JP2006283563A - Control system of furnace top pressure recovery turbine - Google Patents

Control system of furnace top pressure recovery turbine Download PDF

Info

Publication number
JP2006283563A
JP2006283563A JP2005100398A JP2005100398A JP2006283563A JP 2006283563 A JP2006283563 A JP 2006283563A JP 2005100398 A JP2005100398 A JP 2005100398A JP 2005100398 A JP2005100398 A JP 2005100398A JP 2006283563 A JP2006283563 A JP 2006283563A
Authority
JP
Japan
Prior art keywords
turbine
control
angle
pressure
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100398A
Other languages
Japanese (ja)
Inventor
Yasuo Kurihara
康生 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005100398A priority Critical patent/JP2006283563A/en
Publication of JP2006283563A publication Critical patent/JP2006283563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent development of clogging dust to a first stage stationary blade, by excluding influence in strength on a moving blade caused by a jet of the stationary blade, without requiring much facility cost. <P>SOLUTION: In this control system of a furnace top pressure recovery turbine 1 for rotatingly driving a generator 81 by being rotatingly driven by exhaust gas exhausted from a blast furnace 51, bypass control valves 54 and 55 capable of adjusting a flow rate of the exhaust gas passing through the inside, are arranged in parallel to the turbine in a gas passage 60 on the downstream side of the blase furnace, and rotating speed control and/or load control in starting and/or stopping of the turbine are performed by changing front pressure of the turbine by operation of the bypass control valves. The turbine has angle variable mechanisms 31, 32, 39 and 40 for changing a flow passage angle of the stationary blades 2 and 3, and the stationary blades are put in a state of opening more than a flow passage full closure angle in starting and/or stopping of the turbine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炉頂圧回収タービンの制御システムに関する。   The present invention relates to a control system for a furnace top pressure recovery turbine.

従来、高炉プラントの排ガス路にタービンを設置して発電等に利用する炉頂圧回収タービンは、図4に示すように、高炉100から排気された排ガスが、ダストキャッチャ101、湿式集塵装置102、入口塞止弁103、危急遮断弁104を介してタービン105に導かれ、このタービン105を回転駆動させる。そして、このタービン105によって発電機107を回転駆動させることにより、発電の利用に供するものである。   Conventionally, in a furnace top pressure recovery turbine that is used for power generation by installing a turbine in an exhaust gas passage of a blast furnace plant, the exhaust gas exhausted from the blast furnace 100 is converted into a dust catcher 101 and a wet dust collector 102 as shown in FIG. Then, the gas is guided to the turbine 105 through the inlet closing valve 103 and the emergency shutoff valve 104 to rotate the turbine 105. Then, the generator 107 is rotationally driven by the turbine 105 to be used for power generation.

上述の炉頂圧回収タービンにおいて、タービン105の起動時及び停止時の制御は、起動開始から初期設定回転数(例えば15%回転数)までは静翼角度制御が、初期設定回転数から揃速開始直前設定回転数(例えば98%回転数)までの間は回転数制御が、100%回転数に到達し電力網に併入された直後に負荷がかけられ、その負荷が増加して通常運転になるまでは負荷制御が、それぞれ行われる。   In the above-described furnace top pressure recovery turbine, when the turbine 105 is started and stopped, the stationary blade angle control is performed from the start to the initial set rotational speed (for example, 15% rotational speed). The rotation speed control is performed immediately before the set rotation speed (for example, 98% rotation speed) just before the start, and the load is applied immediately after reaching the 100% rotation speed and entering the power grid. Until then, load control is performed.

また、通常運転時に入ってからは圧力制御が行われる。一方、タービン105の停止時には、通常運転から負荷が解除されて解列直後設定回転数(例えば96.5%回転数)になるまでは負荷制御が、解列直後設定回転数から初期設定回転数までの間は回転数制御が、初期設定回転数から停止するまでは静翼角度制御が、それぞれ行われる。   In addition, pressure control is performed after entering normal operation. On the other hand, when the turbine 105 is stopped, the load control is performed from the set rotational speed immediately after the disconnection to the initial set rotational speed until the load is released from the normal operation and reaches the set rotational speed immediately after the disconnection (for example, 96.5% rotational speed). Rotational speed control is performed until this time, and stationary blade angle control is performed until it stops from the initial rotational speed.

そして、タービン105の起動時には、タービン105の前圧が通常運転時の圧力に高められた状態で、角度可変機構を備えた第1段静翼106をその流路全閉角度から徐々に開けていき、ガスを翼列に導く。このとき、開閉弁であるバイパス主弁108は全閉にされている一方、図5に示すように、バイパス制御弁109が徐々に閉じられ、タービン105の前圧は常に通常運転時の圧力に維持される。   And at the time of starting of the turbine 105, the first stage stationary blade 106 provided with the angle variable mechanism is gradually opened from the fully closed angle of the flow path in a state where the pre-pressure of the turbine 105 is increased to the pressure at the normal operation. Lead gas to cascade. At this time, the bypass main valve 108, which is an on-off valve, is fully closed, while the bypass control valve 109 is gradually closed as shown in FIG. 5, and the pre-pressure of the turbine 105 is always the pressure during normal operation. Maintained.

図6に示すように、このようなタービン111の起動時及び停止時の制御を、危急遮断弁110とタービン111との間に調速弁112を設け、この調速弁112の制御と、それに続くタービン111の静翼113,114の角度制御によって行うものがある(例えば、特許文献1参照)。   As shown in FIG. 6, a control valve 112 is provided between the emergency shut-off valve 110 and the turbine 111 to control the start and stop of the turbine 111. The control of the control valve 112, There is one that is performed by controlling the angle of the stationary blades 113 and 114 of the turbine 111 (see, for example, Patent Document 1).

この炉頂圧回収タービンの制御システムにおいて、タービン111の起動時及び停止時の制御は、起動開始から初期設定回転数までは調速弁112による調速弁開度制御が、初期設定回転数から揃速開始直前設定回転数までの間は回転数制御が、100%回転数に到達し電力網に併入された直後に負荷がかけられ、その負荷が増加して通常運転になるまでは負荷制御が、それぞれ行われる。   In the control system for the top pressure recovery turbine of this furnace, when the turbine 111 is started and stopped, the control valve opening control by the speed control valve 112 is performed from the initial setting speed from the start to the initial setting speed. Rotational speed control until the set rotational speed immediately before the start of uniform speed, load is applied immediately after reaching 100% rotational speed and entering the power grid, and until the load increases and normal operation is started Each is done.

また、通常運転時には圧力制御が行われる。一方、タービン111の停止時には、通常運転から負荷が解除されて解列直後設定回転数になるまでは負荷制御が、解列直後設定回転数から初期設定回転数までの間は回転数制御が、初期設定回転数から停止するまでは調速弁112による調速弁開度制御が、それぞれ行われる。   Further, pressure control is performed during normal operation. On the other hand, when the turbine 111 is stopped, load control is performed from the normal operation until the load is released and the set rotational speed immediately after disconnection, and the rotational speed control is performed from the set rotational speed immediately after disconnection to the initial set rotational speed. Until the engine speed is stopped from the initially set rotation speed, the control valve opening control by the control valve 112 is performed.

そして、タービン111の起動時には、図7に示すように、タービン111の前圧が通常運転時の圧力に高められた状態で、調速弁112を徐々に開いていき、ガスを翼列に導く。調速弁112がほぼ全開となった時点で、角度可変機構を備えた静翼113,114をその流路初期設定角度から徐々に開けていき、通常運転に移行する。このとき、バイパス主弁115は全閉にされている一方、バイパス制御弁116が徐々に閉じられるので、タービン111の前圧は常に通常運転時の圧力に維持される。   When the turbine 111 is started, as shown in FIG. 7, the governor valve 112 is gradually opened in a state where the pre-pressure of the turbine 111 is increased to the pressure during normal operation, and the gas is guided to the blade row. . When the speed regulating valve 112 is almost fully opened, the stationary blades 113 and 114 having the variable angle mechanism are gradually opened from the initial setting angle of the flow path, and the normal operation is started. At this time, the bypass main valve 115 is fully closed while the bypass control valve 116 is gradually closed, so that the pre-pressure of the turbine 111 is always maintained at the pressure during normal operation.

上記のいずれの炉頂圧回収タービンの制御システムにおいても、タービン105,111の起動及び停止動作を主体的に制御するものは、第1段静翼106の角度可変機構、あるいは調速弁112であり、バイパス制御弁109,116はタービン105,111の前圧を通常運転時の圧力に維持するために使用される。また、このバイパス制御弁109,116の作動は、タービンの作動を制御する電気ガバナによって制御されるのではなく、電気ガバナとは別に配設されたバイパス弁制御装置によって制御される。
特開昭60−32942号公報(第1図)
In any of the above-described furnace top pressure recovery turbine control systems, the one that mainly controls the start and stop operations of the turbines 105 and 111 is the variable-angle mechanism of the first stage stationary blade 106 or the governing valve 112. The bypass control valves 109 and 116 are used to maintain the pre-pressure of the turbines 105 and 111 at the pressure during normal operation. The operations of the bypass control valves 109 and 116 are not controlled by an electric governor that controls the operation of the turbine, but are controlled by a bypass valve control device arranged separately from the electric governor.
Japanese Patent Laid-Open No. 60-32942 (FIG. 1)

しかしながら、上述の従来の炉頂圧回収タービンの制御システムにおいて、前者のタービンの起動開始から初期設定回転数までの制御を、第1段静翼を流路全閉角度から徐々に開けていくことによって行う方式では、第1段静翼を流路全閉角度から開けていく過程で、通常運転時の圧力に高められた排ガスが第1段静翼出口で噴流となり、この噴流が動翼に吹きつけられて、第1段動翼に強度上の影響を及ぼすという問題がある。   However, in the control system for the above-described conventional furnace top pressure recovery turbine, the control from the start of the former turbine to the initial rotation speed is performed by gradually opening the first stage stationary blade from the fully closed angle of the flow path. In the method, in the process of opening the first stage stationary blade from the fully closed angle of the flow path, the exhaust gas increased to the pressure during normal operation becomes a jet at the outlet of the first stage stationary blade, and this jet is blown to the rotor blade, There is a problem of affecting the strength of the first stage blade.

また、第1段静翼についてはその背面にダストが付着する傾向があり、このダストによって負荷遮断時やタービントリップ時に第1段静翼を全閉にできなくなる等の問題を発生させたりするが、上述の第1段静翼が発生する噴流によって第1段静翼へのダスト付着が助長されるという問題がある。さらに、タービンの停止時においても、第1段静翼を通常運転の角度から流路全閉角度まで徐々に閉じる過程で噴流が発生し、上記2つと同様の問題を発生させる。   In addition, there is a tendency for dust to adhere to the rear surface of the first stage stator blade, and this dust may cause problems such as the first stage stator blade being unable to be fully closed when the load is interrupted or when the turbine trips. There is a problem that dust adhesion to the first stage stationary blade is promoted by the jet generated by the first stage stationary blade. Further, even when the turbine is stopped, a jet flow is generated in the process of gradually closing the first stage stationary blades from the normal operation angle to the flow path fully closed angle, causing the same problem as the above two.

一方、後者のタービンの起動開始から初期設定回転数までの制御を、調速弁を徐々に開けていき、ガスを翼列に導くことによって行う方式は、調速弁によってタービンに作用するガス圧が徐々に高められていくため、上述のような動翼の強度上の問題、あるいは第1段静翼に対するダスト付着の問題は発生しにくい。しかしながら、調速弁の設置に多大な設備費を要するという問題がある。   On the other hand, the latter method, in which the control from the start of the turbine to the initial rotation speed is performed by gradually opening the governor valve and guiding the gas to the blade row, the gas pressure acting on the turbine by the governor valve. Therefore, the problem of the strength of the moving blade as described above or the problem of dust adhesion to the first stage stationary blade is unlikely to occur. However, there is a problem that a large equipment cost is required to install the governing valve.

本発明はこのような問題を解決するためになされたもので、多大な設備費を要することなく、静翼の噴流を原因とした動翼に対する強度上の影響を排除することができ、また、同原因による第1段静翼へのダスト付着の助長を防止することができる、炉頂圧回収タービンの制御システムを提供することを課題とする。   The present invention was made to solve such a problem, without requiring a large equipment cost, it is possible to eliminate the influence on the strength of the moving blade caused by the jet of the stationary blade, It is an object of the present invention to provide a control system for a furnace top pressure recovery turbine that can prevent dust adhesion to the first stage stationary blade due to the same cause.

上述の課題を解決するために、本発明が採用する手段は、高炉から排気された排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、高炉下流のガス路に内部を通過する排ガスの流量調節が可能なバイパス制御弁をタービンと並列に配設し、このバイパス制御弁の作動によりタービンの前圧を変化させてタービンの起動時及び又は停止時の回転数制御及び又は負荷制御を行うことにある。   In order to solve the above-mentioned problems, the means adopted by the present invention is a control system for a furnace top pressure recovery turbine that is rotationally driven by exhaust gas exhausted from a blast furnace and rotationally drives a generator. A bypass control valve capable of adjusting the flow rate of the exhaust gas passing through the interior is arranged in parallel with the turbine, and the operation of this bypass control valve changes the pre-pressure of the turbine to control the rotational speed when the turbine is started and stopped And / or to perform load control.

このように、本発明の炉頂圧回収タービンの制御システムは、タービンの起動時や停止時に、バイパス制御弁によりタービンの前圧を変化させて、例えば、タービンの前圧を徐々に増加又は減少させてその回転数制御や負荷制御を行なうから、従来のように、通常運転時の圧力に高められた排ガスが、第1段静翼をその流路全閉角度から徐々に開けていく過程あるいは閉じていく過程で噴流となり、この噴流が動翼に吹きつけられることが防止される。また、従来の調速弁も排除することができる。   As described above, the control system for the top pressure recovery turbine of the present invention changes the turbine pre-pressure by the bypass control valve when the turbine is started or stopped, for example, gradually increasing or decreasing the turbine pre-pressure. Since the rotation speed control and load control are performed, the exhaust gas, which has been increased to the pressure during normal operation as in the prior art, gradually opens or closes the process of gradually opening the first stage stationary blade from its fully closed angle. It becomes a jet in the process, and this jet is prevented from being blown to the rotor blades. Moreover, the conventional speed control valve can also be eliminated.

タービンは、静翼の流路角度を変化させる角度可変機構を有し、静翼は、タービンの起動時に流路全閉角度よりも開いた状態にされることが望ましい。また、タービンは、静翼の流路角度を変化させる角度可変機構を有し、静翼は、タービンの停止時に流路全閉角度よりも開いた状態にされることが望ましい。このように、タービンの起動時やタービンの停止時に、静翼をその流路全閉角度よりも開いた状態にして、静翼出口の流路面積を広げることにより、噴流の発生が確実に防止される。   The turbine preferably includes an angle variable mechanism that changes the flow path angle of the stationary blade, and the stationary blade is desirably opened to a state where the flow path is fully closed when the turbine is started. Further, it is desirable that the turbine has an angle variable mechanism that changes the flow path angle of the stationary blade, and the stationary blade is opened more than the full flow path closed angle when the turbine is stopped. In this way, when the turbine is started or stopped, the stationary blade is opened more than its fully closed angle, and the flow passage area at the stationary blade outlet is widened to reliably prevent jets from being generated. Is done.

バイパス制御弁の上記作動は、電気ガバナの信号によって制御されることが望ましい。本発明の炉頂圧回収タービンの制御システムにおいて、バイパス制御弁はタービンの起動時や停止時にタービンの回転数制御や負荷制御を主体的に行なうものであるから、その制御を電気ガバナが行なうことより、タービンの起動時や停止時のタービン制御を最適に行うことができる。   The operation of the bypass control valve is preferably controlled by an electric governor signal. In the control system for a furnace top pressure recovery turbine according to the present invention, the bypass control valve mainly performs the rotation speed control and load control of the turbine when the turbine is started or stopped, so that the electric governor performs the control. Thus, turbine control at the time of starting and stopping of the turbine can be optimally performed.

タービンの上記制御は、タービンと並列に配設された2つのバイパス制御弁によって行われることが望ましい。このように、タービンと並列に配設された2つのバイパス制御弁によってタービンの制御を行うことにより、タービンの起動時や停止時の回転数制御や負荷制御を正確に、かつ簡易な構成で行なうことができるという利点がある。   The control of the turbine is preferably performed by two bypass control valves arranged in parallel with the turbine. Thus, by controlling the turbine with the two bypass control valves arranged in parallel with the turbine, the rotational speed control and load control at the start and stop of the turbine are accurately and simply performed. There is an advantage that you can.

タービンは、静翼の流路角度を変化させる角度可変機構を有し、タービンの起動時のバイパス制御弁による制御は、負荷制御中に静翼の流路角度の変更による制御に移行されることが望ましい。また、タービンは、静翼の流路角度を変化させる角度可変機構を有し、タービンの停止時のバイパス制御弁による制御は、負荷制御中に静翼の流路角度の変更による制御から移行されることが望ましい。このようにすることにより、通常運転時の圧力制御への移行が円滑に行われると共に、通常運転時は静翼の流路角度可変による圧力制御のみが行われるようになる。   The turbine has a variable angle mechanism that changes the flow path angle of the stationary blade, and the control by the bypass control valve at the start of the turbine is transferred to the control by changing the flow path angle of the stationary blade during the load control. Is desirable. The turbine also has an angle variable mechanism that changes the flow path angle of the stationary blade, and control by the bypass control valve when the turbine is stopped is shifted from control by changing the flow path angle of the stationary blade during load control. It is desirable. By doing so, the shift to the pressure control during the normal operation is smoothly performed, and only the pressure control by changing the flow path angle of the stationary blade is performed during the normal operation.

タービンの起動時にはバイパス制御弁の上記作動によりタービンの前圧をタービンの出口圧に略等しい圧力から増加させていくことが望ましい。また、タービンの停止時にはバイパス制御弁の上記作動によりタービンの前圧をタービンの出口圧に略等しい圧力まで低下させることが望ましい。このように、タービンの前後圧に圧力差がない状態からタービンを起動させ、あるいは、タービンの前後圧に圧力差がない状態でタービンを停止させれば、第1段静翼による噴流の発生がさらに確実に防止される。   It is desirable to increase the turbine pre-pressure from a pressure substantially equal to the turbine outlet pressure by the above-described operation of the bypass control valve when the turbine is started. Further, when the turbine is stopped, it is desirable to reduce the turbine pre-pressure to a pressure substantially equal to the turbine outlet pressure by the above operation of the bypass control valve. In this way, if the turbine is started from a state where there is no pressure difference in the front-rear pressure of the turbine, or if the turbine is stopped in a state where there is no pressure difference in the front-rear pressure of the turbine, the generation of the jet flow by the first stage stationary blade is further ensured. To be prevented.

本発明の炉頂圧回収タービンの制御システムは、高炉から排気された排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、高炉下流のガス路に内部を通過する排ガスの流量調節が可能なバイパス制御弁をタービンと並列に配設し、バイパス制御弁の作動によりタービンの前圧を変化させてタービンの起動時及び又は停止時の回転数制御及び又は負荷制御を行うから、従来のように、通常運転時の圧力に高められた排ガスが第1段静翼をその流路全閉角度から徐々に開けていく過程あるいは閉じていく過程で噴流となり、この噴流が動翼に吹きつけられることが防止される。また、従来の調速弁も排除することができる。   A control system for a furnace top pressure recovery turbine according to the present invention is a control system for a furnace top pressure recovery turbine that is rotationally driven by exhaust gas exhausted from a blast furnace and rotationally drives a generator. A bypass control valve capable of adjusting the flow rate of exhaust gas is arranged in parallel with the turbine, and the turbine pre-pressure is changed by the operation of the bypass control valve to control the rotational speed and / or load when the turbine is started and stopped. Therefore, as in the prior art, the exhaust gas, which has been increased to the pressure during normal operation, becomes a jet in the process of gradually opening or closing the first stage stationary blade from its fully closed angle, and this jet becomes a moving blade. It is prevented from being sprayed on. Moreover, the conventional speed control valve can also be eliminated.

したがって、本発明の炉頂圧回収タービンの制御システムは、多大な設備費を要することなく、静翼の噴流を原因とした動翼に対する強度上の影響を排除することができ、また、同原因による第1段静翼へのダスト付着の助長を防止することができるという優れた効果を奏する。   Therefore, the control system for the furnace top pressure recovery turbine of the present invention can eliminate the influence on the strength of the moving blade caused by the jet of the stationary blade without requiring a large equipment cost. As a result, it is possible to prevent the adhesion of dust to the first stage stationary blade.

本発明に係る炉頂圧回収タービンの制御システムを実施するための最良の形態を、図1ないし図3を参照して詳細に説明する。   A best mode for carrying out a control system for a furnace top pressure recovery turbine according to the present invention will be described in detail with reference to FIGS.

図1に示すように、高炉プラントとして高炉51、ダストキャッチャ52、湿式集塵装置53、第1バイパス制御弁54、第2バイパス制御弁55、ガスホルダ56が、排ガス路60にこの順に配設される。第1バイパス制御弁54と第2バイパス制御弁55は、排ガス路60にダービン1と並列にそれぞれ配設される。これら2つのバイパス制御弁54,55は単なる開閉弁ではなく、内部を通過するガスの流量調節が可能であり、これにより、タービン1の前圧調節やタービン1を通過するガスの流量調節による各種制御を行なうことができる。   As shown in FIG. 1, as a blast furnace plant, a blast furnace 51, a dust catcher 52, a wet dust collector 53, a first bypass control valve 54, a second bypass control valve 55, and a gas holder 56 are arranged in this order in the exhaust gas path 60. The The first bypass control valve 54 and the second bypass control valve 55 are respectively disposed in the exhaust gas passage 60 in parallel with the durbin 1. These two bypass control valves 54 and 55 are not mere on-off valves, but can adjust the flow rate of gas passing through the interior thereof. As a result, various adjustments can be made by adjusting the pre-pressure of the turbine 1 or adjusting the flow rate of gas passing through the turbine 1. Control can be performed.

2つのバイパス制御弁54,55の上流側で排ガス路60を分岐して、湿式集塵装置53を出た排ガスをタービン1に導くタービンガス路60aを配設する。タービンガス路60aに、入口塞止弁57、危急遮断弁58をこの順に配設する。危急遮断弁58を出たガスはタービン1に導かれ、タービン1を通った後、出口塞止弁59を介してガスホルダ56に排気される。発電機81がタービン1に軸継手80を介して連結される。このタービン1は一例としての2段翼列タービンであり、第1段静翼2及び第2段静翼3、そして図示しない第1段及び第2段動翼を有する。   An exhaust gas passage 60 is branched upstream of the two bypass control valves 54 and 55, and a turbine gas passage 60 a that guides the exhaust gas exiting the wet dust collector 53 to the turbine 1 is disposed. An inlet closing valve 57 and an emergency shutoff valve 58 are arranged in this order in the turbine gas passage 60a. The gas that has exited the emergency shutoff valve 58 is guided to the turbine 1, passes through the turbine 1, and is exhausted to the gas holder 56 through the outlet closing valve 59. A generator 81 is connected to the turbine 1 via a shaft joint 80. The turbine 1 is a two-stage cascade turbine as an example, and includes a first stage stationary blade 2 and a second stage stationary blade 3, and a first stage and a second stage moving blade (not shown).

高炉プラントでは、高炉51の炉頂圧検出器61で検出した炉頂圧を炉頂圧設定器62で設定した炉頂圧に一致させるための、炉頂圧調節計63と炉頂圧調節制御装置64と電油変換器65とが配設される。   In the blast furnace plant, the furnace top pressure controller 63 and the furnace top pressure adjustment control for making the furnace top pressure detected by the furnace top pressure detector 61 of the blast furnace 51 coincide with the furnace top pressure set by the furnace top pressure setter 62. A device 64 and an electro-oil converter 65 are disposed.

負荷制限設定器21、負荷設定器22、回転数設定器23、バイパス制御弁開度設定器24が、電気ガバナ20にそれぞれ接続される。これにより、タービン1の回転数制御、負荷制御、圧力制御が行われる。電気ガバナ20からの制御信号は、複合演算器25を介して、それぞれ独立に第1段及び第2段静翼の角度制御を行なう第1及び第2静翼角度制御弁31,32にそれぞれ入力される。この静翼角度制御弁31,32は、例えば、単数もしくは複数のサーボアンプとサーボ弁が一体になったもの、あるいは、サーボアンプとサーボ弁及び電磁弁とロジック弁が一体になったものである。なお、サーボアンプとサーボ弁についてはそれらを個別に配設することもできる。   A load limit setting device 21, a load setting device 22, a rotation number setting device 23, and a bypass control valve opening setting device 24 are connected to the electric governor 20. Thereby, the rotation speed control, load control, and pressure control of the turbine 1 are performed. A control signal from the electric governor 20 is input to the first and second stationary blade angle control valves 31 and 32 for performing angle control of the first and second stage stationary blades independently of each other via the composite calculator 25. . The stator blade angle control valves 31 and 32 are, for example, one or a plurality of servo amplifiers and servo valves integrated, or a servo amplifier, a servo valve, an electromagnetic valve, and a logic valve integrated. . Note that the servo amplifier and the servo valve may be provided separately.

電気ガバナ20からの制御信号は、上述の静翼角度制御弁31,32でそれぞれ電油変換された後、第1段及び第2段静翼作動用の油圧アクチュエータ39,40をそれぞれ作動させる。これにより、タービン1の第1段及び第2段静翼2,3の流路角度が、そのときのタービンの前圧等に応じて変更される。   The control signal from the electric governor 20 is electro-oil converted by the above-described stationary blade angle control valves 31 and 32, respectively, and then the hydraulic actuators 39 and 40 for operating the first stage and second stage stationary blades are operated. Thereby, the flow path angle of the 1st stage and 2nd stage stationary blades 2 and 3 of the turbine 1 is changed according to the pre-pressure etc. of the turbine at that time.

タービン1の負荷遮断信号及びタービントリップ信号は、電気ガバナ20に入力される一方、上述の第1段及び第2段静翼角度制御弁31,32にそれぞれ直接入力され、静翼角度制御弁31,32でそれぞれ電油変換された後、第1段及び第2段静翼作動用の油圧アクチュエータ39,40を作動させる。第2段静翼作動用の油圧アクチュエータ40にはリミットスイッチ43と、このリミットスイッチ43の作動によって負荷遮断信号をリセットするためのタイマ44とがそれぞれ配設される。   While the load cutoff signal and the turbine trip signal of the turbine 1 are input to the electric governor 20, they are directly input to the first-stage and second-stage stationary blade angle control valves 31, 32, respectively, and the stationary blade angle control valves 31, 32 are input. Then, the hydraulic oils 39 and 40 for operating the first stage and second stage stationary blades are operated. The hydraulic actuator 40 for operating the second stage stationary blade is provided with a limit switch 43 and a timer 44 for resetting the load cutoff signal by the operation of the limit switch 43.

タービンガス路60aに入るガス圧はタービン前圧検出器66により検知され、この ガス圧をタービン前圧設定器67で設定されたガス圧に一致させるための、タービン前圧調節計68が配設される。電気ガバナ20からの制御信号は、複合演算器25、第1及び第2高位信号選択器69,70、第1及び第2電油変換器71,72を介して、上述の第1バイパス制御弁54と第2バイパス制御弁55とにそれぞれ入力される。このように、第1及び第2バイパス制御弁54,55は、電気ガバナ20の信号によりその作動が制御される。   A gas pressure entering the turbine gas passage 60 a is detected by a turbine pre-pressure detector 66, and a turbine pre-pressure controller 68 is provided to match the gas pressure with the gas pressure set by the turbine pre-pressure setter 67. Is done. The control signal from the electric governor 20 is sent to the above-described first bypass control valve via the composite arithmetic unit 25, the first and second high level signal selectors 69 and 70, and the first and second electro-oil converters 71 and 72. 54 and the second bypass control valve 55, respectively. Thus, the operation of the first and second bypass control valves 54 and 55 is controlled by the signal of the electric governor 20.

一方、タービン前圧調節計68の出力信号と電気ガバナ20の出力信号は、減算器73を介してバイパス制御弁信号分配器74に入力され、第1バイパス制御弁54の制御信号と第2バイパス制御弁55の制御信号とに分配される。この信号は、上述の第1及び第2高位信号選択器69,70にそれぞれ入力される。負荷遮断時及びタービントリップ時には、この信号が第1及び第2高位信号選択器69,70によって選択され、上述の第1及び第2電油変換器71,72を介して、第1及び第2バイパス制御弁54,55にそれぞれ入力される。   On the other hand, the output signal of the turbine pre-pressure controller 68 and the output signal of the electric governor 20 are input to the bypass control valve signal distributor 74 through the subtractor 73, and the control signal of the first bypass control valve 54 and the second bypass The control signal is distributed to the control signal of the control valve 55. This signal is input to the first and second high level signal selectors 69 and 70, respectively. This signal is selected by the first and second high level signal selectors 69 and 70 when the load is interrupted and the turbine is tripped, and the first and second electric oil converters 71 and 72 described above are used. Input to the bypass control valves 54 and 55, respectively.

次に、本炉頂圧回収タービンの制御システムの作動を説明する。はじめに、タービン1の起動時の制御について説明する。図2に示すように、タービン1の起動前において、入口塞止弁57、危急遮断弁58、出口塞止弁59の開操作が行われる。これにより、炉頂圧検出器61、炉頂圧設定器62、炉頂圧調節計63、炉頂圧調節制御装置64、電油変換器65によって所定炉頂圧に調節された高炉51からの排ガスが、タービンガス路60aのタービン1及び排ガス路60のバイパス制御弁54,55に分かれて流れ、再び合流してガスホルダ56に導かれる。   Next, the operation of the control system for the furnace top pressure recovery turbine will be described. First, the control at the time of starting the turbine 1 will be described. As shown in FIG. 2, before the turbine 1 is started, the inlet closing valve 57, the emergency shutoff valve 58, and the outlet closing valve 59 are opened. Thereby, the furnace top pressure detector 61, the furnace top pressure setter 62, the furnace top pressure controller 63, the furnace top pressure adjustment control device 64, and the electric oil converter 65 from the blast furnace 51 adjusted to a predetermined furnace top pressure. The exhaust gas flows separately into the turbine 1 in the turbine gas path 60 a and the bypass control valves 54, 55 in the exhaust gas path 60, merges again, and is guided to the gas holder 56.

このとき、電気ガバナ20からの各制御信号により、第1バイパス制御弁54及び第2バイパス制御弁55はともに全開にされ、タービン1の第1段及び第2段静翼2,3はともに流路初期設定角度にされている。この流路初期設定角度は、翼列全開時流路面積を100%とした場合に約25〜40%開度に相当する角度に設定される。このとき、タービン1の前圧はタービン1の出口圧に略等しい圧力になっている。   At this time, both the first bypass control valve 54 and the second bypass control valve 55 are fully opened by the respective control signals from the electric governor 20, and both the first stage and second stage stationary blades 2 and 3 of the turbine 1 are initially in the flow path. The angle is set. The channel initial setting angle is set to an angle corresponding to an opening of about 25 to 40% when the flow channel area when the blade row is fully opened is 100%. At this time, the pre-pressure of the turbine 1 is substantially equal to the outlet pressure of the turbine 1.

起動開始から図示A点の初期設定回転数(例えば15%回転数)までは、第1バイパス制御弁54による弁開度制御が行われる。電気ガバナ20から出力された制御信号は、複合演算器25、第1高位信号選択器69を介して第1電油変換器71に入力され、そこで電油変換されて第1バイパス制御弁54に入力される。これにより、第1バイパス制御弁54が徐々に閉じられ、タービン1の前圧が徐々に上昇する。   The valve opening degree control by the first bypass control valve 54 is performed from the start to the initial set rotation speed (for example, 15% rotation speed) at the point A in the figure. The control signal output from the electric governor 20 is input to the first electro-oil converter 71 via the composite arithmetic unit 25 and the first high-level signal selector 69, where it is converted into electro-oil and is sent to the first bypass control valve 54. Entered. Thereby, the 1st bypass control valve 54 is closed gradually, and the front pressure of turbine 1 rises gradually.

初期設定回転数(図示A点)から100%回転数(図示C点)の間は、第1バイパス制御弁54のみが徐々に閉じられ、タービン1の前圧がさらに上昇する。このとき、初期設定回転数(図示A点)から図示B点の揃速開始直前設定回転数(例えば98%回転数)までの間は回転数制御が行われ、揃速開始直前設定回転数(図示B点)から100%回転数(図示C点)までの間は揃速及び併入が行われる。タービン1の回転数が100%に到達し電力網に併入された直後に初期負荷がかけられ、その後タービン1は負荷制御に移行する。   Between the initially set rotation speed (point A in the figure) and 100% rotation speed (point C in the figure), only the first bypass control valve 54 is gradually closed, and the pre-pressure of the turbine 1 further increases. At this time, the rotational speed control is performed from the initial set rotational speed (point A in the figure) to the rotational speed set immediately before the uniform speed start at the point B in the figure (for example, 98% rotational speed). From the point B (shown in the figure) to the 100% rotation speed (point C in the figure), uniform speed and insertion are performed. Immediately after the rotational speed of the turbine 1 reaches 100% and is inserted into the power grid, an initial load is applied, and then the turbine 1 shifts to load control.

タービン1の負荷制御中に第1バイパス制御弁54が全閉になると同時に、第2バイパス制御弁55が閉じ始める。第2バイパス制御弁55の作動制御は、第1バイパス制御弁54と同様に、電気ガバナ20から出力された制御信号が、複合演算器25、第2高位信号選択器70を介して第2電油変換器72に入力され、そこで電油変換されて第2バイパス制御弁55に入力されることにより行われる。   While the first bypass control valve 54 is fully closed during the load control of the turbine 1, the second bypass control valve 55 starts to close. As with the first bypass control valve 54, the second bypass control valve 55 is controlled by the control signal output from the electric governor 20 via the composite calculator 25 and the second high-level signal selector 70. This is performed by being input to the oil converter 72, where it is subjected to electro-oil conversion and input to the second bypass control valve 55.

タービン1の負荷制御中にさらに負荷が増加すると、電気ガバナ20から出力された制御信号が、複合演算器25を介して第1段及び第2段静翼角度制御弁31,32にそれぞれ入力され、そこで電油変換されて第1段及び第2段静翼作動用の油圧アクチュエータ39,40を作動させる。これにより、第1段及び第2段静翼2,3が徐々に開方向にその流路角度を変化させる。このように、負荷制御中に静翼2,3の流路角度の変更による制御が開始されるから、通常運転における圧力制御への移行が円滑に行われる。   When the load further increases during the load control of the turbine 1, the control signal output from the electric governor 20 is input to the first stage and second stage stationary blade angle control valves 31 and 32 via the composite calculator 25, respectively. The electric oil is converted to actuate the hydraulic actuators 39 and 40 for operating the first and second stage stationary blades. Thereby, the flow path angle of the first stage and second stage stationary blades 2 and 3 is gradually changed in the opening direction. Thus, since control by changing the flow path angle of the stationary blades 2 and 3 is started during load control, the transition to pressure control in normal operation is performed smoothly.

第1段及び第2段静翼2,3が、高炉51から排気された排ガスの全量がタービン1に流れる流量角度になった時点で、第2バイパス制御弁55も全閉となる。その後、静翼流路角度の変更による圧力制御がなされ、通常運転が行われる。このように、タービン1と並列に配設された2つのバイパス制御弁54,55は、タービン1の起動時にすべてが全開している状態から順次全開から全閉になると共に、通常運転時にはそのすべてが全閉になる。   The second bypass control valve 55 is also fully closed when the first stage and the second stage stationary blades 2 and 3 reach a flow angle at which the total amount of exhaust gas exhausted from the blast furnace 51 reaches the turbine 1. Thereafter, pressure control is performed by changing the stationary blade flow path angle, and normal operation is performed. As described above, the two bypass control valves 54 and 55 arranged in parallel with the turbine 1 are sequentially opened from the fully opened state to the fully closed state when the turbine 1 is started, and all of them are normally operated. Is fully closed.

図3に示すように、静翼流路角度の変化による負荷制御及び圧力制御が行われるまでの間は、第1バイパス制御弁54及び第2バイパス制御弁55による弁開度制御、回転数制御、負荷制御が行われ、第2バイパス制御弁55が全閉になる前に静翼流路角度の変更による負荷制御に移行する。図2に示すように、この間、タービンの前圧は静翼流路角度の変更による負荷制御が開始されるまで、タービン1の出口圧力に略等しい圧力から通常運転時の圧力まで上昇する。   As shown in FIG. 3, until the load control and the pressure control are performed by changing the stationary blade flow path angle, the valve opening degree control and the rotational speed control by the first bypass control valve 54 and the second bypass control valve 55 are performed. Then, the load control is performed, and the control shifts to the load control by changing the stationary blade flow path angle before the second bypass control valve 55 is fully closed. As shown in FIG. 2, during this time, the turbine pre-pressure increases from a pressure approximately equal to the outlet pressure of the turbine 1 to a pressure during normal operation until load control is started by changing the stationary blade flow path angle.

タービン1の停止時については、上述のタービン1の起動時の制御とほぼ逆の制御が行われる。電気ガバナ20から出力された制御信号により第1段及び第2段静翼2,3が徐々に閉方向にその流路角度を変化させる。これにより、タービン1は圧力制御から負荷制御に移行する。第1段及び第2段静翼2,3がその流路初期設定角度まで閉じられた後、静翼2,3の角度変更による負荷制御は第2バイパス制御弁55による負荷制御へ移行する。その後も第2バイパス制御弁55は開弁し、第2バイパス制御弁55が全開になった時点で、第1バイパス制御弁54が開弁し始める。   When the turbine 1 is stopped, a control almost opposite to the control when the turbine 1 is started is performed. The control signal output from the electric governor 20 causes the first-stage and second-stage stationary blades 2 and 3 to gradually change the flow path angle in the closing direction. Thereby, the turbine 1 shifts from pressure control to load control. After the first-stage and second-stage stationary blades 2 and 3 are closed to the flow path initial setting angle, the load control by changing the angle of the stationary blades 2 and 3 shifts to the load control by the second bypass control valve 55. Thereafter, the second bypass control valve 55 is opened, and when the second bypass control valve 55 is fully opened, the first bypass control valve 54 starts to open.

タービン1の負荷が初期負荷に戻されて、解列される。これによりタービン1の100%回転数(図示D点)から図示E点の解列直後設定回転数(例えば96.5%回転数)になり、負荷制御から回転数制御に移行する。そして、図示F点の初期設定回転数(例えば15%回転数)になると回転数制御から弁開度制御に移行し、タービン1は停止する。第2バイパス制御弁55及び第1バイパス制御弁54が開弁している間、タービンの前圧は通常運転時の圧力からタービン1の出口圧力に略等しい圧力まで低下する。このように、タービン1と並列に配設された2つのバイパス制御弁54,55は、タービン1の通常運転時にすべてが全閉していると共に、タービン1の停止時にはすべてが全閉している状態から順次全閉から全開になる。   The load of the turbine 1 is returned to the initial load and disconnected. As a result, the set rotational speed (for example, 96.5% rotational speed) immediately after the disconnection of the illustrated E point is changed from the 100% rotational speed (point D in the figure) of the turbine 1 to shift from load control to rotational speed control. And when it becomes the initial setting rotation speed (for example, 15% rotation speed) of illustration F point, it transfers to valve opening degree control from rotation speed control, and the turbine 1 stops. While the second bypass control valve 55 and the first bypass control valve 54 are open, the turbine pre-pressure decreases from the pressure during normal operation to a pressure substantially equal to the outlet pressure of the turbine 1. As described above, the two bypass control valves 54 and 55 arranged in parallel with the turbine 1 are all fully closed during normal operation of the turbine 1, and are all fully closed when the turbine 1 is stopped. From the state, it turns from fully closed to fully open.

次に、タービン1の負荷遮断時及びタービン1に故障等が発生した場合のタービントリップ時の制御について説明する。負荷遮断時やタービントリップ時には、負荷遮断信号又はタービントリップ信号が、第1及び第2静翼角度制御弁31,32にそれぞれ直接入力される。この第1及び第2静翼角度制御弁31,32において電油変換が行われ、油圧アクチュエータ39,40をそれぞれ独立に作動させる。   Next, the control at the time of turbine trip when the load of the turbine 1 is interrupted and when a failure or the like occurs in the turbine 1 will be described. At the time of load interruption or turbine trip, a load interruption signal or a turbine trip signal is directly input to the first and second stationary blade angle control valves 31 and 32, respectively. Electro-oil conversion is performed in the first and second stationary blade angle control valves 31 and 32, and the hydraulic actuators 39 and 40 are operated independently.

これにより、第1段静翼2は流路初期設定角度まで閉じ、第2段静翼3は流路全閉角度まで閉じる。このため、タービン1へ流入する排ガスが瞬時に減少し、タービン1のオーバースピードが防止される。このように、タービン1の負荷遮断時及びタービントリップ時に第1段及び第2段静翼2,3の角度可変による制御を行なうのは、第1バイパス制御弁54と第2バイパス制御弁55とによる制御だけでは、タービン1へ流入する排ガスを瞬時に減少させることができないためである。   As a result, the first stage stationary blade 2 is closed to the channel initial setting angle, and the second stage stationary blade 3 is closed to the channel fully closed angle. For this reason, the exhaust gas flowing into the turbine 1 is instantaneously reduced, and the overspeed of the turbine 1 is prevented. As described above, the control by the first bypass control valve 54 and the second bypass control valve 55 is performed by changing the angles of the first stage and second stage stationary blades 2 and 3 when the load of the turbine 1 is interrupted and when the turbine trips. This is because the exhaust gas flowing into the turbine 1 cannot be reduced instantaneously.

一方、負荷遮断後やタービントリップ後の圧力制御は、バイパス制御弁信号分配器74を経由した制御信号に基づいて、バイパス制御弁54,55によって行われる。また、負荷遮断後の回転数制御や、その後の再併入と負荷制御は、電気ガバナ20の制御信号に基づいて、静翼流路角度の変更による流量調節によって行われる。   On the other hand, the pressure control after the load is interrupted or after the turbine trip is performed by the bypass control valves 54 and 55 based on the control signal via the bypass control valve signal distributor 74. Further, the rotational speed control after the load is interrupted, and the subsequent re-insertion and the load control are performed by adjusting the flow rate by changing the stationary blade flow path angle based on the control signal of the electric governor 20.

本炉頂圧回収タービンの制御システムによれば、高炉51の下流の排ガス路60に2つのバイパス制御弁54,55をタービン1に並列に配設し、これら並列に配設されたバイパス制御弁54,55により、ダービン1の前圧を徐々に増加あるいは減少させて、タービン1の起動時及び停止時の回転数制御及び負荷制御を行なう。したがって、従来のように、通常運転時の圧力に高められた排ガスが、第1段静翼をその流路全閉角度から徐々に開けていく過程又は閉じていく過程で噴流となり、この噴流が動翼に吹きつけられることが防止される。また、従来の調速弁も不要となる。   According to the control system for the main furnace top pressure recovery turbine, two bypass control valves 54 and 55 are arranged in parallel with the turbine 1 in the exhaust gas passage 60 downstream of the blast furnace 51, and these bypass control valves are arranged in parallel. By 54 and 55, the pre-pressure of the durbin 1 is gradually increased or decreased, and the rotational speed control and load control when the turbine 1 is started and stopped are performed. Therefore, as in the prior art, the exhaust gas, which has been increased to the pressure during normal operation, becomes a jet in the process of gradually opening or closing the first stage stationary blade from its fully closed angle, and this jet flows into the moving blade. It is prevented from being sprayed on. Moreover, the conventional speed control valve is also unnecessary.

このため、多大な設備費を要することなく、第1段静翼2の噴流を原因とした動翼に対する強度上の影響を排除することができると共に、第1段静翼2へのダスト付着を防止することができる。また、タービンの起動時やタービンの停止時には、静翼2,3が流路全閉角度よりも開いた状態(流路初期設定角度)にし、静翼出口の流路面積を広げた上でタービン1の前圧を上昇させるから、噴流の発生が確実に防止される。   For this reason, it is possible to eliminate the influence on the strength of the moving blade caused by the jet of the first stage stationary blade 2 without requiring a large equipment cost, and to prevent dust from adhering to the first stage stationary blade 2. it can. In addition, when the turbine is started or stopped, the stationary blades 2 and 3 are opened from the fully closed angle of the flow passage (flow passage initial setting angle), and the flow passage area at the stationary blade outlet is widened. Since the pre-pressure of 1 is increased, the generation of a jet is reliably prevented.

バイパス制御弁54,55は、電気ガバナ20の信号によって制御されるから、タービン1の起動時や停止時のタービン制御を最適に行うことができる。また、タービン1の回転数制御や負荷制御は、タービン1と並列に配設された2つのバイパス制御弁54,55によって行われるから、タービン1の起動時や停止時のこれらの制御を正確に、かつ簡易な構成で行なうことができる。なお、タービン1と並列に配設されるバイパス制御弁は、2つに限定されるものではなく、1つ又は3つ以上であってもよい。   Since the bypass control valves 54 and 55 are controlled by a signal from the electric governor 20, turbine control when the turbine 1 is started or stopped can be optimally performed. Further, since the rotational speed control and load control of the turbine 1 are performed by the two bypass control valves 54 and 55 arranged in parallel with the turbine 1, these controls when the turbine 1 is started and stopped are accurately performed. And with a simple configuration. Note that the number of bypass control valves provided in parallel with the turbine 1 is not limited to two, and may be one or three or more.

特に、タービン1の起動時には第1及び第2バイパス制御弁54、55によってタービン1の前圧をタービン1の出口圧に略等しい圧力から増加させていく一方、タービン1の停止時にはタービン1の前圧をタービン1の出口圧に略等しい圧力まで低下させる。このように、タービン1の前後圧に圧力差がない状態からタービン1を起動させ、また、タービン1の前後圧に圧力差がない状態でタービン1を停止させるから、静翼2,3による噴流の発生がこれによっても確実に防止される。   In particular, when the turbine 1 is started, the pre-pressure of the turbine 1 is increased from a pressure substantially equal to the outlet pressure of the turbine 1 by the first and second bypass control valves 54 and 55, while when the turbine 1 is stopped, the front pressure of the turbine 1 is increased. The pressure is reduced to a pressure approximately equal to the outlet pressure of the turbine 1. In this way, the turbine 1 is started from a state where there is no pressure difference between the front and rear pressures of the turbine 1, and the turbine 1 is stopped while there is no pressure difference between the front and rear pressures of the turbine 1. This is surely prevented from occurring.

なお、上述の炉頂圧回収タービンの制御システムは一例にすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。   The above-described control system for the furnace top pressure recovery turbine is merely an example, and various modifications can be made based on the gist of the present invention, and they are not excluded from the scope of the present invention.

例えば、タービンの起動時やタービンの停止時に、静翼を必ずしもその流路全閉角度よりも開いた状態にする必要はない。ただし、その場合には、タービンの前圧の上昇と共に、静翼の角度を徐々に開くようにすることが望ましい。また、バイパス制御弁の制御は必ずしも電気ガバナの信号によって行なう必要はない。   For example, when the turbine is started or when the turbine is stopped, the stationary blade does not necessarily have to be opened more than the fully closed angle of the flow path. However, in that case, it is desirable to gradually open the angle of the stationary blades as the turbine pre-pressure increases. Further, the control of the bypass control valve is not necessarily performed by the signal of the electric governor.

タービン起動時のバイパス制御弁によるタービンの制御を、必ずしも負荷制御中に静翼の流路角度の変更による制御に移行する必要はなく、タービン停止時のバイパス制御弁によるタービンの制御を、負荷制御中に静翼の流路角度の変更による制御から移行する必要もない。また、タービンの起動時にバイパス制御弁によってタービンの前圧をタービンの出口圧に略等しい圧力から増加させていき、タービンの停止時にタービンの前圧をタービンの出口圧に略等しい圧力まで低下させる必要もない。   It is not always necessary to shift the control of the turbine by the bypass control valve at the start of the turbine to the control by changing the flow angle of the stationary blade during the load control. The control of the turbine by the bypass control valve at the time of the turbine stop is the load control. There is no need to shift from control by changing the flow path angle of the stationary blade. In addition, it is necessary to increase the turbine pre-pressure from a pressure approximately equal to the turbine outlet pressure by the bypass control valve when the turbine is started, and to reduce the turbine pre-pressure to a pressure approximately equal to the turbine outlet pressure when the turbine is stopped. Nor.

本発明の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of the furnace top pressure recovery turbine of this invention. 図1の制御システムの経過時間と炉頂圧回収タービンの作動との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time of the control system of FIG. 1, and the operation | movement of a furnace top pressure recovery turbine. 図1の制御システムのガバナ出力とバイパス制御弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the governor output of the control system of FIG. 1, and the opening degree of a bypass control valve. 従来の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of the conventional furnace top pressure recovery turbine. 図4の制御システムのガバナ出力とバイパス制御弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the governor output of the control system of FIG. 4, and the opening degree of a bypass control valve. 従来の別の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of another conventional furnace top pressure recovery turbine. 図6の制御システムのガバナ出力とバイパス制御弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the governor output of the control system of FIG. 6, and the opening degree of a bypass control valve.

符号の説明Explanation of symbols

1 タービン
2 第1段静翼
3 第2段静翼
20 電気ガバナ
21 負荷制限設定器
22 負荷設定器
23 回転数設定器
24 バイパス制御弁開度設定器
25 複合演算器
31,32 静翼角度制御弁
39、40 油圧アクチュエータ
43 リミットスイッチ
44 タイマ
51 高炉
52 ダストキャッチャ
53 湿式集塵装置
54 第1バイパス制御弁
55 第2バイパス制御弁
56 ガスホルダ
57 入口塞止弁
58 危急遮断弁
59 出口塞止弁
60 排ガス路
60a タービンガス路
61 炉頂圧検出器
62 炉頂圧設定器
63 炉頂圧調節計
64 炉頂圧調節制御装置
65 電油変換器
66 タービン前圧検出器
67 タービン前圧設定器
68 タービン前圧調節計
69 第1高位信号選択器
70 第2高位信号選択器
71 第1電油変換器
72 第2電油変換器
73 減算器
74 バイパス制御弁信号分配器
80 軸継手
81 発電機
100 高炉
101 ダストキャッチャ
102 湿式集塵装置
103 入口塞止弁
104 危急遮断弁
105 タービン
106 第1段静翼
107 発電機
108 バイパス主弁
109 バイパス制御弁
110 危急遮断弁
111 タービン
112 調速弁
113,114 静翼
115 バイパス主弁
116 バイパス制御弁
DESCRIPTION OF SYMBOLS 1 Turbine 2 1st stage stationary blade 3 2nd stage stationary blade 20 Electric governor 21 Load limit setting device 22 Load setting device 23 Rotation speed setting device 24 Bypass control valve opening degree setting device 25 Compound calculators 31 and 32 Stator blade angle control valves 39 and 40 Hydraulic actuator 43 Limit switch 44 Timer 51 Blast furnace 52 Dust catcher 53 Wet dust collector 54 First bypass control valve 55 Second bypass control valve 56 Gas holder 57 Inlet shut-off valve 58 Emergency shut-off valve 59 Outlet shut-off valve 60 Exhaust gas passage 60a Turbine Gas path 61 Furnace top pressure detector 62 Furnace top pressure setter 63 Furnace top pressure controller 64 Furnace top pressure adjustment controller 65 Electro-oil converter 66 Turbine pre-pressure detector 67 Turbine pre-pressure setter 68 Turbine pre-pressure regulator 69 1st high level signal selector 70 2nd high level signal selector 71 1st electric oil converter 72 2nd electric oil converter 73 Subtractor 74 Ipass control valve signal distributor 80 Shaft coupling 81 Generator 100 Blast furnace 101 Dust catcher 102 Wet dust collector 103 Inlet shut-off valve 104 Emergency shut-off valve 105 Turbine 106 First stage stationary blade 107 Generator 108 Bypass main valve 109 Bypass control valve 110 Critical Shut-off valve 111 Turbine 112 Control valve 113, 114 Stator blade 115 Bypass main valve 116 Bypass control valve

Claims (9)

高炉(51)から排気された排ガスにより回転駆動されて発電機(81)を回転駆動させる炉頂圧回収タービン(1)の制御システムにおいて、前記高炉下流のガス路(60)に内部を通過する排ガスの流量調節が可能なバイパス制御弁(54,55)を前記タービンと並列に配設し、前記バイパス制御弁の作動により前記タービンの前圧を変化させて前記タービンの起動時及び又は停止時の回転数制御及び又は負荷制御を行うことを特徴とする炉頂圧回収タービンの制御システム。   In the control system of the furnace top pressure recovery turbine (1) that is driven to rotate by the exhaust gas exhausted from the blast furnace (51) to drive the generator (81), the interior passes through the gas passage (60) downstream of the blast furnace. A bypass control valve (54, 55) capable of adjusting the flow rate of exhaust gas is disposed in parallel with the turbine, and the turbine pre-pressure is changed by the operation of the bypass control valve to start and / or stop the turbine. The furnace top pressure recovery turbine control system is characterized in that the rotation speed control and / or the load control are performed. 前記タービン(1)は、静翼(2,3)の流路角度を変化させる角度可変機構(31,32,39,40)を有し、前記静翼は、前記タービンの起動時に流路全閉角度よりも開いた状態にされることを特徴とする請求項1に記載の炉頂圧回収タービンの制御システム。   The turbine (1) has a variable angle mechanism (31, 32, 39, 40) for changing the flow path angle of the stationary blades (2, 3). The furnace top pressure recovery turbine control system according to claim 1, wherein the control system is set to be opened more than a closed angle. 前記タービン(1)は、静翼(2,3)の流路角度を変化させる角度可変機構(31,32,39,40)を有し、前記静翼は、前記タービンの停止時に流路全閉角度よりも開いた状態にされることを特徴とする請求項1又は2に記載の炉頂圧回収タービンの制御システム。   The turbine (1) has a variable angle mechanism (31, 32, 39, 40) for changing the flow path angle of the stationary blades (2, 3). The control system for a furnace top pressure recovery turbine according to claim 1, wherein the control system is set to be opened more than a closed angle. 前記バイパス制御弁(54,55)の前記作動は、電気ガバナ(20)の信号によって制御されることを特徴とする請求項1ないし3のいずれか一つに記載の炉頂圧回収タービンの制御システム。   Control of the top pressure recovery turbine according to any one of claims 1 to 3, characterized in that the operation of the bypass control valve (54, 55) is controlled by a signal of an electric governor (20). system. 前記タービン(1)の前記制御は、前記タービンと並列に配設された2つの前記バイパス制御弁(54,55)によって行われることを特徴とする請求項1ないし4のいずれか一つに記載の炉頂圧回収タービンの制御システム。   The said control of the said turbine (1) is performed by the two said bypass control valves (54, 55) arrange | positioned in parallel with the said turbine, The one of Claim 1 thru | or 4 characterized by the above-mentioned. Control system for turbine top pressure recovery turbine. 前記タービン(1)は、静翼(2,3)の流路角度を変化させる角度可変機構(31,32,39,40)を有し、前記タービンの起動時の前記バイパス制御弁(54,55)による前記制御は、負荷制御中に前記静翼の前記流路角度の変更による制御に移行されることを特徴とする請求項1ないし5いずれか一つに記載の炉頂圧回収タービンの制御システム。   The turbine (1) has a variable angle mechanism (31, 32, 39, 40) for changing the flow path angle of the stationary blades (2, 3), and the bypass control valve (54, The control according to claim 55 is shifted to control by changing the flow path angle of the stationary blade during load control. Control system. 前記タービン(1)は、静翼(2,3)の流路角度を変化させる角度可変機構(31,32,39,40)を有し、前記タービンの停止時の前記バイパス制御弁(54,55)による前記制御は、負荷制御中に前記静翼の前記流路角度の変更による制御から移行されることを特徴とする請求項1ないし6いずれか一つに記載の炉頂圧回収タービンの制御システム。   The turbine (1) has a variable angle mechanism (31, 32, 39, 40) for changing the flow path angle of the stationary blades (2, 3), and the bypass control valve (54, when the turbine is stopped). The control by 55) is shifted from the control by changing the flow path angle of the stationary blade during the load control, of the furnace top pressure recovery turbine according to any one of claims 1 to 6. Control system. 前記タービン(1)の起動時には前記バイパス制御弁(54,55)の前記作動により前記タービンの前圧を前記タービンの出口圧に略等しい圧力から増加させていくことを特徴とする請求項1ないし7のいずれか一つに記載の炉頂圧回収タービンの制御システム。   2. The start-up of the turbine (1) increases the pre-pressure of the turbine from a pressure substantially equal to the outlet pressure of the turbine by the operation of the bypass control valve (54, 55). The control system for a furnace top pressure recovery turbine according to any one of claims 7 to 9. 前記タービン(1)の停止時には前記バイパス制御弁(54,55)の前記作動により前記タービンの前圧を前記タービンの出口圧に略等しい圧力まで低下させることを特徴とする請求項1ないし8のいずれか一つに記載の炉頂圧回収タービンの制御システム。
The turbine according to any one of claims 1 to 8, wherein when the turbine (1) is stopped, the operation of the bypass control valve (54, 55) reduces the pre-pressure of the turbine to a pressure substantially equal to the outlet pressure of the turbine. The furnace top pressure recovery turbine control system according to any one of the above.
JP2005100398A 2005-03-31 2005-03-31 Control system of furnace top pressure recovery turbine Pending JP2006283563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100398A JP2006283563A (en) 2005-03-31 2005-03-31 Control system of furnace top pressure recovery turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100398A JP2006283563A (en) 2005-03-31 2005-03-31 Control system of furnace top pressure recovery turbine

Publications (1)

Publication Number Publication Date
JP2006283563A true JP2006283563A (en) 2006-10-19

Family

ID=37405755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100398A Pending JP2006283563A (en) 2005-03-31 2005-03-31 Control system of furnace top pressure recovery turbine

Country Status (1)

Country Link
JP (1) JP2006283563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089452A (en) * 2011-10-28 2013-05-08 鞍山钢铁集团公司第二发电厂 CCPP running operation method within short period of time in shortage of blast furnace gas
WO2013141201A1 (en) * 2012-03-22 2013-09-26 三菱重工業株式会社 Solar-thermal power-generating facility, and method for starting-up same
WO2015029724A1 (en) * 2013-08-29 2015-03-05 ヤンマー株式会社 Electricity-generating device
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106302A (en) * 1976-03-05 1977-09-06 Hitachi Ltd Method and apparatus for controlling of blast furnace top pressure
JPS55100907A (en) * 1979-01-22 1980-08-01 Sumitomo Metal Ind Ltd Control of pressure at top of blast furnace
JPH01190926A (en) * 1988-01-22 1989-08-01 Kobe Steel Ltd Control for bypass valve of exhaust gas pressure recovering turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52106302A (en) * 1976-03-05 1977-09-06 Hitachi Ltd Method and apparatus for controlling of blast furnace top pressure
JPS55100907A (en) * 1979-01-22 1980-08-01 Sumitomo Metal Ind Ltd Control of pressure at top of blast furnace
JPH01190926A (en) * 1988-01-22 1989-08-01 Kobe Steel Ltd Control for bypass valve of exhaust gas pressure recovering turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089452A (en) * 2011-10-28 2013-05-08 鞍山钢铁集团公司第二发电厂 CCPP running operation method within short period of time in shortage of blast furnace gas
WO2013141201A1 (en) * 2012-03-22 2013-09-26 三菱重工業株式会社 Solar-thermal power-generating facility, and method for starting-up same
AU2013236290B2 (en) * 2012-03-22 2015-11-12 Mitsubishi Heavy Industries, Ltd. Solar thermal power generation facility and method of starting up same
US9482210B2 (en) 2012-03-22 2016-11-01 Mitsubishi Heavy Industries, Ltd. Solar thermal power generation facility and method of starting up same
WO2015029724A1 (en) * 2013-08-29 2015-03-05 ヤンマー株式会社 Electricity-generating device
JP2015048711A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set

Similar Documents

Publication Publication Date Title
JP4838785B2 (en) Gas turbine operation control device and operation control method
CN101581252B (en) Method for controlling set point for extracting air to provide cooling air
US11053861B2 (en) Overspeed protection system and method
WO2015119135A1 (en) Control device for gas turbine, gas turbine, and method for controlling gas turbine
JP2004100612A (en) Gas compressor controlling equipment and gas turbine plant controlling mechanism
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP2006283563A (en) Control system of furnace top pressure recovery turbine
JP6249920B2 (en) Operating method of bypass valve in blast furnace top pressure power generation facility
JP2006274805A (en) Control system of furnace gas recovery turbine
EP2840238A1 (en) Operation of a gas turbine power plant with carbon dioxide separation
JP2007309194A (en) Steam turbine plant
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP5147766B2 (en) Gas turbine rotation control device
JP2002242813A (en) Power generation system
JP5832080B2 (en) Power generation system control device, power generation system, and power generation system control method
WO2014199643A1 (en) Engine system, and ship
JP2021099042A (en) Compressor system
JPS6142084B2 (en)
JP3608218B2 (en) Turbine speed control device for gas turbine power generation equipment
JP3020893B2 (en) Turbine emergency control device
JP3767918B2 (en) Inlet valve control device for pump turbine
JPH07158406A (en) Power generating radial turbine stop device
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JP3909466B2 (en) Steam turbine operation method
JPH0411727B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A02