JPH0133667B2 - - Google Patents

Info

Publication number
JPH0133667B2
JPH0133667B2 JP58103787A JP10378783A JPH0133667B2 JP H0133667 B2 JPH0133667 B2 JP H0133667B2 JP 58103787 A JP58103787 A JP 58103787A JP 10378783 A JP10378783 A JP 10378783A JP H0133667 B2 JPH0133667 B2 JP H0133667B2
Authority
JP
Japan
Prior art keywords
nozzle
deflector
pelton
turbine
deflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58103787A
Other languages
Japanese (ja)
Other versions
JPS59229061A (en
Inventor
Yoshuki Niikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58103787A priority Critical patent/JPS59229061A/en
Publication of JPS59229061A publication Critical patent/JPS59229061A/en
Publication of JPH0133667B2 publication Critical patent/JPH0133667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/20Controlling by varying liquid flow specially adapted for turbines with jets of high-velocity liquid impinging on bladed or like rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)
  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、ペルトン水車の制御方法に関し、
特にペルトン水車を備える水力発電所において、
系統故障などで発電を停止した際、ニードル全開
のままデフレクタのみの操作で水車の運転を止め
て自然放流させ、その後系統との再並列投入時に
この自然放流流量を変化させることなく系統との
並列を可能にするペルトン水車の制御方法に関す
る。
The present invention relates to a method for controlling a Pelton turbine,
Especially in hydroelectric power plants equipped with Pelton turbines,
When power generation is stopped due to a system failure, etc., the operation of the turbine is stopped by operating only the deflector with the needle fully open, allowing natural discharge, and then when re-paralleling with the grid, the natural discharge flow rate can be paralleled without changing. This paper relates to a control method for a Pelton turbine that enables the following.

【従来の技術】[Conventional technology]

一般にペルトン水車は200〜1800mの高落差地
点に適用される衝動水車であり、中容量機以下は
横軸形、大容量機には立軸形が用いられている。
第1図に示す横軸形ペルトン水車によつてその概
要を説明すると、水圧鉄管10からの圧力水は入
口曲管11a,11bで二つのノズル1,2に分
配されそれぞれのノズル1,2で加速され高速の
ジエツト12a,12bとなつてバケツト5aに
水動力を加えて仕事をした後下部放水路14に排
出される。それぞれのノズル1,2内のニードル
1a,2aは通常運転時はそれぞれが備えるサー
ボモータ1c,2cによつて負荷に応じて開閉さ
れその流量を調整する。それぞれのノズル1,2
とランナ5との間にはデフレクタ1a,2bが前
記ノズルに軸支され回動自在に設けられ、負荷が
急激に減少したときにサーボモータ6によりリン
ク機構7を介してそれぞれのデフレクタ1b,2
bが連動して同時に回動されジエツトの方向を一
時バケツト5aの方向からそらせて、その間にそ
れぞれのニードル1a,2aを徐々に閉じて水圧
管内の回転数が増大するのを抑制している。 また、デフレクタ1b,2bを全開することに
よりジエツト12a,12bの方向がバケツト5
aから完全にそれランナ5の回転は停止するがこ
の水車を止めた状態でも放流は継続することがで
きる。またペルトン水車はフランシス水車などに
比べて、負荷に応じてノズルから噴流するジエツ
トの数を増減して運転できるので部分負荷効率が
高く、さらに、ランナの点検や取り替えが容易
で、機構が簡単であるから土砂などによる摩耗腐
食部品のとりかえがたやすく、加えて、デフレク
タおよびジエツトブレーキの採用により、速度上
昇、水圧上昇値が小さい等の利点がある。 上記のようにこの種のペルトン水車の制御方法
としてデフレクタを用いることが知られている
が、従来においては第2図にその制御方法に用い
られるペルトン水車の要部を示すように、複数
(この従来例の場合4個であるが)のノズル1,
2,3,4が備えるそれぞれのデフレクタ1b,
2b,3b,4bをリンク機構7を介して連動さ
せそれぞれのデフレクタ1b,2b,3b,4b
に共通に設けられた1個のサーボモータ6でこれ
らのデフレクタを制御し装置の簡略化とデフレク
タ回動時各ノズルからのジエツトがバケツトに与
える水動力のバランス化をはかつている。そのた
めこのような方法では並列解除後の水車停止から
定格回転数まで増速させて系統に再並列投入する
ためには、周知のように各ノズルをそれぞれのサ
ーボモータ1c,2c,3c,4cを駆動してニ
ードル1a,2a,3a,4aで絞り一旦全閉に
して、その後起動開度まで各ニードルと各デフレ
クタを開動作して増速していき、さらに各ニード
ルと各デフレクタを閉動作して水車回転数が定格
回転数n0になつた時点で系統と再並列投入を行つ
ている。この制御ダイヤグラムを第3図に示す。
Generally, Pelton turbines are impulse turbines that are used at high head sites of 200 to 1,800 m, and horizontal shaft types are used for medium-capacity machines and smaller, and vertical shaft types are used for large-capacity machines.
To explain the outline using the horizontal axis type Pelton turbine shown in Fig. 1, pressurized water from a penstock 10 is distributed to two nozzles 1 and 2 by an inlet curved pipe 11a and 11b. The jets are accelerated and become high-speed jets 12a and 12b, which apply water power to the bucket 5a to perform work and are then discharged into the lower discharge channel 14. During normal operation, the needles 1a and 2a in the respective nozzles 1 and 2 are opened and closed according to the load by their respective servo motors 1c and 2c to adjust their flow rates. Each nozzle 1, 2
Deflectors 1a and 2b are rotatably provided between the nozzle and the runner 5, and when the load suddenly decreases, a servo motor 6 moves the deflectors 1b and 2b through a link mechanism 7.
b are interlocked and rotated at the same time to temporarily divert the direction of the jet from the direction of the bucket cart 5a, during which time each needle 1a, 2a is gradually closed to suppress an increase in the number of revolutions in the penstock. Further, by fully opening the deflectors 1b and 2b, the direction of the jets 12a and 12b is changed to the direction of the bucket jet 5.
Although the rotation of the runner 5 completely stops from a, the water discharge can continue even when the water wheel is stopped. In addition, compared to Francis turbines, Pelton turbines can be operated by increasing or decreasing the number of jets jetted from the nozzle depending on the load, so they have high partial load efficiency.Furthermore, the runners are easy to inspect and replace, and the mechanism is simple. Because of this, it is easy to replace parts that are worn out and corroded by earth and sand, and in addition, the use of deflectors and jet brakes has advantages such as a small increase in speed and water pressure. As mentioned above, it is known to use a deflector as a control method for this type of Pelton turbine, but in the past, as shown in Figure 2, which shows the main parts of a Pelton turbine used in this control method, a plurality of deflectors (such as In the conventional example, there are four nozzles 1,
2, 3, and 4 have respective deflectors 1b,
2b, 3b, 4b are interlocked via a link mechanism 7 to form respective deflectors 1b, 2b, 3b, 4b.
These deflectors are controlled by a single servo motor 6 provided in common to both, thereby simplifying the device and balancing the water power applied to the bucket by the jet from each nozzle when the deflector is rotated. Therefore, in this method, in order to increase the speed of the water turbine from stopping to the rated rotation speed after paralleling is canceled and re-paralleling the water turbine to the grid, as is well known, each nozzle must be operated by the respective servo motors 1c, 2c, 3c, and 4c. Drive the needles 1a, 2a, 3a, and 4a to fully close the aperture, then open each needle and each deflector to the starting opening to increase speed, and then close each needle and each deflector. When the turbine rotation speed reaches the rated rotation speed n 0 , parallel connection to the grid is performed again. This control diagram is shown in FIG.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来のような制御方法では各ノズルで絞るとい
う操作があるため、水路内の流量変化が避けられ
なかつた。そのためこの種のペルトン水車の制御
方法による水力発電所において系統故障等で発電
不可になり水路系の放流流量を確保すべくデフレ
クタのみの操作で自然放流を継続しても、その後
水車を起動し系統と再並列投入を行う際、放流流
量が変化するという欠点がある。また、その対策
として従来は土木設備として放流流量が維持でき
る余水路を、さらには流量変化による水圧鉄管の
水圧上昇を押さえるために、サーボタンクを設け
る必要があるといつたことからその設備に多額の
費用を要するという欠点があつた。 この発明は、系統故障等で発電を停止しても水
路流量を変化させることなく、系統との再並列投
入ができ、土木設備として設けられていた余水路
やサーボタンクを省略し、さらに、流量変化によ
つて生じる水圧上昇をなくして水圧鉄管も廉価な
ものにするような制御方法を提供することを目的
とする。
Conventional control methods involve throttling each nozzle, so changes in the flow rate in the waterway are unavoidable. Therefore, even if a hydroelectric power plant using this type of Pelton turbine control method becomes unable to generate power due to a system failure or the like and continues natural discharge by operating only the deflector to ensure the discharge flow rate of the waterway system, the turbine is then started and the system is connected to the system. There is a drawback that the discharge flow rate changes when re-parallel injection is performed. In addition, as a countermeasure, it was necessary to install a spillway as a civil engineering facility to maintain the discharge flow rate, and also to install a servo tank in order to suppress the increase in water pressure in the penstock due to changes in flow rate, so it was necessary to install a servo tank. The disadvantage was that it required additional costs. This invention enables re-parallel input to the grid without changing the waterway flow rate even if power generation is stopped due to a system failure, etc., eliminates the spillway and servo tank provided as civil engineering equipment, and further improves the flow rate. It is an object of the present invention to provide a control method that eliminates increases in water pressure caused by changes and that makes penstocks inexpensive.

【課題を解決するための手段】[Means to solve the problem]

上記目的はこの発明によれば、進退自在なニー
ドル、このニードルの進退で開閉される複数のノ
ズル、このノズルから噴流するジエツトをバケツ
トに受けその衝動で回転するらランナ、このラン
ナとそれぞれのノズルとの間で前記ノズルに軸支
されその回転によりジエツトの方向をランナから
そらすデフレクタを備えるペルトン水車におい
て、前記ノズルの少なくとも1つにこのノズルが
備えるデフレクタを他のデフレクタとは分離して
駆動する手段を設け、前記ペルトン水車に連接す
る発電機と系統との並列解除後の再並列投入時、
前記手段により前記少なくとも1つのデフレクタ
を駆動して前記水車の回転数を制御するようにし
たペルトン水車の制御方法により達成される。さ
らにその駆動手段はサーボモータを用いれば好適
である。
According to the present invention, the above object is achieved by a needle that can move forward and backward, a plurality of nozzles that are opened and closed by moving forward and backward of this needle, a runner that receives the jet jet from this nozzle in a bucket and rotates by the impulse, and this runner and each nozzle. In a Pelton water turbine comprising a deflector that is pivotally supported by the nozzle and deflects the jet from the runner by rotation of the deflector between the nozzle and the runner, the deflector provided in at least one of the nozzles is driven separately from the other deflectors. When re-paralleling the generator connected to the Pelton turbine and the grid after the parallel connection is released,
This is achieved by a method for controlling a Pelton water turbine, in which the at least one deflector is driven by the means to control the rotation speed of the water turbine. Furthermore, it is preferable to use a servo motor as the driving means.

【作用】[Effect]

ノズルの少なくとも1つにこのノズルが備える
デフレクタを他のデフレクタとは分離して駆動す
る手段を設け、ニードルは全開のまま放流を続
け、他のデフレクタは全閉にまま前記手段により
前記少なくとも1つのデフレクタを駆動して水車
の回転数を制御することができる。
At least one of the nozzles is provided with a means for driving the deflector of this nozzle separately from the other deflectors, and the at least one deflector is driven by the means while the needle is kept fully open and the other deflectors are kept fully closed. The rotation speed of the water wheel can be controlled by driving the deflector.

【実施例】【Example】

以下図面に基づいてこの発明の実施例を説明す
る。第4図はこの発明の実施例による制御方法に
用いられるペルトン水車の要部説明図、第5図は
この発明の実施例による制御ダイヤグラムであ
る。第4図および第5図において第1図、第2図
および第3図と同じ部位は同じ番号を付してその
説明を省略する。 第4図において第2図と異なるところは4個の
デフレクタ1b,2b,3b,4bがそれぞれ独
立して制御できるサーボモータ1d,2d,3
d,4dを設け、各デフレクタを連動させていた
リンク機構を削除した点である。 第5図において、ブレーキONでデフレクタが
全閉し水車運転が停止されニードル全開のまま放
流が続けられている状態で、前記水車と系統との
並列が指示されると、No.1のノズル系だけにその
信号が伝えられる。そこでNo.1のノズルにおいて
はニードル1aを無負荷開度までそのサーボモー
タ1cによつて閉作動し、水車ブレーキをOFF
にした後ニードル1aとデフレクタ1bを起動開
度まで開いていき水車を増速し、両者がともに起
動開度になつたら両者を水車回転数が定常回転数
n0になるまで閉動作し、定格回転数n0で負荷と連
絡し、その後デフレクタ1bおよびニードル1a
を全開にするとともに、全閉していた他のデフレ
クタ2b,3b,4bを全開動作して全負荷運転
に移行する。すなわち、この方法では1個のノズ
ル1だけでそのデフレクタ1bとニードル1aを
制御して再並列投入時の回転数を制御する。こ際
通常の起動時は従来と同じく全ノズルを作動する
のに対して、発電機と系統との並列解除後の再閉
路投入時には、1個のノズル1だけ作動させて水
車が定格回転数になるまでその速度を上昇させる
べく起動開度、無負荷開度の切り換えを行うこと
ができる。1個のノズルが全開状態で発電を開始
した後、他の待機中のノズルおよびデフレクタを
全開状態にすれば全負荷運転となる。 したがつて、再並列投入時に全ノズルを全閉に
する操作を不要とし、また1個のノズル操作だけ
で水車の回転数を制御するので、水路流量はほと
んど変化しない。
Embodiments of the present invention will be described below based on the drawings. FIG. 4 is an explanatory diagram of the main parts of a Pelton turbine used in the control method according to the embodiment of the present invention, and FIG. 5 is a control diagram according to the embodiment of the present invention. In FIGS. 4 and 5, the same parts as in FIGS. 1, 2, and 3 are given the same numbers, and their explanations will be omitted. The difference in Fig. 4 from Fig. 2 is that the four deflectors 1b, 2b, 3b, 4b are controlled independently by servo motors 1d, 2d, 3.
d and 4d, and the link mechanism that linked each deflector was removed. In Fig. 5, when the brake is turned on, the deflector is fully closed, the water turbine operation is stopped, and discharge continues with the needle fully open, and when the parallel connection of the water turbine and the system is instructed, the No. 1 nozzle system That signal can only be transmitted. Therefore, in the No. 1 nozzle, the needle 1a is closed to the no-load opening position by the servo motor 1c, and the water turbine brake is turned off.
After opening the needle 1a and deflector 1b to the starting opening, the speed of the water turbine is increased. When both reach the starting opening, the rotation speed of both the water turbines reaches the steady rotation speed.
It closes until n 0 , contacts the load at the rated rotation speed n 0 , and then deflector 1b and needle 1a
At the same time, the other deflectors 2b, 3b, and 4b, which were fully closed, are fully opened to shift to full-load operation. That is, in this method, only one nozzle 1 is used to control its deflector 1b and needle 1a to control the rotation speed at the time of re-parallel injection. At normal start-up, all nozzles are operated as before, but when the parallel circuit between the generator and the grid is released and the circuit is reclosed, only one nozzle 1 is operated and the water turbine reaches its rated rotation speed. The starting opening degree and the no-load opening degree can be switched in order to increase the speed until the After starting power generation with one nozzle fully open, the other standby nozzles and deflectors are fully opened, resulting in full-load operation. Therefore, there is no need to fully close all nozzles when re-paralleling, and since the rotational speed of the water turbine is controlled by operating only one nozzle, the flow rate of the waterway hardly changes.

【発明の効果】【Effect of the invention】

上記のようにこの発明によれば、複数のノズル
のうち少なくとも1つのノズルが備えるデフレク
タを他のノズルのデフレクタとは分離して駆動す
るサーボモータ等からなる駆動手段を設け、この
手段により前記少なくとも1つのデフレクタを駆
動し、前記水車の回転数を制御してペルトン水車
に連接する発電機と系統との並列解除後の再並列
投入をするので、前記発電機を系統に再並列投入
する際水路内の流量が、ほとんど変化しないため
土木設備としての余水路を設けなくても放流流量
を維持できる。 しかも流量変化によつて生じる水圧上昇がない
のでサージタンクを省略でき、かつ水圧鉄管のコ
ストも低減できるという優れた効果が得られる。
As described above, according to the present invention, a driving means including a servo motor or the like is provided which drives the deflector of at least one of the plurality of nozzles separately from the deflector of the other nozzles, and this means drives the deflector of at least one of the plurality of nozzles separately from the deflector of the other nozzles. By driving one deflector and controlling the rotation speed of the water turbine, the generator connected to the Pelton turbine and the grid are re-paralleled after being released from parallel, so when the generator is re-paralleled into the grid, the waterway Since the flow rate inside the tank hardly changes, the discharge flow rate can be maintained without installing a spillway as a civil engineering facility. Moreover, since there is no increase in water pressure caused by changes in flow rate, a surge tank can be omitted and the cost of the penstock can be reduced, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図はペルトン水車の
従来例を示すもので、第1図はその概要を示す縦
断面図、第2図はその制御方法に用いられるペル
トン水車の要部説明図、第3図はその制御ダイヤ
グラム、第4図および第5図はこの発明の実施例
に用いられるペルトン水車の要部説明図およびそ
の制御ダイヤグラムである。 1,2,3,4:ノズル、1a,2a,3a,
4a:ニードル、1b,2b,3b,4b:デフ
レクタ、1d,2d,3d,4d:駆動手段とし
てのサーボモータ、5:ランナ、5a:バケツ
ト、12a,12b:ジエツト。
Figures 1, 2, and 3 show conventional examples of Pelton water turbines. Figure 1 is a vertical cross-sectional view showing its outline, and Figure 2 is an explanation of the main parts of the Pelton water turbine used in its control method. 3 and 3 are control diagrams thereof, and FIGS. 4 and 5 are explanatory diagrams of main parts of a Pelton water turbine used in an embodiment of the present invention and control diagrams thereof. 1, 2, 3, 4: nozzle, 1a, 2a, 3a,
4a: Needle, 1b, 2b, 3b, 4b: Deflector, 1d, 2d, 3d, 4d: Servo motor as driving means, 5: Runner, 5a: Bucket, 12a, 12b: Jet.

Claims (1)

【特許請求の範囲】 1 進退自在なニードル、このニードルの進退で
開閉される複数のノズル、このノズルから噴流す
るジエツトをバケツトに受けその衝動で回転する
ランナ、このランナとそれぞれのノズルとの間で
前記ノズルに軸支されその回動によりジエツトの
方向をランナからそらすデフレクタを備えるペル
トン水車において、前記ノズルの少なくとも1つ
にこのノズルが備えるデフレクタを他のデフレク
タから分離して駆動する手段を設け、前記ペルト
ン水車に連接する発電機と系統との並列解除後の
再並列投入時、前記手段により前記少なくとも1
つのデフレクタを駆動して前記水車の回転数を制
御するようにしたことを特徴とするペルトン水車
の制御方法。 2 特許請求の範囲第1項に記載のペルトン水車
の制御方法において、駆動手段はサーボモータで
あることを特徴とするペルトン水車の制御方法。
[Scope of Claims] 1. A needle that can freely advance and retreat, a plurality of nozzles that are opened and closed by advancing and retreating the needle, a runner that receives jet jetted from the nozzle in a bucket and rotates by the impulse, and a space between the runner and each nozzle. A Pelton water turbine is provided with a deflector which is pivotally supported by the nozzle and whose rotation deflects the direction of the jet from the runner, wherein at least one of the nozzles is provided with means for driving the deflector of this nozzle separately from other deflectors. , when re-paralleling the generator connected to the Pelton turbine and the system after the parallelization is released, the at least one
A method for controlling a Pelton water turbine, characterized in that the rotation speed of the water turbine is controlled by driving two deflectors. 2. A method for controlling a Pelton water turbine according to claim 1, wherein the driving means is a servo motor.
JP58103787A 1983-06-10 1983-06-10 Control device for pelton water wheel Granted JPS59229061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103787A JPS59229061A (en) 1983-06-10 1983-06-10 Control device for pelton water wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103787A JPS59229061A (en) 1983-06-10 1983-06-10 Control device for pelton water wheel

Publications (2)

Publication Number Publication Date
JPS59229061A JPS59229061A (en) 1984-12-22
JPH0133667B2 true JPH0133667B2 (en) 1989-07-14

Family

ID=14363115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103787A Granted JPS59229061A (en) 1983-06-10 1983-06-10 Control device for pelton water wheel

Country Status (1)

Country Link
JP (1) JPS59229061A (en)

Also Published As

Publication number Publication date
JPS59229061A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US3403888A (en) Reversible pump turbines
JPS6146664B2 (en)
JPH0133667B2 (en)
JPH0133668B2 (en)
JP2006283563A (en) Control system of furnace top pressure recovery turbine
JP3638652B2 (en) Constant flow horizontal axis Pelton turbine
JPH1026072A (en) Horizontal pelton water turbine
JP3088594B2 (en) Waterway drainage control method in power plant using Pelton turbine
JPS6149174A (en) Control method of pelton turbine
JP2950068B2 (en) Pelton turbine deflector controller
JPS60224977A (en) Control of pelton turbine
JP2579543Y2 (en) Cross flow turbine speed controller
JPH0324590B2 (en)
JPS60195384A (en) Controlling device for pelton wheel power plant
JPS6189985A (en) Controlling method of deflector in discharge operation of pelton wheel
JPS60219471A (en) Control of pelton water-wheel
JP2752075B2 (en) Control devices for hydraulic machines
JPS63255570A (en) Pelton wheel
RU2173745C2 (en) Damless hydroelectric power station
JP2005030286A (en) Control device of pelton turbine
JPS6130156B2 (en)
JPS61279778A (en) Control method for water wheel operation
JPS61145368A (en) Pelton turbine
JPH07286573A (en) Nozzle for pelton turbine, and control method thereof
JPH07317639A (en) Pelton turbine