JP3608218B2 - Turbine speed control device for gas turbine power generation equipment - Google Patents

Turbine speed control device for gas turbine power generation equipment Download PDF

Info

Publication number
JP3608218B2
JP3608218B2 JP09184794A JP9184794A JP3608218B2 JP 3608218 B2 JP3608218 B2 JP 3608218B2 JP 09184794 A JP09184794 A JP 09184794A JP 9184794 A JP9184794 A JP 9184794A JP 3608218 B2 JP3608218 B2 JP 3608218B2
Authority
JP
Japan
Prior art keywords
turbine
air compressor
pressure
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09184794A
Other languages
Japanese (ja)
Other versions
JPH07293273A (en
Inventor
博文 古越
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP09184794A priority Critical patent/JP3608218B2/en
Publication of JPH07293273A publication Critical patent/JPH07293273A/en
Application granted granted Critical
Publication of JP3608218B2 publication Critical patent/JP3608218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【産業上の利用分野】
本発明はガスタービン発電設備のタービン速度制御装置に関するものである。
【0002】
【従来の技術】
図4は従来のガスタービン発電設備の一例を示したもので、高圧タービン1と高圧空気圧縮機2と発電機3を同一の軸4に備え、また入口ガイドベーン5を有した低圧タービン6と低圧空気圧縮機7を別の同一の軸8に備え、ボイラ9からの燃焼ガスを、高温弁(インターセプト弁)10を介して前記高圧タービン1、及び低圧タービン6に順次導いて煙突11に排出するようにしたガス流路12を備え、また空気を、前記低圧空気圧縮機7、空気冷却器13、及び高圧空気圧縮機2に順次導いてボイラ9に供給するようにした空気流路14を備えている。
【0003】
通常、高圧タービン1、高圧空気圧縮機2及び発電機3からなる高速回転部15に対して、低圧タービン6及び低圧空気圧縮機7からなる低速回転部16の回転数は、導入される燃焼ガスの温度及び圧力が低くなっていることから小さくなっており、また低圧タービン6は、その入口に備えられた入口ガイドベーン5の開度を制御信号23によって変更することにより、低圧空気圧縮機7の回転数を変えて、低圧空気圧縮機7から取入れて圧縮しボイラ9に供給する空気の流量を調整するようになっている。
【0004】
前記空気流路14における高圧空気圧縮機2の出口と前記ガス流路12における高温弁10の出口との間にバイパス流路17を備え、且つ前記空気流路14とバイパス流路17の接続部に、空気をボイラ9に導くか又はガス流路12の高温弁10の出口に導くかを切替える切換弁(三方弁)18を備えている。
【0005】
また、前記発電機3には、遮断器19を介して電力系統20が接続されており、前記遮断器19は電力系統20の事故、或いは発電機3の電気事故等が発生した場合に、保護リレー回路による遮断指令21によって発電機負荷を遮断(OFF)するようになっている。
【0006】
上記した発電機負荷遮断時に、遮断指令21を受けて前記高温弁10を閉鎖すると共に、前記高圧空気圧縮機2出口の空気をバイパス流路17を介してガス流路12における高温弁10の出口に循環させるよう前記切換弁18を切替えるように指令するトリップ制御器22を備えている。
【0007】
更に、前記発電機負荷遮断時に、遮断指令21を受けて、前記低圧タービン6の入口ガイドベーン5に発電機負荷遮断時直前の制御信号23による開度を保持させておく指令を出すようにした開度固定制御器24を備えるようにしている。
【0008】
上記構成において、通常時は、ボイラ9からの高温ガス(800〜850℃)は高温弁10を備えたガス流路12を介して高圧タービン1及び低圧タービン6に順次供給されてそれを回転することにより発電機3、高圧空気圧縮機2及び低圧空気圧縮機7を回転駆動し、これにより空気が低圧空気圧縮機7及び高圧空気圧縮機2に順次導かれて加圧され、燃焼用空気等としてボイラ9に供給されるようになっている。また、発電機3で発電された電気は、遮断器19を介して電力系統20に供給される。
【0009】
この状態において電気的事故が発生し、保護リレー回路による遮断指令21によって遮断器19が遮断される発電機負荷遮断時は、前記トリップ制御器22により高温弁10が急速に全閉されて高圧タービン1の駆動エネルギーが遮断され、同時に高圧空気圧縮機2出口の空気がバイパス流路17を介してガス流路12における高温弁10の出口に循環させるように切換弁18が切替えられる。またこの時、開度固定制御器24によって前記低圧タービン6に備えた入口ガイドベーン5の開度を、発電機負荷遮断時直前の開度に固定するように制御される。
【0010】
【発明が解決しようとする課題】
しかし、前記従来のガスタービン発電設備のタービン速度制御装置においては、発電機負荷遮断時に、トリップ制御器22によって高温弁10を急速に全閉にするようにしているが、前記ガス流路12は非常に大径であって高温弁10が大型の構造を有しているために、全閉する際の動作速度が遅く、そのために高圧タービン1に導入される燃焼ガスがゆっくり絞り込まれることになり、しかも燃焼ガスが高温のためにガス流路12及び高温弁10が変形して全閉にしても大量の燃焼ガスがリークし、この高温の燃焼ガスがバイパス流路17からの圧縮空気と混合されて高圧タービン1に供給され続けることになり、更にこのような高圧タービン1へのガスの供給が継続されることと、前記遮断器19が開となって発電機3の負荷喪失により回転負荷が激減することによって、高圧タービン1、高圧空気圧縮機2及び発電機3からなる高速回転部15の回転数が過渡的に上昇し、場合によっては高速回転部15に過大な遠心力が作用する危険速度(定格負荷の111%)に達してしまう問題を有していた。
【0011】
本発明は、このような発電機負荷遮断時に、タービン等の回転数が危険速度まで上昇するのを抑制して、装置の安全性を確保するようにしたガスタービン発電設備のタービン速度制御装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明は、高圧タービンと高圧空気圧縮機と発電機を同軸に備え、また入口ガイドベーンを有した低圧タービンと低圧空気圧縮機を別の同軸に備え、ボイラからの燃焼ガスを高温弁を介して前記高圧タービン及び低圧タービンに順次導くガス流路を備え、空気を前記低圧空気圧縮機及び高圧空気圧縮機に順次導いてボイラに供給する空気流路を備え、該空気流路における高圧空気圧縮機の出口と前記ガス流路における高温弁の出口との間にバイパス流路を備え、高圧空気圧縮機出口の空気をボイラに導くかバイパス流路に導くかを切替える切換弁を備え、発電機負荷遮断時に前記高温弁を閉鎖すると共に、前記高圧空気圧縮機出口の空気をバイパス流路に循環させるように前記切換弁を切替えるトリップ制御器を備えたガスタービン発電設備のタービン速度制御装置であって、発電機負荷遮断時に開度絞り込み指令を低圧タービンの入口ガイドベーンに出す絞り込み指令制御器を備えたことを特徴とするガスタービン発電設備のタービン速度制御装置、及び、高圧タービン、低圧タービン、高圧空気圧縮機、低圧空気圧縮機及び発電機を同軸に備え、ボイラからの燃焼ガスを高温弁を介して前記高圧タービン及び低圧タービンに順次導くガス流路を備え、空気を前記低圧空気圧縮機及び高圧空気圧縮機に順次導いてボイラに供給する空気流路を備え、該空気流路における高圧空気圧縮機の出口と前記ガス流路における高温弁の出口との間にバイパス流路を備え、高圧空気圧縮機出口の空気をボイラに導くかバイパス流路に導くかを切替える切換弁を備え、発電機負荷遮断時に前記高温弁を閉鎖すると共に、前記高圧空気圧縮機出口の空気をバイパス流路に循環させるように前記切換弁を切替えるトリップ制御器を備えたガスタービン発電機設備のタービン速度制御装置であって、前記低圧タービンのガス出口に絞り弁を配設し、且つ発電機負荷遮断時に前記絞り弁に絞り込み指令を出すガス流量指令制御器を備えたことを特徴とするガスタービン発電設備のタービン速度制御装置、に係るものである。
【0013】
【作用】
請求項1の発明では、発電機負荷遮断時に開度絞り込み指令を低圧タービンの入口ガイドベーンに出すようにした絞り込み指令制御器を備えているので、発電機負荷遮断時に入口ガイドベーンの開度を絞り込むことにより、低圧タービンの回転数を上昇させて低圧タービン側の仕事量を増加させ、これにより高圧タービンを流動する燃焼ガスの流量を抑制することによって高圧タービンの回転数を押えて、高圧タービンが危険速度になるのを防止する。
【0014】
請求項2の発明では、低圧タービンのガス出口に絞り弁を配設し、発電機負荷遮断時に前記絞り弁に絞り込み指令を出すようにしたガス流量指令制御器を備えているので、発電機負荷遮断時に前記絞り弁を絞り込んで低圧タービンから吐出される燃焼ガスの流量を減少させることにより、各タービンを流動する燃焼ガスの流量を減少させ、これによりタービンの回転数を押えてタービンが危険速度になるのを防止する。
【0015】
【実施例】
以下、本発明の実施例を図面を参照しつつ説明する。
【0016】
図1は、前記図4の従来のガスタービン発電設備に適用した請求項1の発明の一実施例を示したもので、高圧タービン1、高圧空気圧縮機2及び発電機3を同一の軸4に取付けた高速回転部15と、入口ガイドベーン5を有した低圧タービン6及び低圧空気圧縮機7を別の同一の軸8に取付けた低速回転部16を備え、ボイラ9からの燃焼ガスを高温弁10を介して前記高圧タービン1、及び低圧タービン6に順次導くガス流路12を備え、また空気を前記低圧空気圧縮機7、空気冷却器13、及び高圧空気圧縮機2に順次導いてボイラ9に供給する空気流路14を備える。更に、該空気流路14における高圧空気圧縮機2の出口と前記ガス流路12における高温弁10の出口との間にバイパス流路17を備え、且つ前記空気流路14とバイパス流路17の接続部に、空気をボイラ9に導くか又はガス流路12の高温弁10出口に導くかを切替える切換弁18を備える。
【0017】
また、発電機負荷遮断時に、前記高温弁10を閉塞すると共に、前記高圧空気圧縮機2出口の空気をバイパス流路17を介してガス流路12における高温弁10の出口に循環させるよう前記切換弁18を切替る指令を行うトリップ制御器22を備える。
【0018】
上記構成において、前記低圧タービン6の入口ガイドベーン5に、発電機負荷遮断時に開度絞り込み指令25を出すようにした絞り込み指令制御器26を備える。
【0019】
絞り込み指令制御器26は、0%指令27と、発電機負荷遮断時直前の制御信号23による開度のα%を指令する開度絞り込み指令25とを入力し、通常運転時は0%指令27を選択し、発電機負荷遮断時には遮断指令21により切替を行って前記α%の開度絞り込み指令25を出力するようにした切替器28を備えており、更に該切替器28からの指令を前記制御信号23から引算するようにした引算器29を備えている。従って、上記絞り込み指令制御器26では、発電機負荷遮断時に、該発電機負荷遮断時直前の入口ガイドベーン5の開度からα%の開度を差し引いた開度になるように入口ガイドベーン5の開度が絞り込み制御されるようになっている。
【0020】
また、図2は上記絞り込み指令制御器26の他の例を示すもので、通常運転時の入口ガイドベーン5の開度を制御するための制御信号23と、入口ガイドベーン5の全開に対するβ%の開度絞り込み指令30とを入力し、通常時は前記制御信号23を入口ガイドベーン5に出力し、発電機負荷遮断時は遮断指令21によって切替を行って前記開度絞り込み指令30を入口ガイドベーン5に出力するようにした切替器31を備えた絞り込み指令制御器32としている。この絞り込み指令制御器32では、発電機負荷遮断時、入口ガイドベーン5が、該入口ガイドベーン5の全開時の開度に対して設定されたβ%の開度になるように、直ちに絞り込み開度絞り込み指令30によって制御される。前記開度絞り込み指令25及び30は、ガスタービン発電設備の負荷が最大の状態から前記発電機負荷遮断が起こった時に、タービン等の回転数が危険速度に達しないような値に設定する。
【0021】
次に上記実施例の作用を説明する。
【0022】
通常運転時は、ボイラ9からの高温ガスが高温弁10を備えたガス流路12を介して高圧タービン1及び低圧タービン6に順次供給されて高圧空気圧縮機2及び低圧空気圧縮機7を回転駆動し、これにより空気が空気流路14により低圧空気圧縮機7及び高圧空気圧縮機2に順次導かれて加圧され、ボイラ9の燃焼用空気等としてボイラ9に供給される。
【0023】
電気的な事故の発生による発電機負荷遮断時は、トリップ制御器22によって高温弁10が急速に全閉されて高圧タービン1の駆動エネルギーが遮断され、同時に切換弁18が切替えられて高圧空気圧縮機2出口の空気がバイパス流路17を介してガス流路12における高温弁10の出口に循環される。
【0024】
この侭だと従来と同様に、高温弁10が全閉作動する動作速度が遅いこと、及び高温の燃焼ガスがリークすることによって、高温の燃焼ガスが圧縮空気と混合されて低圧タービン6に供給され続け、しかも発電機3の負荷喪失により回転負荷が軽減されることによって、高速回転部15の回転数が過渡的に上昇して危険速度を超える危険がある。
【0025】
これに対して、図1に示した絞り込み指令制御器26では、通常時は切替器28によって0%指令27を引算器29に入力し、従って低圧タービン6の入口ガイドベーン5が制御信号23によって制御されているが、前記発電機負荷遮断時には遮断指令21によって切替器28が切替えられてα%の開度絞り込み指令25が選択されて引算器29に入力されるようになっているので、発電機負荷遮断時には、該発電機負荷遮断時直前の入口ガイドベーン5の開度からα%の開度を差し引いた開度になるように入口ガイドベーン5の開度が絞り込まれるように制御される。
【0026】
また、図2の絞り込み指令制御器32では、通常時は制御信号23を選択していた切替器31が、発電機負荷遮断時は遮断指令21によってβ%の開度絞り込み指令30を選択するように切替えるようになっているので、発電機負荷遮断時には、入口ガイドベーン5の開度が、全開時の開度に対して予め設定されたβ%の開度に直ちになるように制御される。
【0027】
上記したように、発電機負荷遮断時に開度絞り込み指令25又は30を低圧タービン6の入口ガイドベーン5に出すようにした絞り込み指令制御器26,32を備えているので、発電機負荷遮断時に、入口ガイドベーン5の開度が発電機負荷遮断時直前の入口ガイドベーン5の開度からα%の開度を差し引いた開度、又は、ガイドベーン5の全開時の開度に対して予め設定されたβ%の開度になるように絞り込むことによって、低圧タービン6の回転数を上昇させて低圧タービン6側の仕事量を増加させると同時に、高圧タービン1を流動する燃焼ガスの流量を抑制することによって高圧タービン1の回転数を抑え、高圧タービン1が危険速度になるのを防止する。
【0028】
図3は請求項2の発明の一実施例を示したもので、高圧タービン1、低圧タービン6、高圧空気圧縮機2、低圧空気圧縮機7及び発電機3が同一の軸33に備えられた構成のガスタービン発電設備において、ボイラ9からの燃焼ガスを高温弁10を介して前記高圧タービン1及び低圧タービン6に順次導くガス流路12を備えると共に、空気を前記低圧空気圧縮機7及び高圧空気圧縮機2に順次導いて加圧した後ボイラ9に供給する空気流路14を備えている。更に、前記空気流路14における高圧空気圧縮機2の出口と前記ガス流路12における高温弁10の出口との間にバイパス流路17を備え、且つ前記空気流路14とバイパス流路17の接続部に、空気をボイラ9に導くか又はガス流路12の高温弁10出口に導くかを切替える切換弁18を備える。
【0029】
また、発電機負荷遮断時に前記高温弁10を閉塞すると共に、前記高圧空気圧縮機2出口の空気をバイパス流路17を介してガス流路12における高温弁10の出口に循環させるよう前記切換弁18を切替え制御するようにしたトリップ制御器22を備える。
【0030】
上記構成において、低圧タービン6のガス出口に絞り弁34を配設し、発電機負荷遮断時に、遮断指令21を受けて前記絞り弁34に絞り込み指令35を出すようにしたガス流量指令制御器36を配設する。
【0031】
上記図3の実施例では、発電機負荷遮断時に、遮断指令21を受けたガス流量指令制御器36が低圧タービン6のガス出口に設けた絞り弁34に絞り込み指令35を出して該絞り弁34を絞り込むようにしているので、発電機負荷遮断時に前記絞り弁34が絞り込まれることによって低圧タービン6から吐出される燃焼ガスの流量が減少され、よって各タービン1,6を流動する燃焼ガスの流量が減少されることにより、タービン1,6の回転数が押えられてタービン1,6が危険速度になるのが防止される。
【0032】
【発明の効果】
請求項1の発明では、高圧タービンと高圧空気圧縮機と発電機を同軸に備え、入口ガイドベーンを有した低圧タービンと低圧空気圧縮機を別の同軸に備えた構成のガスタービン発電設備において、発電機負荷遮断時に開度絞り込み指令を低圧タービンの入口ガイドベーンに出すようにした絞り込み指令制御器を備えたので、発電機負荷遮断時に入口ガイドベーンの開度を絞り込むことによって、低圧タービンの回転数を上昇させて低圧タービン側の仕事量を増加させ、これにより高圧タービンを流動する燃焼ガスの流量を抑制して高圧タービンの回転数を押え、高圧タービンが危険速度になるのを防止することができる。
【0033】
請求項2の発明では、高圧タービン、低圧タービン、高圧空気圧縮機、低圧空気圧縮機及び発電機が同一の軸に備えられた構成のガスタービン発電設備において、低圧タービンのガス出口に絞り弁を配設し、発電機負荷遮断時に前記絞り弁に絞り込み指令を出すようにしたガス流量指令制御器を備えたので、発電機負荷遮断時に前記絞り弁を絞り込んで低圧タービンから吐出される燃焼ガスの流量を減少させることにより、各タービンを流動する燃焼ガスの流量を減少させ、これによりタービンの回転数を押えてタービンが危険速度になるのを防止することができる。
【図面の簡単な説明】
【図1】請求項1の発明の一実施例を示すブロック図である。
【図2】図1の絞り込み指令制御器の他の例を示すブロック図である。
【図3】請求項2の発明の一実施例を示すブロック図である。
【図4】従来のガスタービン発電設備のタービン速度制御装置の一例を示すブロック図である。
【符号の説明】
1 高圧タービン
2 高圧空気圧縮機
3 発電機
4 軸
5 入口ガイドベーン
6 低圧タービン
7 低圧空気圧縮機
8 軸
9 ボイラ
10 高温弁
12 ガス流路
14 空気流路
17 バイパス流路
18 切換弁
22 トリップ制御器
25 開度絞り込み指令
26 絞り込み指令制御器
30 開度絞り込み指令
32 絞り込み指令制御器
33 軸
34 絞り弁
35 絞り込み指令
36 ガス流量指令制御器
[0001]
[Industrial application fields]
The present invention relates to a turbine speed control device for gas turbine power generation equipment.
[0002]
[Prior art]
FIG. 4 shows an example of a conventional gas turbine power generation facility. A high pressure turbine 1, a high pressure air compressor 2, and a generator 3 are provided on the same shaft 4, and a low pressure turbine 6 having an inlet guide vane 5. A low-pressure air compressor 7 is provided on another same shaft 8, and combustion gas from the boiler 9 is sequentially guided to the high-pressure turbine 1 and the low-pressure turbine 6 through a high-temperature valve (intercept valve) 10 and discharged to the chimney 11. An air flow path 14 that is provided with a gas flow path 12 that is configured to guide the air to the low-pressure air compressor 7, the air cooler 13, and the high-pressure air compressor 2. I have.
[0003]
In general, the rotational speed of the low-speed rotating unit 16 including the low-pressure turbine 6 and the low-pressure air compressor 7 is different from that of the high-speed rotating unit 15 including the high-pressure turbine 1, the high-pressure air compressor 2, and the generator 3. Since the temperature and pressure of the low pressure turbine 6 are low, the low pressure turbine 6 changes the opening degree of the inlet guide vane 5 provided at the inlet thereof by the control signal 23 to thereby reduce the low pressure air compressor 7. , And the flow rate of air supplied from the low-pressure air compressor 7 and compressed and supplied to the boiler 9 is adjusted.
[0004]
A bypass passage 17 is provided between the outlet of the high-pressure air compressor 2 in the air passage 14 and the outlet of the high temperature valve 10 in the gas passage 12, and a connection portion between the air passage 14 and the bypass passage 17. In addition, a switching valve (three-way valve) 18 for switching whether the air is led to the boiler 9 or the outlet of the high temperature valve 10 of the gas flow path 12 is provided.
[0005]
In addition, a power system 20 is connected to the generator 3 through a circuit breaker 19, and the circuit breaker 19 is protected in the event of an accident in the power system 20 or an electrical accident in the generator 3. The generator load is cut off (OFF) by a cut-off command 21 by the relay circuit.
[0006]
When the generator load is shut off, the high temperature valve 10 is closed in response to the shut-off command 21, and the outlet of the high temperature valve 10 in the gas flow path 12 is passed through the bypass flow path 17 for the air at the outlet of the high pressure air compressor 2. A trip controller 22 is provided for instructing to switch the switching valve 18 so as to be circulated.
[0007]
Further, when the generator load is cut off, a cut-off command 21 is received, and a command is issued to keep the opening degree by the control signal 23 immediately before the generator load is cut off at the inlet guide vane 5 of the low-pressure turbine 6. An opening fixing controller 24 is provided.
[0008]
In the above configuration, normally, high-temperature gas (800 to 850 ° C.) from the boiler 9 is sequentially supplied to the high-pressure turbine 1 and the low-pressure turbine 6 via the gas flow path 12 provided with the high-temperature valve 10 to rotate it. As a result, the generator 3, the high-pressure air compressor 2 and the low-pressure air compressor 7 are rotationally driven, whereby the air is sequentially guided to the low-pressure air compressor 7 and the high-pressure air compressor 2 to be pressurized, and combustion air, etc. Is supplied to the boiler 9. Further, the electricity generated by the generator 3 is supplied to the power system 20 via the circuit breaker 19.
[0009]
In this state, when an electrical accident occurs and the breaker 19 is shut off by the shut-off command 21 by the protective relay circuit, the high-temperature valve 10 is rapidly fully closed by the trip controller 22 and the high-pressure turbine is shut off. The switching valve 18 is switched so that the air at the outlet of the high pressure air compressor 2 is circulated to the outlet of the high temperature valve 10 in the gas passage 12 via the bypass passage 17. At this time, the opening fixing controller 24 controls the opening of the inlet guide vane 5 provided in the low-pressure turbine 6 to be fixed to the opening just before the generator load is cut off.
[0010]
[Problems to be solved by the invention]
However, in the conventional turbine speed control device of the gas turbine power generation facility, the high temperature valve 10 is rapidly fully closed by the trip controller 22 when the generator load is cut off. Since the high-temperature valve 10 has a large structure with a very large diameter, the operation speed when fully closed is slow, so that the combustion gas introduced into the high-pressure turbine 1 is slowly throttled. Moreover, even if the gas flow path 12 and the high temperature valve 10 are deformed and fully closed due to the high temperature of the combustion gas, a large amount of combustion gas leaks, and this high temperature combustion gas is mixed with the compressed air from the bypass flow path 17. And the supply of gas to the high-pressure turbine 1 is continued, and the circuit breaker 19 is opened and the load on the generator 3 is lost. As the rolling load is drastically reduced, the rotational speed of the high-speed rotating unit 15 including the high-pressure turbine 1, the high-pressure air compressor 2, and the generator 3 rises transiently. In some cases, excessive centrifugal force is applied to the high-speed rotating unit 15. There was a problem that the critical speed (111% of the rated load) was reached.
[0011]
The present invention provides a turbine speed control device for a gas turbine power generation facility that prevents the rotation speed of a turbine or the like from rising to a dangerous speed at the time of such a generator load interruption and ensures the safety of the apparatus. It is intended to provide.
[0012]
[Means for Solving the Problems]
The present invention comprises a high-pressure turbine, a high-pressure air compressor, and a generator on the same axis, and a low-pressure turbine having an inlet guide vane and a low-pressure air compressor on another axis, and the combustion gas from the boiler is passed through a high-temperature valve. Gas passages that sequentially guide the high-pressure turbine and the low-pressure turbine, and air passages that sequentially guide the air to the low-pressure air compressor and the high-pressure air compressor and supply the boiler to the high-pressure turbine. A bypass flow path between the outlet of the machine and the outlet of the high-temperature valve in the gas flow path, and a switching valve for switching whether the air at the outlet of the high-pressure air compressor is led to the boiler or the bypass flow path, A gas turbine power generation facility provided with a trip controller that closes the high-temperature valve when the load is shut off and switches the switching valve so as to circulate the air at the outlet of the high-pressure air compressor to the bypass flow path A turbine speed control device for a gas turbine power generation facility, comprising a throttle command controller that outputs an aperture narrowing command to an inlet guide vane of a low-pressure turbine when a generator load is interrupted, and A high-pressure turbine, a low-pressure turbine, a high-pressure air compressor, a low-pressure air compressor and a generator are coaxially provided, and a gas flow path for sequentially leading combustion gas from the boiler to the high-pressure turbine and the low-pressure turbine through a high-temperature valve is provided. Are provided in order to supply the boiler to the low-pressure air compressor and the high-pressure air compressor, between the outlet of the high-pressure air compressor in the air passage and the outlet of the high-temperature valve in the gas passage. A bypass valve is provided, and a switching valve is provided for switching whether the air at the outlet of the high-pressure air compressor is guided to the boiler or the bypass flow path. A turbine speed control device for a gas turbine generator facility comprising a trip controller for closing the valve and switching the switching valve so as to circulate the air at the outlet of the high-pressure air compressor to a bypass flow path, A turbine speed control device for a gas turbine power generation facility, characterized in that a throttle valve is disposed at a gas outlet of the turbine and a gas flow rate command controller for issuing a throttle command to the throttle valve when the generator load is shut off. It is concerned.
[0013]
[Action]
According to the first aspect of the present invention, since the throttle command controller is provided so that the opening degree narrowing command is output to the inlet guide vane of the low-pressure turbine when the generator load is shut off, the opening degree of the inlet guide vane is set when the generator load is shut off. By narrowing down, the rotational speed of the low-pressure turbine is increased to increase the amount of work on the low-pressure turbine side, thereby suppressing the flow rate of the combustion gas flowing through the high-pressure turbine, thereby suppressing the rotational speed of the high-pressure turbine. To prevent dangerous speed.
[0014]
In the invention of claim 2, since the throttle valve is disposed at the gas outlet of the low-pressure turbine and the throttle valve is provided with a gas flow rate command controller when the generator load is shut off, the generator load is provided. By reducing the flow rate of the combustion gas discharged from the low-pressure turbine by narrowing the throttle valve at the time of shut-off, the flow rate of the combustion gas flowing through each turbine is reduced, thereby suppressing the turbine rotation speed and causing the turbine to operate at a critical speed. To prevent becoming.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 shows an embodiment of the invention of claim 1 applied to the conventional gas turbine power generation facility shown in FIG. 4, wherein the high pressure turbine 1, the high pressure air compressor 2 and the generator 3 are connected to the same shaft 4. And a low-speed rotating section 16 having a low-pressure turbine 6 having an inlet guide vane 5 and a low-pressure air compressor 7 mounted on another same shaft 8, and the combustion gas from the boiler 9 is heated to a high temperature. A gas passage 12 is provided for sequentially leading to the high-pressure turbine 1 and the low-pressure turbine 6 through a valve 10, and air is sequentially guided to the low-pressure air compressor 7, the air cooler 13, and the high-pressure air compressor 2. 9 is provided with an air flow path 14 to be supplied to the air passage 9. Further, a bypass channel 17 is provided between the outlet of the high-pressure air compressor 2 in the air channel 14 and the outlet of the high temperature valve 10 in the gas channel 12, and the air channel 14 and the bypass channel 17 The connecting portion is provided with a switching valve 18 for switching whether air is led to the boiler 9 or the high temperature valve 10 outlet of the gas flow path 12.
[0017]
Further, when the generator load is cut off, the high temperature valve 10 is closed, and the switching is performed so that the air at the outlet of the high pressure air compressor 2 is circulated to the outlet of the high temperature valve 10 in the gas passage 12 via the bypass passage 17. A trip controller 22 is provided to give a command to switch the valve 18.
[0018]
In the above-described configuration, the inlet guide vane 5 of the low-pressure turbine 6 is provided with a throttle command controller 26 that outputs an aperture throttle command 25 when the generator load is shut off.
[0019]
The narrowing command controller 26 receives a 0% command 27 and an opening narrowing command 25 for commanding α% of the opening based on the control signal 23 immediately before the generator load is cut off. And when the generator load is cut off, the switch 28 is switched according to the cut-off command 21 so as to output the α% opening narrowing command 25. Further, the command from the switch 28 is A subtractor 29 is provided which is subtracted from the control signal 23. Therefore, in the narrowing-down command controller 26, when the generator load is shut off, the inlet guide vane 5 is set to an opening obtained by subtracting the opening of α% from the opening of the inlet guide vane 5 just before the generator load is shut off. Is controlled to narrow down.
[0020]
FIG. 2 shows another example of the above-described narrowing command controller 26. The control signal 23 for controlling the opening degree of the inlet guide vane 5 during normal operation and β% with respect to the fully opening of the inlet guide vane 5 are shown. The control signal 23 is normally output to the inlet guide vane 5 and when the generator load is shut off, switching is performed by the shut-off command 21 so that the opening narrowing command 30 is input to the inlet guide vane 5. The narrowing command controller 32 includes a switch 31 that outputs to the vane 5. In this throttle command controller 32, when the generator load is shut off, the throttle guide opening 5 is immediately throttled and opened so that the opening degree of the inlet guide vane 5 becomes β% set with respect to the opening degree when the inlet guide vane 5 is fully opened. It is controlled by the degree narrowing command 30. The opening degree narrowing commands 25 and 30 are set to values such that the rotational speed of the turbine or the like does not reach the critical speed when the generator load is cut off from the maximum load of the gas turbine power generation facility.
[0021]
Next, the operation of the above embodiment will be described.
[0022]
During normal operation, high-temperature gas from the boiler 9 is sequentially supplied to the high-pressure turbine 1 and the low-pressure turbine 6 via the gas flow path 12 provided with the high-temperature valve 10 to rotate the high-pressure air compressor 2 and the low-pressure air compressor 7. As a result, the air is sequentially guided to the low-pressure air compressor 7 and the high-pressure air compressor 2 through the air flow path 14 to be pressurized, and supplied to the boiler 9 as combustion air for the boiler 9.
[0023]
When the generator load is interrupted due to the occurrence of an electrical accident, the high temperature valve 10 is rapidly fully closed by the trip controller 22 and the driving energy of the high pressure turbine 1 is interrupted. At the same time, the switching valve 18 is switched and the high pressure air compression is performed. The air at the outlet of the machine 2 is circulated to the outlet of the high temperature valve 10 in the gas passage 12 via the bypass passage 17.
[0024]
In this case, as in the conventional case, the operation speed at which the high temperature valve 10 is fully closed is slow, and the high temperature combustion gas leaks, so that the high temperature combustion gas is mixed with the compressed air and supplied to the low pressure turbine 6. In addition, since the rotational load is reduced due to the loss of the load on the generator 3, the rotational speed of the high-speed rotating unit 15 increases transiently and there is a risk of exceeding the critical speed.
[0025]
On the other hand, in the narrowing-down command controller 26 shown in FIG. 1, the 0% command 27 is input to the subtractor 29 by the switch 28 in the normal state. However, when the generator load is shut off, the switch 28 is switched by the shut-off command 21 so that the opening degree narrowing command 25 of α% is selected and input to the subtractor 29. When the generator load is shut off, control is performed so that the opening degree of the inlet guide vane 5 is narrowed down to an opening degree obtained by subtracting the opening degree of α% from the opening degree of the inlet guide vane 5 immediately before the generator load is cut off. Is done.
[0026]
Further, in the narrowing-down command controller 32 of FIG. 2, the switch 31 that has selected the control signal 23 in the normal state selects the β% opening narrowing-down command 30 by the cutoff command 21 when the generator load is shut off. Therefore, when the generator load is interrupted, the opening degree of the inlet guide vane 5 is controlled so that it is immediately set to an opening degree of β% set in advance with respect to the opening degree when fully opened.
[0027]
As described above, since the throttle command controller 26 or 32 is provided so that the aperture narrowing command 25 or 30 is output to the inlet guide vane 5 of the low-pressure turbine 6 when the generator load is shut off, the generator load is shut off . , the opening degree of opening of the inlet guide vane 5 minus alpha% of the opening from the opening of the inlet guide vane 5 of the immediately preceding time generator load rejection, or, in advance for the fully open time of the opening of the guide vanes 5 by narrow down so as to set beta% opening, and at the same time by increasing the rotational speed of the low pressure turbine 6 Ru increases the workload of the low pressure turbine 6 side, the flow rate of the combustion gas flowing through the high pressure turbine 1 By suppressing this, the number of rotations of the high-pressure turbine 1 is suppressed and the high-pressure turbine 1 is prevented from reaching a dangerous speed.
[0028]
FIG. 3 shows an embodiment of the invention of claim 2, wherein the high-pressure turbine 1, the low-pressure turbine 6, the high-pressure air compressor 2, the low-pressure air compressor 7, and the generator 3 are provided on the same shaft 33. The gas turbine power generation equipment having the configuration includes a gas flow path 12 that sequentially guides combustion gas from the boiler 9 to the high-pressure turbine 1 and the low-pressure turbine 6 through a high-temperature valve 10, and air is supplied to the low-pressure air compressor 7 and the high-pressure turbine. An air flow path 14 is provided that is sequentially guided to the air compressor 2 and pressurized and then supplied to the boiler 9. Further, a bypass channel 17 is provided between the outlet of the high-pressure air compressor 2 in the air channel 14 and the outlet of the high temperature valve 10 in the gas channel 12, and the air channel 14 and the bypass channel 17 The connecting portion is provided with a switching valve 18 for switching whether air is led to the boiler 9 or the high temperature valve 10 outlet of the gas flow path 12.
[0029]
The switching valve is configured to close the high temperature valve 10 when the generator load is shut off and to circulate the air at the outlet of the high pressure air compressor 2 to the outlet of the high temperature valve 10 in the gas flow path 12 via the bypass flow path 17. 18 is provided with a trip controller 22 adapted to perform switching control.
[0030]
In the above-described configuration, the throttle valve 34 is disposed at the gas outlet of the low-pressure turbine 6, and the gas flow rate command controller 36 receives the cutoff command 21 and outputs the throttle command 35 to the throttle valve 34 when the generator load is shut off. Is disposed.
[0031]
In the embodiment shown in FIG. 3, when the generator load is cut off, the gas flow rate command controller 36 that has received the cut-off command 21 issues a throttle command 35 to the throttle valve 34 provided at the gas outlet of the low-pressure turbine 6. Therefore, the flow rate of the combustion gas discharged from the low-pressure turbine 6 is reduced by the throttle valve 34 being throttled when the generator load is cut off, and thus the flow rate of the combustion gas flowing through the turbines 1 and 6 is reduced. Is reduced, the rotational speed of the turbines 1 and 6 is suppressed and the turbines 1 and 6 are prevented from reaching a dangerous speed.
[0032]
【The invention's effect】
In the invention of claim 1, in the gas turbine power generation facility having a configuration in which the high pressure turbine, the high pressure air compressor, and the generator are provided coaxially, and the low pressure turbine having the inlet guide vane and the low pressure air compressor are provided on the other coaxial. Since the throttle command controller is arranged to send the opening throttling command to the inlet guide vane of the low pressure turbine when the generator load is shut off, the rotation of the low pressure turbine is reduced by narrowing the opening of the inlet guide vane when the generator load is shut off. Increase the number and increase the work on the low-pressure turbine side, thereby suppressing the flow rate of the combustion gas flowing through the high-pressure turbine to suppress the rotation speed of the high-pressure turbine and prevent the high-pressure turbine from becoming a dangerous speed Can do.
[0033]
According to a second aspect of the present invention, in the gas turbine power generation facility having a configuration in which the high pressure turbine, the low pressure turbine, the high pressure air compressor, the low pressure air compressor, and the generator are provided on the same shaft, a throttle valve is provided at the gas outlet of the low pressure turbine. Since it has a gas flow rate command controller that is arranged to issue a throttle command to the throttle valve when the generator load is shut off, the throttle valve is throttled when the generator load is shut off and the combustion gas discharged from the low-pressure turbine is controlled. By reducing the flow rate, it is possible to reduce the flow rate of the combustion gas flowing through each turbine, thereby suppressing the turbine speed and preventing the turbine from reaching a critical speed.
[Brief description of the drawings]
1 is a block diagram showing an embodiment of the invention of claim 1;
FIG. 2 is a block diagram showing another example of the narrow-down command controller of FIG.
3 is a block diagram showing an embodiment of the invention of claim 2. FIG.
FIG. 4 is a block diagram showing an example of a turbine speed control device of a conventional gas turbine power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High pressure turbine 2 High pressure air compressor 3 Generator 4 Shaft 5 Inlet guide vane 6 Low pressure turbine 7 Low pressure air compressor 8 Shaft 9 Boiler 10 High temperature valve 12 Gas flow path 14 Air flow path 17 Bypass flow path 18 Switching valve 22 Trip control 25 Opening restriction command 26 Restriction command controller 30 Opening restriction command 32 Restriction command controller 33 Shaft 34 Throttle valve 35 Restriction command 36 Gas flow rate command controller

Claims (2)

高圧タービンと高圧空気圧縮機と発電機を同軸に備え、また入口ガイドベーンを有した低圧タービンと低圧空気圧縮機を別の同軸に備え、ボイラからの燃焼ガスを高温弁を介して前記高圧タービン及び低圧タービンに順次導くガス流路を備え、空気を前記低圧空気圧縮機及び高圧空気圧縮機に順次導いてボイラに供給する空気流路を備え、該空気流路における高圧空気圧縮機の出口と前記ガス流路における高温弁の出口との間にバイパス流路を備え、高圧空気圧縮機出口の空気をボイラに導くかバイパス流路に導くかを切替える切換弁を備え、発電機負荷遮断時に前記高温弁を閉鎖すると共に、前記高圧空気圧縮機出口の空気をバイパス流路に循環させるように前記切換弁を切替えるトリップ制御器を備えたガスタービン発電設備のタービン速度制御装置であって、発電機負荷遮断時に開度絞り込み指令を低圧タービンの入口ガイドベーンに出す絞り込み指令制御器を備えたことを特徴とするガスタービン発電設備のタービン速度制御装置。A high-pressure turbine, a high-pressure air compressor, and a generator are provided on the same axis, and a low-pressure turbine having an inlet guide vane and a low-pressure air compressor are provided on the other axis, and combustion gas from the boiler is supplied to the high-pressure turbine via a high-temperature valve. And a gas passage that sequentially leads to the low-pressure turbine, and an air passage that sequentially guides air to the low-pressure air compressor and the high-pressure air compressor and supplies the boiler to the boiler, and an outlet of the high-pressure air compressor in the air passage; A bypass flow path is provided between the gas flow path and the outlet of the high temperature valve, and a switching valve is provided for switching whether the air at the outlet of the high pressure air compressor is guided to the boiler or the bypass flow path. A turbine of a gas turbine power generation facility provided with a trip controller that closes the high-temperature valve and switches the switching valve so as to circulate the air at the outlet of the high-pressure air compressor to the bypass flow path A degree control device, the generator load shedding turbine speed control device for a gas turbine generator, characterized in that with a narrowing command controller issuing the opening narrowing command the inlet guide vanes of the low pressure turbine when. 高圧タービン、低圧タービン、高圧空気圧縮機、低圧空気圧縮機及び発電機を同軸に備え、ボイラからの燃焼ガスを高温弁を介して前記高圧タービン及び低圧タービンに順次導くガス流路を備え、空気を前記低圧空気圧縮機及び高圧空気圧縮機に順次導いてボイラに供給する空気流路を備え、該空気流路における高圧空気圧縮機の出口と前記ガス流路における高温弁の出口との間にバイパス流路を備え、高圧空気圧縮機出口の空気をボイラに導くかバイパス流路に導くかを切替える切換弁を備え、発電機負荷遮断時に前記高温弁を閉鎖すると共に、前記高圧空気圧縮機出口の空気をバイパス流路に循環させるように前記切換弁を切替えるトリップ制御器を備えたガスタービン発電機設備のタービン速度制御装置であって、前記低圧タービンのガス出口に絞り弁を配設し、且つ発電機負荷遮断時に前記絞り弁に絞り込み指令を出すガス流量指令制御器を備えたことを特徴とするガスタービン発電設備のタービン速度制御装置。A high-pressure turbine, a low-pressure turbine, a high-pressure air compressor, a low-pressure air compressor and a generator are coaxially provided, and a gas flow path for sequentially leading combustion gas from the boiler to the high-pressure turbine and the low-pressure turbine through a high-temperature valve is provided. Are provided in order to supply the boiler to the low-pressure air compressor and the high-pressure air compressor, between the outlet of the high-pressure air compressor in the air passage and the outlet of the high-temperature valve in the gas passage. A high-pressure air compressor outlet, and a switching valve that switches between guiding the air at the outlet of the high-pressure air compressor to the boiler or the bypass flow path, closing the high-temperature valve when the generator load is shut off, and A turbine speed control device for a gas turbine generator facility comprising a trip controller for switching the switching valve so as to circulate the air in the bypass flow path, It arranged a throttle valve to the scan outlet, and the generator load shedding turbine speed control device for a gas turbine generator, characterized in that with a gas flow rate command controller issues a narrowing command to the throttle valve during.
JP09184794A 1994-04-28 1994-04-28 Turbine speed control device for gas turbine power generation equipment Expired - Fee Related JP3608218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09184794A JP3608218B2 (en) 1994-04-28 1994-04-28 Turbine speed control device for gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09184794A JP3608218B2 (en) 1994-04-28 1994-04-28 Turbine speed control device for gas turbine power generation equipment

Publications (2)

Publication Number Publication Date
JPH07293273A JPH07293273A (en) 1995-11-07
JP3608218B2 true JP3608218B2 (en) 2005-01-05

Family

ID=14037971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09184794A Expired - Fee Related JP3608218B2 (en) 1994-04-28 1994-04-28 Turbine speed control device for gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP3608218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364363B2 (en) * 2015-02-23 2018-07-25 三菱日立パワーシステムズ株式会社 Two-shaft gas turbine and control device and control method thereof
CN107084049B (en) * 2017-06-27 2018-08-10 哈尔滨工程大学 A kind of three-spool gas turbine peculiar to vessel based on rotation detonation combustion
FR3072414B1 (en) * 2017-10-16 2019-11-01 Safran Aircraft Engines DEVICE AND METHOD FOR COOLING A LOW PRESSURE TURBINE IN A TURBOMACHINE

Also Published As

Publication number Publication date
JPH07293273A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
US7677046B2 (en) Method for starting a pressure storage plant
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP3608218B2 (en) Turbine speed control device for gas turbine power generation equipment
JPH03932A (en) Control process of turbo machine and controller thereof
JPS6038527B2 (en) Steam turbine control device
JP3919966B2 (en) Operation method of combined cycle power plant
JP4610717B2 (en) Gas turbine protection equipment
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
US6253537B1 (en) Revolution speed control method in gas turbine shutdown process
CN113431644B (en) Power generation device and power generation system
EP0967366B1 (en) Combined heat and power plant, and method for its operation
JP3959172B2 (en) Steam turbine control method
JP3675880B2 (en) Method and apparatus for controlling single-shaft combined cycle power generation facility
JP2006283563A (en) Control system of furnace top pressure recovery turbine
JP3165619B2 (en) Thermal stress reduction operation method of steam turbine in single shaft combined cycle
JPH07158406A (en) Power generating radial turbine stop device
EP0913577A1 (en) Pump-turbine system
US2348042A (en) Elastic fluid turbine arrangement
JPS62189304A (en) Method for controlling combined plant
JP2735328B2 (en) Control method of water turbine
JP3223476B2 (en) Control method of flow path branch valve, control device, control method of power device, and power device
JP3734791B2 (en) Gas turbine water injection control device
JPH114597A (en) Control device of stationary drive device in power generation facility
JPH01203604A (en) Auxiliary steam control device for feed water pump driving turbine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees