuO、TiO2、ZnOを添加し
た。 得られた共振器についてそれぞれ無負荷Q及び
引張り強度の測定を行なつた。無負荷Q値の測定
は、測定周波数6GHz及び10GHzにてTEモードの
共振器として動作させることによつて行なつた。
引張り強度については、接合部に対して垂直方向
に引張り応力をかけ、引張り試験機にて試験を行
なつた。それらの結果を第1表に示す。この表に
おいて、本発明の実施例は、試料番号2〜4、7
〜9、12〜14、17〜19、22〜24、27〜29であり、
その他は比較例である。 次に試料番号3の試料を用いて、無負荷Q値及
び引張り強度値について、従来の接着方式との比
較検討を行なつた。熱硬化性樹脂としてはエポキ
シ樹脂を用い、無機接着剤としてはアロンセラミ
ツク(登録商標)を用い、シアノアクリレート系
瞬間接着剤としてはアロンアルフア(登録商標)
を用いた。その結果を第2表に示す。
[Industrial Field of Application] The present invention relates to a dielectric resonator having a support structure. [Conventional configurations and their problems] Recently, materials with excellent high frequency characteristics in the microwave region have been developed, and resonators using dielectric materials are being used instead of conventional waveguide resonators. I'm getting used to it. In these microwave regions, even if the properties of dielectric materials are excellent,
When a material is made into a product, depending on the processing method, it may not be possible to fully bring out the characteristics of the material, and in some cases, the characteristics may even deteriorate. For example, in a dielectric resonator using the TE mode without a metal conductor, the dielectric resonator body is bonded to a support base to avoid the influence from the metal wall, but this bonding method On the contrary, it worsened the characteristics. For example, thermosetting resins, cyanoacrylate-based instant adhesives, and the like have conventionally been used as adhesives, but these deteriorate the properties of the dielectric and are not preferred in practice. [Object of the Invention] An object of the present invention is to bond the dielectric resonator main body and its support base in a dielectric resonator having such a support structure without impairing the properties of the dielectric material. It is something. [Configuration of the Invention] To achieve this object, the present invention provides a dielectric resonator body with a thermal expansion coefficient of 95×10 -7 to 120×10 -7 °C -1 and a thermal expansion coefficient of 90×10 -7 to SiO 2 0.5-20% by weight, the joint with its support base at 125 × 10 -7 °C -1
B2O3 5~20wt%, PbF5 ~ 30wt%, PbO50~
It is characterized by bonding with lead borosilicate glass having a composition range of 80% by weight and 1 to 5% by weight of Bi 2 O 3 and a thickness of 10 μm to 100 μm. According to the present invention, in the conventional adhesive method, the no-load Q decreases from nearly 70% to nearly 100%.
In addition to being able to approximate the properties of the dielectric material itself, it has much improved solvent resistance and shock resistance compared to bonding methods using thermosetting resins and cyanoacrylate-based instant adhesives, and has improved in environmental tests and life tests. , it is possible to provide a dielectric resonator for microwaves which has excellent characteristics and is industrially valuable. If the SiO 2 component is less than 0.5% by weight, it will be difficult to vitrify and the adhesion will be poor, and if it exceeds 20% by weight, the thermal expansion coefficient will be small and there will be a difference in the thermal expansion coefficient with the dielectric resonator. Thermal stress distortion occurs and the adhesive strength becomes extremely poor. If the B 2 O 3 component is less than 5% by weight, it will be difficult to vitrify, resulting in a decrease in adhesive strength, and if it exceeds 20% by weight, the B 2 O 3 component will crystallize, reducing the overall adhesive strength. At the same time, the no-load Q is lowered. If the PbF component is less than 5% by weight, the glass bond will be weak and the mechanical strength will be weak.
If it exceeds , the loss of the glass increases and the no-load Q deteriorates. If the PbO content is less than 50% by weight, the melting point of the glass will increase and the homogeneity of the glass will deteriorate, resulting in poor unloaded Q. If it exceeds 80% by weight, the thermal expansion coefficient will be large and the support will be affected by thermal stress strain. The adhesive strength with the stand will deteriorate. If the Bi 2 O 3 component is less than 1% by weight, the wettability of the resonator body during glazing will be poor and the no-load Q will be deteriorated, and if it exceeds 5% by weight, there will be a loss in the glass itself. increases, worsening the no-load Q. In addition, in joining the dielectric resonator main body and its support base, we added borosilicate lead glass with a thickness of 10 μm to 100 μm.
The reason for glazing is that if the thickness is less than 10 μm,
This is because sufficient adhesive strength cannot be obtained and it is weak against mechanical shock, and if it exceeds 100 μm, the unloaded Q will decrease due to the increase in the glass phase. [Description of Example] Hereinafter, an example of the present invention will be described. We use 99% pure industrial chemicals to prepare the glass.
Each was prepared according to the composition ratio shown in Table 1. This was melted at 1000°C in a platinum crucible, cooled, and crushed to obtain fine glass powder. A vehicle and a solvent were added to the obtained powder to form a paste, and the paste was applied to the end surface of the support. The dielectric resonator main body was adhered to this support base, and the dielectric resonator and support base were bonded to glass by holding at a temperature of 500 to 800° C. for 20 minutes using a box electric furnace. The accompanying drawings show this state in a simplified manner. In the accompanying drawings, 1 is a dielectric resonator main body, 2 is a glass joint, 3 is a support base, and 4 is a silver electrode. The silver electrode 4 is coated and baked on the end face of the support base 3 to facilitate attachment to a microwave circuit, and thereby enables solder bonding to a metal container, MIC board, etc. The dielectric resonator body is BaO−ZnO−Ta 2 O 5
Nb 2 O 5 based porcelain, thermal expansion coefficient 95×10 -7 ~ 120×
Using a material with a temperature of 10 -7-1 , the outer diameter (D) and thickness (L) are L =
The device was processed to have a value in the range of (0.3 to 0.5)×D and used as a sample. The support base has a thermal expansion coefficient of 90×10 -7 to 125×10 -7-1
A MgO-SiO 2 based porcelain material was used. In order to distinguish the type of glass phase after glazing, CuO, TiO 2 , and ZnO were added as color toning agents in amounts that did not affect the electrical properties such as the no-load Q value. The no-load Q and tensile strength of each of the obtained resonators were measured. The no-load Q value was measured by operating it as a TE mode resonator at measurement frequencies of 6 GHz and 10 GHz.
The tensile strength was tested using a tensile tester by applying tensile stress in the vertical direction to the joint. The results are shown in Table 1. In this table, the examples of the present invention are sample numbers 2 to 4 and 7.
~9, 12-14, 17-19, 22-24, 27-29,
The others are comparative examples. Next, using sample No. 3, a comparative study was conducted with respect to the no-load Q value and tensile strength value with the conventional adhesive method. Epoxy resin is used as the thermosetting resin, Aron Ceramic (registered trademark) is used as the inorganic adhesive, and Aron Alpha (registered trademark) is used as the cyanoacrylate instant adhesive.
was used. The results are shown in Table 2.

【表】【table】

【表】 次に、誘電体共振器本体、支持台、ホウケイ酸
鉛ガラスについて、それぞれの熱膨張係数の差
が、誘電体共振器本体と支持台との接着強度に与
える影響を、接合部に対して垂直方向に引張り応
力をかけ、引張り試験機にて試験を行なつた。結
果を第3表に示す。第3表において本発明の実施
例は、試料番号2〜4、7〜9、12〜14であり、
その他は比較例である。
[Table] Next, we will examine the effect that the difference in thermal expansion coefficients of the dielectric resonator body, support base, and lead borosilicate glass have on the adhesive strength between the dielectric resonator body and support base at the joint. A tensile stress was applied in the vertical direction, and a test was conducted using a tensile tester. The results are shown in Table 3. In Table 3, the examples of the present invention are sample numbers 2 to 4, 7 to 9, and 12 to 14,
The others are comparative examples.

【表】【table】

【表】 第1表、第2表および第3表より明らかなよう
に、本発明の範囲内のガラスで誘電体共振器本体
と支持台とを接着することにより初めて無負荷Q
が高く且つ接着強度が実用充分な値を有する誘電
体共振器を提供し得るものである。また、この効
果は上述のTEモードの共振器に限られるもので
はなく、それ以外のモードで支持台構造を有する
誘電体共振器においても得られることは云うまで
もない。 尚、本発明におけるガラス組成物以外のガラ
ス、例えばホウケイ酸ガラス等のガラスにて検討
を行なつたが、電気特性、機械強度等の面で充分
なる値を得ることが出来ず、本発明のガラスを用
いることで初めて上記効果が得られた。 以上のように、本発明によれば、無負荷Qが高
く且つ接着強度が大きいマイクロ波用誘電体共振
器が得られ、マイクロ波領域における各種フイル
ター等のデバイスへの応用が期待できるものであ
る。
[Table] As is clear from Tables 1, 2, and 3, no-load Q
Accordingly, it is possible to provide a dielectric resonator having a high adhesive strength and a practically sufficient adhesive strength. Furthermore, it goes without saying that this effect is not limited to the above-mentioned TE mode resonator, but can also be obtained in dielectric resonators having a support structure in other modes. Although studies were conducted using glasses other than the glass composition of the present invention, such as borosilicate glass, it was not possible to obtain sufficient values in terms of electrical properties, mechanical strength, etc. The above effect was achieved for the first time by using glass. As described above, according to the present invention, a dielectric resonator for microwaves with a high no-load Q and high adhesive strength can be obtained, and can be expected to be applied to devices such as various filters in the microwave region. .

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明による誘導体共振器の一実施
例の簡略化した構造を示す側面図である。 1……誘電体共振器本体、2……ガラス接合
部、3……支持台、4……銀電極。
The accompanying drawing is a side view showing a simplified structure of an embodiment of a dielectric resonator according to the invention. 1... Dielectric resonator main body, 2... Glass joint, 3... Support base, 4... Silver electrode.

Claims (1)

【特許請求の範囲】 1 熱膨張係数95×10-7〜120×10-7-1の誘電
体共振器本体と熱膨張係数90×10-7〜125×10-7
-1のその支持台との接合部が、SiO20.5〜20重
量%、B2O35〜20重量%、PbF5〜30重量%、
PbO50〜80重量%、Bi2O31〜5重量%の組成範
囲で厚さが10μm〜100μmのホウケイ酸鉛ガラス
からなることを特徴とする誘電体共振器。 2 誘電体共振器本体がBaO−ZnO−Ta2O5
Nb2O5系磁器誘電体を用いて構成されている特許
請求の範囲第1項に記載の誘電体共振器。
[Claims] 1. A dielectric resonator body with a thermal expansion coefficient of 95×10 -7 to 120×10 -7 °C -1 and a thermal expansion coefficient of 90×10 -7 to 125×10 -7
The joint with its support at ℃ -1 contains 0.5-20% by weight of SiO2 , 5-20% by weight of B2O3 , 5-30% by weight of PbF,
A dielectric resonator comprising lead borosilicate glass having a composition of 50 to 80% by weight of PbO and 1 to 5% by weight of Bi 2 O 3 and a thickness of 10 μm to 100 μm. 2 The dielectric resonator body is BaO−ZnO−Ta 2 O 5
The dielectric resonator according to claim 1, which is constructed using an Nb 2 O 5 based ceramic dielectric.
JP7609283A 1983-05-02 1983-05-02 Dielectric resonator Granted JPS59202701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7609283A JPS59202701A (en) 1983-05-02 1983-05-02 Dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7609283A JPS59202701A (en) 1983-05-02 1983-05-02 Dielectric resonator

Publications (2)

Publication Number Publication Date
JPS59202701A JPS59202701A (en) 1984-11-16
JPH0133962B2 true JPH0133962B2 (en) 1989-07-17

Family

ID=13595195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7609283A Granted JPS59202701A (en) 1983-05-02 1983-05-02 Dielectric resonator

Country Status (1)

Country Link
JP (1) JPS59202701A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121906U (en) * 1987-02-02 1988-08-08
JPH02133005U (en) * 1989-04-11 1990-11-05
JPH03166810A (en) * 1989-11-27 1991-07-18 Mitsubishi Materials Corp Delay line
JPH0828613B2 (en) * 1990-09-26 1996-03-21 松下電器産業株式会社 Dielectric resonator
US7057480B2 (en) 2002-09-17 2006-06-06 M/A-Com, Inc. Cross-coupled dielectric resonator circuit
US20050200437A1 (en) 2004-03-12 2005-09-15 M/A-Com, Inc. Method and mechanism for tuning dielectric resonator circuits
US7088203B2 (en) 2004-04-27 2006-08-08 M/A-Com, Inc. Slotted dielectric resonators and circuits with slotted dielectric resonators
US7388457B2 (en) 2005-01-20 2008-06-17 M/A-Com, Inc. Dielectric resonator with variable diameter through hole and filter with such dielectric resonators
US7583164B2 (en) 2005-09-27 2009-09-01 Kristi Dhimiter Pance Dielectric resonators with axial gaps and circuits with such dielectric resonators
US7352264B2 (en) 2005-10-24 2008-04-01 M/A-Com, Inc. Electronically tunable dielectric resonator circuits
US7705694B2 (en) 2006-01-12 2010-04-27 Cobham Defense Electronic Systems Corporation Rotatable elliptical dielectric resonators and circuits with such dielectric resonators
US7719391B2 (en) 2006-06-21 2010-05-18 Cobham Defense Electronic Systems Corporation Dielectric resonator circuits
US7456712B1 (en) 2007-05-02 2008-11-25 Cobham Defense Electronics Corporation Cross coupling tuning apparatus for dielectric resonator circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721101A (en) * 1980-07-14 1982-02-03 Murata Mfg Co Ltd Electronic device using porcelain dielectric substance resonator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721101A (en) * 1980-07-14 1982-02-03 Murata Mfg Co Ltd Electronic device using porcelain dielectric substance resonator

Also Published As

Publication number Publication date
JPS59202701A (en) 1984-11-16

Similar Documents

Publication Publication Date Title
JPH0133962B2 (en)
KR960015147B1 (en) Glass-ceramic composite and flat package-type piezoelectric parts using the composite
JPH07161223A (en) Conductive paste and multilayer ceramic capacitor
US20010016252A1 (en) Conductive paste and ceramic electronic device using the same
JPH06349314A (en) Conductive paste
US3946290A (en) High tension ceramic condenser
US4906514A (en) Metallized substrate for electronic device
US3350341A (en) Silver compositions containing novel vitreous binders and a vehicle
US3912525A (en) Lithiomzinc borosilicate glass sealing material
US2863782A (en) Low-melting high-expansion glass
US5814571A (en) Dielectric paste and thick-film capacitor using same
JP2003077336A (en) Conductive paste and laminated ceramic capacitor using the same
JPH09180541A (en) Conductive paste, conductive body using it, and ceramic substrate
JPH01252548A (en) Glass ceramic composition
JPH08315634A (en) Conductive paste and ceramic electronic component using it
US3544330A (en) Glasses and capacitor dielectric compositions made therefrom
JPH01179741A (en) Glass-ceramic composition
US4927711A (en) Hybrid circuits and thick film dielectrics used therein
US3437892A (en) Capacitor dielectric compositions and capacitors made therefrom
CN112262112B (en) Sealing material
JP2001297628A (en) Electrically conductive paste and ceramic electronic component
US6096979A (en) Terminal assembly and method of forming terminal assembly
CN113336546B (en) Integrated piezoelectric ceramic spherical shell and processing method thereof
US6007900A (en) Dielectric paste and thick-film capacitor using same
US3469161A (en) Capacitors employing lead silico-borate glass compositions