JPH01203604A - Auxiliary steam control device for feed water pump driving turbine - Google Patents
Auxiliary steam control device for feed water pump driving turbineInfo
- Publication number
- JPH01203604A JPH01203604A JP2939688A JP2939688A JPH01203604A JP H01203604 A JPH01203604 A JP H01203604A JP 2939688 A JP2939688 A JP 2939688A JP 2939688 A JP2939688 A JP 2939688A JP H01203604 A JPH01203604 A JP H01203604A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- pressure
- turbine
- auxiliary
- auxiliary steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 39
- 230000001105 regulatory effect Effects 0.000 claims abstract description 29
- 238000000605 extraction Methods 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は火力あるいは原子力発電所のタービン駆動給水
ポンプを駆動する給水ポンプ駆動用タービンの補助蒸気
制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an auxiliary steam control device for a turbine for driving a feedwater pump that drives a turbine-driven feedwater pump in a thermal or nuclear power plant.
(従来の技術)
従来の火力発電所や原子力発電所(以下、火力発電所に
ついて説明する)では、主タービンを回して仕事をした
蒸気は冷却されて給水となり給水ポンプによりボイラー
へ戻される。この給水ポンプのひとつにタービン駆動給
水ポンプがあり、その駆動手段として給水ポンプ駆動用
タービン(以下B F P−Tと略す)が接続されてい
る。このBFP−Tは蒸気によって駆動し、その蒸気は
タービン抽気系、ボイラ主蒸気系、補助蒸気系等から供
給される。この従来のRFP−T付近の配管系統図を第
6図に示す。(Prior Art) In conventional thermal power plants and nuclear power plants (thermal power plants will be explained below), steam that rotates the main turbine and performs work is cooled and turned into feed water, which is returned to the boiler by a feed water pump. One of these water pumps is a turbine-driven water pump, and a water pump driving turbine (hereinafter abbreviated as B F PT) is connected as a driving means thereof. This BFP-T is driven by steam, and the steam is supplied from a turbine extraction system, a boiler main steam system, an auxiliary steam system, etc. A piping system diagram around this conventional RFP-T is shown in FIG.
図面において符号71はBFP−Tであり、タービン駆
動給水ポンプ72が接続されている。このBFP−T7
1には、ボイラ主蒸気配管73の蒸気を供給する第一蒸
気配管74が接続され、この蒸気配管74にはBFP−
T高圧加減弁75が設けられている。さらにこの蒸気配
管74とは別に第二蒸気配管76が接続され、この第二
蒸気配管76には、BFP−T低圧蒸気加減弁77が設
置されている。さらにこの第二蒸気配管76の上流側は
補助蒸気配管78とタービン抽気配管79とに分岐して
いる。この補助蒸気配管78には、BFP−T補助蒸気
供給弁80が設けられている。In the drawings, reference numeral 71 indicates a BFP-T, to which a turbine-driven water supply pump 72 is connected. This BFP-T7
A first steam pipe 74 that supplies steam from the boiler main steam pipe 73 is connected to the BFP-1.
A T high pressure regulating valve 75 is provided. Furthermore, a second steam pipe 76 is connected separately from this steam pipe 74, and a BFP-T low pressure steam control valve 77 is installed in this second steam pipe 76. Furthermore, the upstream side of the second steam pipe 76 branches into an auxiliary steam pipe 78 and a turbine bleed pipe 79. This auxiliary steam piping 78 is provided with a BFP-T auxiliary steam supply valve 80 .
その上流側にはヘッダを介してタービン抽気配管81、
ボイラ抽気配管82、他系統の配管83が接続している
。一方、タービン抽気配管79にはBFP−T低圧蒸気
逆止弁84、BFP−T低圧蒸気供給弁85が設置され
、その上流側は発電機86が接続された蒸気タービン8
7が接続されている。さらにBFP−T71には蒸気排
気配管88が接続され、その下流側は復水器89に接続
されている。On the upstream side thereof, a turbine bleed pipe 81 is provided via a header.
A boiler bleed pipe 82 and a pipe 83 of another system are connected. On the other hand, a BFP-T low-pressure steam check valve 84 and a BFP-T low-pressure steam supply valve 85 are installed in the turbine bleed piping 79, and upstream thereof is a steam turbine 8 to which a generator 86 is connected.
7 is connected. Further, a steam exhaust pipe 88 is connected to the BFP-T71, and the downstream side thereof is connected to a condenser 89.
このような構成からなる従来の給水ポンプ駆動用タービ
ンの補助蒸気制御装置によると、通常運転時はタービン
抽気配管79と第二蒸気配管76によりタービン抽気蒸
気がBFP−T71へ供給されている。ところが所内単
独運転時(以下Fe2時と略す)には、タービン抽気配
管79からの蒸気の供給がなくなるために、ボイラ主蒸
気配管73から第一蒸気配管74を経由して蒸気が供給
される。ところが、PO2時のように給水量が少ない場
合、主蒸気系の蒸気は高エンタルピーのために、RFP
−T71の運転効率は悪くなる。According to the conventional auxiliary steam control device for a water supply pump driving turbine having such a configuration, during normal operation, turbine bleed steam is supplied to the BFP-T 71 through the turbine bleed pipe 79 and the second steam pipe 76. However, during in-house independent operation (hereinafter abbreviated as Fe2 time), steam is no longer supplied from the turbine bleed pipe 79, so steam is supplied from the boiler main steam pipe 73 via the first steam pipe 74. However, when the amount of water supplied is small, such as during PO2, the steam in the main steam system has a high enthalpy, so RFP
- The operating efficiency of T71 becomes worse.
さらにBFP−T71の蒸気排気配管88が高温になり
、この排気温度上昇により蒸気排気配管88のラバーエ
キスパンション等に悪影響を及ぼすことがある。これら
の不具合を防止するために補助蒸気系の低エンタルピの
蒸気をRFP−771へ供給する切替えシステムを組ん
でいる。この切替えシステムは次のようなりFP−T低
圧蒸気供給弁85、BFP−T低圧蒸気加減弁77、B
FP−T補助蒸気供給弁80.BFP−T高圧加減弁7
5の開度調整によって行われる。まずFCB直後、ター
ビン抽気配管79からの蒸気供給が無くなり、BFP−
T高圧加減弁75を開にして主蒸気配管73から蒸気を
RFP−771へ供給し始める。これと同時に蒸気排気
配管88の温度の上昇を防止するためにBFP−T補助
蒸気供給弁80を開にして第二蒸気配管76から低エン
タルピーの補助蒸気系の蒸気を供給し始める。このとき
タービン抽気系の蒸気が無くなるためにRFP−T低圧
蒸気加減弁77は全開となる。このようにしてBRP−
771に蒸気が供給されて駆動する。さらにBFP−T
低圧蒸気加減弁77を経由して供給される補助蒸気の流
量が増加することによりBFP−T高圧加減弁75は閉
じる。Furthermore, the steam exhaust pipe 88 of the BFP-T71 becomes hot, and this rise in exhaust temperature may adversely affect the rubber expansion of the steam exhaust pipe 88 and the like. In order to prevent these problems, a switching system has been constructed to supply low enthalpy steam from the auxiliary steam system to RFP-771. This switching system is as follows: FP-T low pressure steam supply valve 85, BFP-T low pressure steam control valve 77, B
FP-T auxiliary steam supply valve 80. BFP-T high pressure regulator valve 7
This is done by adjusting the opening degree in step 5. First, immediately after FCB, the steam supply from the turbine bleed piping 79 disappears, and the BFP-
T High pressure regulating valve 75 is opened and steam starts to be supplied from main steam piping 73 to RFP-771. At the same time, in order to prevent the temperature of the steam exhaust pipe 88 from rising, the BFP-T auxiliary steam supply valve 80 is opened and low enthalpy auxiliary steam system steam starts to be supplied from the second steam pipe 76. At this time, the RFP-T low pressure steam control valve 77 is fully opened because the steam in the turbine extraction system is exhausted. In this way BRP-
Steam is supplied to 771 to drive it. Furthermore, BFP-T
As the flow rate of the auxiliary steam supplied via the low pressure steam control valve 77 increases, the BFP-T high pressure control valve 75 closes.
このときのBFP−T低圧蒸気加減弁77とBFP−T
高圧加減弁75の蒸気圧力別にみた弁開度と蒸気のみ送
量(蒸気流量)との関係を第7図に示す。図に示すよう
にRFP−T低圧蒸気加減弁77が全開するとRFP−
T高圧加減弁75が開き始める。また、Pl、P2、P
3、及びP4、P5、P6は蒸気圧力が異なる場合の両
者の関係を示しており、蒸気圧力の大小関係はPl<P
2<P3<P4<P5<P6である。すなわち、弁開度
が一定のときは蒸気圧力が高い程、蒸気のみ送量は多く
なる。また蒸気のみ送量を一定にするには、蒸気圧力が
高いほど弁開度を絞り込む必要がある。BFP-T low pressure steam control valve 77 and BFP-T at this time
FIG. 7 shows the relationship between the valve opening degree of the high-pressure regulating valve 75 for each steam pressure and the amount of steam only fed (steam flow rate). As shown in the figure, when the RFP-T low pressure steam control valve 77 is fully opened, the RFP-
T high pressure regulating valve 75 begins to open. Also, Pl, P2, P
3, and P4, P5, and P6 show the relationship between the two when the steam pressure is different, and the magnitude relationship of the steam pressure is Pl<P
2<P3<P4<P5<P6. That is, when the valve opening is constant, the higher the steam pressure is, the more steam is sent. Furthermore, in order to keep the amount of steam fed constant, it is necessary to narrow down the valve opening as the steam pressure increases.
(発明が解決しようとする問題点)
このようPCB発生時に弁の切替え操作が行われるが、
補助蒸気系の流体設定圧力は、タービン抽気系の最大圧
力に比べて非常に高く設計されている。また BFP−
T低圧蒸気加減弁77はタービン抽気圧力が低い場合で
も定格蒸気流量をのみ込むように設計されている。その
ために第7図に示した関係から、蒸気圧力が高い場合、
BFP−T低圧蒸気加減弁77弁の開度はより小さくな
るように絞り込まれる。一般に補助蒸気系統は多くの機
器に蒸気を供給しているために、その系統設計圧力はこ
れらの機器の必要最大圧力以上に設定され、そのために
通常タービン抽気系の設定圧力の2倍以上に設定されて
いる。このようなことから各加減弁の開閉動作は、RF
P−T低圧蒸気加減弁77が全開した後、BFP−T高
圧加減弁75が開となり、その後BFP−T低圧蒸気加
減弁77が急速閉という過程を短時間でたどる。そり時
のBFP−T低圧蒸気加減弁77の開度の動きと、BF
P−T低圧蒸気加減弁77を経由して供給された蒸気に
よって駆動されたBFP−771による給水流量の変化
を第8図に示す。このように弁が急速に閉となるために
実給水流量がアンダーシュートしてしまい、給水流量低
によりボイラがトリップし、プラント全体が停止する可
能性がある。(Problem to be solved by the invention) Although the valve switching operation is performed when a PCB occurs as described above,
The fluid set pressure of the auxiliary steam system is designed to be much higher than the maximum pressure of the turbine extraction system. Also BFP-
The T low pressure steam control valve 77 is designed to absorb the rated steam flow rate even when the turbine bleed pressure is low. Therefore, from the relationship shown in Figure 7, when the steam pressure is high,
The opening degree of the BFP-T low pressure steam control valve 77 is narrowed down to become smaller. Generally, since the auxiliary steam system supplies steam to many devices, its system design pressure is set to be higher than the required maximum pressure of these devices, and therefore it is usually set to more than twice the set pressure of the turbine extraction system. has been done. For this reason, the opening and closing operations of each control valve are performed using RF
After the PT low pressure steam regulating valve 77 is fully opened, the BFP-T high pressure regulating valve 75 is opened, and then the BFP-T low pressure steam regulating valve 77 is quickly closed. The movement of the opening degree of the BFP-T low pressure steam control valve 77 during sledding and the BF
FIG. 8 shows changes in the water supply flow rate caused by the BFP-771 driven by steam supplied via the PT low-pressure steam control valve 77. Since the valve closes rapidly in this way, the actual water supply flow rate may undershoot, and the boiler may trip due to the low water supply flow rate, potentially stopping the entire plant.
本発明はこのような点に鑑みなされたもので、FBC発
生時又は低負荷時に補助蒸気系の蒸気をBRP−Tへ供
給する際の切替え操作時に、BFP−T低圧蒸気加減弁
の急速な閉動作による給水流量のアンダーシュートを防
止することにより、給水流量低によるボイラトリップ、
プラント所内全停にいたることを防止できる給水ポンプ
駆動用タービンの補助蒸気制御装置を提供することを目
的とする。The present invention has been made in view of the above points, and it is possible to quickly close the BFP-T low-pressure steam control valve during a switching operation when supplying steam from the auxiliary steam system to the BRP-T when FBC occurs or when the load is low. By preventing undershoot of water supply flow rate due to operation, boiler trip due to low water supply flow rate,
It is an object of the present invention to provide an auxiliary steam control device for a turbine for driving a water supply pump that can prevent a complete shutdown within a plant.
(問題点を解決するための手段)
本発明は上記目的を達成するために次のような手段から
なる。すなわちタービン駆動給水ポンプを駆動する給水
ポンプ駆動用タービンと、この給水ポンプ駆動用タービ
ンへ主蒸気系統の蒸気を供給する第一蒸気配管及びこの
第一蒸気配管に設けられた高圧加減弁と、補助蒸気系統
から蒸気を導出す補助蒸気配管及びこの補助蒸気配管に
設けられだ補助蒸気供給弁と、主タービンからの油気蒸
気を導くタービン抽気蒸気配管及びこのタービン抽気蒸
気配管に設けられた低圧蒸気供給弁と、補助蒸気配管と
タービン抽気蒸気配管とが合流し、補助蒸気とタービン
抽気蒸気とを給水ポンプ駆動用タービンへ供給する第二
蒸気配管及びこの第二蒸気配管に設けられた低圧蒸気加
減弁とを備えた給水ポンプ駆動用タービンの補助蒸気制
御装置において、低圧蒸気加減弁より上流側の第二蒸気
配管に圧力検出器を設は補助蒸気供給弁より下流側の補
助蒸気配管に補助蒸気圧力調整弁を設け、さらに圧力検
出器の検出信号によってこの補助蒸気圧力調整弁を制御
する圧力制御器が設けられていることを特徴とする。(Means for Solving the Problems) The present invention includes the following means to achieve the above object. In other words, a water supply pump driving turbine that drives a turbine-driven water supply pump, a first steam pipe that supplies steam from the main steam system to this water pump driving turbine, a high pressure regulating valve provided in this first steam pipe, and an auxiliary water pump driving turbine. Auxiliary steam piping that leads out steam from the steam system, an auxiliary steam supply valve installed in this auxiliary steam piping, a turbine extraction steam piping that leads oil steam from the main turbine, and low-pressure steam installed in this turbine extraction steam piping. A second steam pipe where the supply valve, the auxiliary steam piping, and the turbine bleed steam pipe meet to supply the auxiliary steam and the turbine bleed steam to the water supply pump driving turbine, and a low-pressure steam control installed in the second steam pipe. In an auxiliary steam control system for a water supply pump driving turbine equipped with a valve, a pressure detector is installed in the second steam piping upstream of the low-pressure steam control valve, and the auxiliary steam is connected to the auxiliary steam piping downstream of the auxiliary steam supply valve. A pressure regulating valve is provided, and a pressure controller is further provided to control the auxiliary steam pressure regulating valve based on a detection signal from a pressure detector.
(作 用)
本発明によると、PCBが発生した際、低圧蒸気加温弁
が全開した後、高圧加減弁が開となる。(Function) According to the present invention, when a PCB occurs, the high pressure regulating valve is opened after the low pressure steam heating valve is fully opened.
その後、補助蒸気圧力調節弁がインチング開によって序
々に開く。さらに、圧力検出器によって第二蒸気配管内
の蒸気圧力は検出され、PCB発生前後の蒸気圧力が等
しくなるように圧力調整弁で制御されている。このよう
なことから、PCB発生後、低圧蒸気加減弁が急速に絞
り混まれることがない。Thereafter, the auxiliary steam pressure control valve gradually opens by inching. Further, the steam pressure in the second steam pipe is detected by a pressure detector, and controlled by a pressure regulating valve so that the steam pressure before and after PCB generation is equal. For this reason, after the occurrence of PCB, the low pressure steam control valve will not be rapidly throttled and crowded.
(実施例)
以下、本発明の実施例を図面を参照して説明する。第1
図は本実施例の全体構成図である。図面において符号1
はBFP−Tであり、タービン駆動給水ポンプ2が接続
されている。このBFP−T1には、ボイラ主蒸気配管
3の蒸気を供給する第一蒸気配管4が接続され、この第
一蒸気配管4にはBFP−T高圧加減弁5が設けられて
いる。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is an overall configuration diagram of this embodiment. Code 1 in the drawing
is a BFP-T, to which a turbine-driven water pump 2 is connected. A first steam pipe 4 that supplies steam from the boiler main steam pipe 3 is connected to this BFP-T1, and this first steam pipe 4 is provided with a BFP-T high pressure regulating valve 5.
さらにこの第一蒸気配管4とは別に第二蒸気配管6がB
FP−T1に接続され、この第二蒸気配管6には、BF
P−T低圧蒸気加減弁7、及びこのBFP−T低圧蒸気
加減弁7より上流側に圧力検出器8が設置されている。Furthermore, apart from this first steam piping 4, a second steam piping 6 is connected to B.
It is connected to FP-T1, and this second steam pipe 6 has a BF
A pressure detector 8 is installed upstream of the PT low-pressure steam regulator 7 and the BFP-T low-pressure steam regulator 7.
さらにこの第二蒸気配管6の上流側は補助蒸気配管9と
タービン抽気配管10とに分岐している。この補助蒸気
配管9には、圧力コントローラ11が設けられたBFP
−T補助蒸気圧力調整弁12及びインチング開型のBF
P−T補助蒸気供給弁13が設けられている。Further, the upstream side of the second steam pipe 6 branches into an auxiliary steam pipe 9 and a turbine extraction pipe 10. This auxiliary steam piping 9 has a BFP equipped with a pressure controller 11.
-T auxiliary steam pressure regulating valve 12 and inching open type BF
A PT auxiliary steam supply valve 13 is provided.
この圧力コントローラ11には圧力検出器8の検出信号
が人力され、補助蒸気配管9内の蒸気圧力がPCB発生
前の第二蒸気配管6内の蒸気圧力と等しくなるように制
御されるように構成されている。この圧力コントローラ
に設定するカーブを第2図に示す。PCBモードカーブ
は、タービン負荷が上昇するにつれて設定圧力が大きく
なるようにし、又BFP−T補助蒸気起動モードは一定
圧力に設定する。一方、補助蒸気配管9の上流側は、ヘ
ッダを介してタービン抽気配管14、ボイラ抽気配管1
5、他系統の配管16に接続している。The pressure controller 11 is configured to receive a detection signal from the pressure detector 8 manually and control the steam pressure in the auxiliary steam pipe 9 to be equal to the steam pressure in the second steam pipe 6 before the PCB occurs. has been done. The curve set for this pressure controller is shown in FIG. The PCB mode curve is such that the set pressure increases as the turbine load increases, and the BFP-T auxiliary steam startup mode is set to a constant pressure. On the other hand, the upstream side of the auxiliary steam pipe 9 is connected to a turbine bleed pipe 14 and a boiler bleed pipe 1 via a header.
5. Connected to piping 16 of other system.
一方、タービン抽気配管10にはBFP−T低圧蒸気逆
止弁17、BFP−T低圧蒸気供給弁18が設置され、
その上流側は発電機19が連結された蒸気タービン20
が接続されている。さらにBFP−Tlには蒸気排気配
管21が接続され、この蒸気排気配管21には温度スイ
ッチ22、及び伸縮継手23が設けられ、その下流側に
は復水器24が接続されている。On the other hand, a BFP-T low pressure steam check valve 17 and a BFP-T low pressure steam supply valve 18 are installed in the turbine bleed piping 10.
On its upstream side is a steam turbine 20 connected to a generator 19.
is connected. Furthermore, a steam exhaust pipe 21 is connected to the BFP-Tl, and this steam exhaust pipe 21 is provided with a temperature switch 22 and an expansion joint 23, and a condenser 24 is connected to the downstream side thereof.
次にこのような構成からなる本実施例の作用を説明する
。まず、通常運転時は、主タービン20から抽気された
蒸気はタービン抽気配管10によりBFP−T低圧蒸気
供給弁18、BFP−T低圧蒸気逆止弁17を経由し、
さらに第二蒸気配管6によりBFP−T低圧蒸気加減弁
7を経由してBFP−TIへ供給され、タービン駆動給
水ポンプ2を駆動する。Next, the operation of this embodiment having such a configuration will be explained. First, during normal operation, steam extracted from the main turbine 20 passes through the BFP-T low pressure steam supply valve 18 and the BFP-T low pressure steam check valve 17 via the turbine extraction piping 10.
Furthermore, it is supplied to the BFP-TI through the second steam pipe 6 via the BFP-T low-pressure steam control valve 7, and drives the turbine-driven water supply pump 2.
PCBが発生すると、主タービン2oへの蒸気は遮断さ
れ、タービン負荷量は所内負荷量まで下がる。したがっ
てタービン抽気配管10からの蒸気の供給は無くなり、
タービン駆動給水ポンプ2を駆動してボイラへの給水を
確保するために、BFP−T高圧蒸気加減弁5が開き、
ボイラ主蒸気配管3から第一蒸気配管4により蒸気はB
FP−Tlへ供給される。なi、低負荷時にタービン抽
気の圧力が下がった場合も同様である。蒸気は仕事をし
た後、蒸気排気配管21から復水器24へ排出される。When PCB occurs, steam to the main turbine 2o is cut off, and the turbine load is reduced to the in-house load. Therefore, the supply of steam from the turbine bleed piping 10 is eliminated,
In order to drive the turbine-driven water feed pump 2 and ensure water supply to the boiler, the BFP-T high pressure steam control valve 5 opens.
Steam is transferred to B from the boiler main steam pipe 3 to the first steam pipe 4.
Supplied to FP-Tl. The same applies when the pressure of turbine bleed air decreases during low load. After doing work, the steam is discharged from the steam exhaust pipe 21 to the condenser 24.
この時の排気温度は温度スイッチ22によって検出され
、設定温度よりも高い場合、RFP−T排気温度を下げ
るためにBFP−T補助蒸気供給弁13をインチング開
にする。したがって、補助蒸気配管9と第二蒸気配管6
によって補助蒸気はBFP−T補助蒸気圧力調整弁12
とBFP−T低圧蒸気加減弁7を経由してBFP−T1
へ供給される。この際、RFP−T補助蒸気圧力調整弁
12によって補助蒸気配管内の蒸気圧は圧力検出器8に
よって検出され、その値がFCB前第二蒸気配管6内の
値と等しくなるように制御される。また、RFP−T補
助蒸気供給弁13はインチング開型であるために序々に
開度が増加し、不要な圧力変動を発生させることなく第
二蒸気配管6へ蒸気が送られる。したがってBFP−T
低圧蒸気加減弁7はPCB発生前の弁開度に比べて急速
に絞り込むことなく補助蒸気をBFP−TIへ供給する
ことができる。このときのBFP−T低圧蒸気加減弁7
の動きと給水流量の変化を第3図に示す。第3図aはR
FP−T低圧蒸気加減弁7の動き、第3図6は給水流量
の変化を示す図である。給水流量の変化は抑えられ、ア
ンダーシュートの発生を防止できる。さらにこの制御内
容を第4図に示す。FBCが発生してFBC信号31が
入力すると、RFP−T補助蒸気圧力調整弁13のモー
ドをPCBモード32に切替え、BFP−T補助蒸気起
動信号33、補助蒸気モード34の信号をカットする。The exhaust gas temperature at this time is detected by the temperature switch 22, and if it is higher than the set temperature, the BFP-T auxiliary steam supply valve 13 is inched open to lower the RFP-T exhaust temperature. Therefore, the auxiliary steam pipe 9 and the second steam pipe 6
The auxiliary steam is controlled by the BFP-T auxiliary steam pressure regulating valve 12.
and BFP-T1 via BFP-T low pressure steam control valve 7.
supplied to At this time, the steam pressure in the auxiliary steam pipe is detected by the pressure detector 8 and controlled by the RFP-T auxiliary steam pressure regulating valve 12 so that its value is equal to the value in the pre-FCB second steam pipe 6. . Further, since the RFP-T auxiliary steam supply valve 13 is an inching open type, the opening degree gradually increases, and steam is sent to the second steam pipe 6 without causing unnecessary pressure fluctuations. Therefore, BFP-T
The low-pressure steam control valve 7 can supply auxiliary steam to the BFP-TI without being rapidly throttled compared to the valve opening degree before the occurrence of PCB. BFP-T low pressure steam control valve 7 at this time
Figure 3 shows the movement of water and changes in water supply flow rate. Figure 3 a is R
FIG. 3 is a diagram showing the movement of the FP-T low-pressure steam control valve 7, and changes in the feed water flow rate. Changes in water supply flow rate can be suppressed and undershoot can be prevented. Furthermore, the details of this control are shown in FIG. When FBC occurs and the FBC signal 31 is input, the mode of the RFP-T auxiliary steam pressure regulating valve 13 is switched to the PCB mode 32, and the BFP-T auxiliary steam start signal 33 and the auxiliary steam mode 34 signal are cut.
これによりBFP−T補助蒸気圧力調整弁13はコント
ロールモード35になり、BFP−T補助蒸気圧力調整
弁13は調整される。As a result, the BFP-T auxiliary steam pressure regulating valve 13 enters the control mode 35, and the BFP-T auxiliary steam pressure regulating valve 13 is adjusted.
次に本実施例の全体ブロック図を第5図に示す。Next, FIG. 5 shows an overall block diagram of this embodiment.
BFP−T補助蒸気供給弁開信号41、FCB信号42
、負荷条件信号43、BFP−T排気温度条件信号44
、BFP−T補助蒸気供給弁自動信号45、BFP−T
低圧蒸気供給弁全開信号46、BFP−T補助蒸気供給
弁閉信号47を入力信号とし、図に示すAND及dOR
回路の組合わせによってBFP−T補助蒸気供給弁全開
48、BFP−T補助蒸気供給弁全閉49の制御がなさ
れる。BFP-T auxiliary steam supply valve open signal 41, FCB signal 42
, load condition signal 43, BFP-T exhaust temperature condition signal 44
, BFP-T auxiliary steam supply valve automatic signal 45, BFP-T
The low pressure steam supply valve fully open signal 46 and the BFP-T auxiliary steam supply valve close signal 47 are used as input signals, and the AND and dOR shown in the figure are performed.
BFP-T auxiliary steam supply valve fully open 48 and BFP-T auxiliary steam supply valve fully closed 49 are controlled by the combination of circuits.
このように本実施例によると、PCBが発生し、BFP
−Tへ蒸気の供給がボイラ主蒸気から補助蒸気に切替わ
る際、圧力検出器とBFP−T補助蒸気圧力調整弁8に
より補助蒸気配管9内の蒸気圧力はPCB発生前の圧力
と等しくなるように自動的に調整されている。またBF
D−T排気配管21に温度スイッチ22を設けているの
で排気温度の上昇をすみやかに検出でき、補助蒸気系統
への切替えをすることができる。さらにBFP−T補助
蒸気供給弁13はインチング開型であるので、序々にそ
の弁開度を増加することができるので、序々に補助蒸気
を第二蒸気配管6へ導くことができる。したがって、不
要な圧力変動を発生させることな(PCB発生前の開度
で定格流量をRFP−Tlへ供給することができるので
、急激に絞り込まれることがない。このようなことから
給水流量のアンダーシュートを防止できる。As described above, according to this embodiment, PCB occurs and BFP
- When the steam supply to T is switched from boiler main steam to auxiliary steam, the pressure detector and BFP-T auxiliary steam pressure regulating valve 8 ensure that the steam pressure in the auxiliary steam piping 9 is equal to the pressure before PCB generation. is automatically adjusted. Also BF
Since the temperature switch 22 is provided on the DT exhaust pipe 21, a rise in exhaust gas temperature can be detected promptly, and switching to the auxiliary steam system can be performed. Further, since the BFP-T auxiliary steam supply valve 13 is of the inching open type, the valve opening degree can be gradually increased, so that the auxiliary steam can be gradually guided to the second steam pipe 6. Therefore, the rated flow rate can be supplied to the RFP-Tl without causing unnecessary pressure fluctuations (the rated flow rate can be supplied to the RFP-Tl at the opening degree before PCB generation, so there is no sudden restriction. Shoots can be prevented.
このように本発明によると、補助蒸気配管内の蒸気圧力
PCB発生の前後で等しくすることによりPCBが発生
した際、BFP−T低圧蒸気加減弁の急速閉を防止でき
る。したがって、給水のアンダーシュートの発生を防止
することができるので、プラントトリップの発生を防止
でき、信頼性を向上できる。As described above, according to the present invention, by equalizing the steam pressure in the auxiliary steam piping before and after the generation of PCB, it is possible to prevent the BFP-T low-pressure steam control valve from quickly closing when PCB occurs. Therefore, it is possible to prevent undershoot of the water supply, thereby preventing plant trips and improving reliability.
第1図は本発明の実施例を示す全体構成図、第2図は圧
力コントローラの圧力設定値とタービン負荷量との関係
を示す図、第3図は本実施例によるBFP−T低圧蒸気
加減弁の開度と給水流量の変化を示す図、第4図は本実
施例の制御図、第5図は本実施例の全体ブロック図、第
6図は従来例の全体構成図、第7図は従来例による弁開
度と蒸気のみ通量との関係を示す図、第8図は従来例に
よるBFP−T低圧蒸気加減弁の開度と給水流量の変化
を示す図である。
1・・・BFP−T、2・・・タービン駆動給水ポンプ
、3・・・ボイラ主蒸気配管、4・・・第一蒸気配管、
5・・・BFP−T高圧加減弁、6・・・第二蒸気配管
、7・・・BFP低圧蒸気加減弁、8・・・圧力検出器
、9・・・補助蒸気配管、10・・・タービン抽気配管
、11・・・圧力コントローラ、12・・・BFP−T
補助蒸気圧力調整弁、13・・・BFP−T補助蒸気供
給弁、18・・・BFP−T低圧蒸気供給弁、19・・
・発電機、20・・・主タービン。
出願人代理人 佐 藤 −雄
部 f 図
四層−
第 28
÷ 5 目
某 6 目Fig. 1 is an overall configuration diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the pressure setting value of the pressure controller and the turbine load amount, and Fig. 3 is a diagram showing the BFP-T low-pressure steam control according to the present embodiment. Diagrams showing changes in valve opening and water supply flow rate, Fig. 4 is a control diagram of this embodiment, Fig. 5 is an overall block diagram of this embodiment, Fig. 6 is an overall configuration diagram of a conventional example, and Fig. 7 8 is a diagram showing the relationship between the valve opening degree and the flow rate of only steam according to the conventional example, and FIG. 8 is a diagram showing the change in the opening degree of the BFP-T low-pressure steam control valve and the flow rate of water supply according to the conventional example. 1... BFP-T, 2... Turbine driven water supply pump, 3... Boiler main steam piping, 4... First steam piping,
5... BFP-T high pressure regulating valve, 6... Second steam piping, 7... BFP low pressure steam regulating valve, 8... Pressure detector, 9... Auxiliary steam piping, 10... Turbine extraction piping, 11...pressure controller, 12...BFP-T
Auxiliary steam pressure regulating valve, 13...BFP-T auxiliary steam supply valve, 18...BFP-T low pressure steam supply valve, 19...
- Generator, 20... Main turbine. Applicant's agent Sato - Yube f Figure 4th layer - 28th ÷ 5th certain 6th
Claims (1)
ービンと、この給水ポンプ駆動用タービンへ主蒸気系統
の蒸気を供給する第一蒸気配管及びこの第一蒸気配管に
設けられた高圧加減弁と、補助蒸気系統から補助蒸気を
導き出す補助蒸気配管及びこの補助蒸気配管に設けられ
た補助蒸気供給弁と、前記主タービンから抽気蒸気を導
き出すタービン抽気蒸気配管及びこのタービン抽気蒸気
配管に設けられた低圧蒸気供給弁と、前記補助蒸気配管
と前記タービン抽気蒸気配管とが合流し、補助蒸気とタ
ービンからの抽気蒸気とを給水ポンプ駆動用タービンへ
供給する第二蒸気配管及びこの第二蒸気配管に設けられ
た低圧蒸気加減弁とを備えた給水ポンプ駆動用タービン
の補助蒸気制御装置において、前記補助蒸気供給弁はイ
ンチング開型の弁からなり、前記低圧蒸気加減弁より上
流側の第二蒸気配管には圧力検出器が設けられ、前記補
助蒸気供給弁より下流側の補助蒸気配管には補助蒸気圧
力調整弁が設けられ、さらに前記圧力検出器の検出信号
によってこの補助蒸気圧力調整弁を制御する圧力制御器
が設けられていることを特徴とする給水ポンプ駆動用タ
ービンの補助蒸気制御装置。A water supply pump driving turbine that drives a turbine-driven water supply pump, a first steam pipe that supplies steam from the main steam system to the water supply pump driving turbine, a high pressure regulating valve provided in this first steam pipe, and auxiliary steam. An auxiliary steam piping that leads auxiliary steam from the system, an auxiliary steam supply valve provided on the auxiliary steam piping, a turbine extraction steam piping that leads extraction steam from the main turbine, and a low-pressure steam supply valve provided on the turbine extraction steam piping. and a second steam pipe where the auxiliary steam pipe and the turbine bleed steam pipe join together and supply the auxiliary steam and the bleed steam from the turbine to the water supply pump driving turbine, and a low pressure provided in the second steam pipe. In the auxiliary steam control device for a turbine for driving a water supply pump, the auxiliary steam supply valve is an inching-open type valve, and a second steam pipe upstream of the low-pressure steam control valve is equipped with a pressure detection device. An auxiliary steam pressure regulating valve is provided in the auxiliary steam piping on the downstream side of the auxiliary steam supply valve, and a pressure controller that controls the auxiliary steam pressure regulating valve based on a detection signal from the pressure detector. An auxiliary steam control device for a turbine for driving a water supply pump, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2939688A JPH01203604A (en) | 1988-02-10 | 1988-02-10 | Auxiliary steam control device for feed water pump driving turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2939688A JPH01203604A (en) | 1988-02-10 | 1988-02-10 | Auxiliary steam control device for feed water pump driving turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01203604A true JPH01203604A (en) | 1989-08-16 |
Family
ID=12274978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2939688A Pending JPH01203604A (en) | 1988-02-10 | 1988-02-10 | Auxiliary steam control device for feed water pump driving turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01203604A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293469A (en) * | 2008-06-04 | 2009-12-17 | Chugoku Electric Power Co Inc:The | Test method related to turbine for driving water supply pump and generator set |
CN101818662A (en) * | 2010-03-26 | 2010-09-01 | 浙江省电力试验研究院 | Novel method for controlling high-pressure steam source of feedwater pump steam turbine |
-
1988
- 1988-02-10 JP JP2939688A patent/JPH01203604A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009293469A (en) * | 2008-06-04 | 2009-12-17 | Chugoku Electric Power Co Inc:The | Test method related to turbine for driving water supply pump and generator set |
CN101818662A (en) * | 2010-03-26 | 2010-09-01 | 浙江省电力试验研究院 | Novel method for controlling high-pressure steam source of feedwater pump steam turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3658415B2 (en) | Gas turbine equipment | |
JP2012167571A (en) | Uniaxial combined cycle power generation plant, and method of operating the same | |
JP4734184B2 (en) | Steam turbine control device and steam turbine control method | |
JP2002004807A (en) | Stam control device for turbine | |
JPH01203604A (en) | Auxiliary steam control device for feed water pump driving turbine | |
JP3029440B2 (en) | Steam turbine for power generation | |
JP4560481B2 (en) | Steam turbine plant | |
JP2000297608A (en) | Control device for feed water pump of power station | |
JPS6239655B2 (en) | ||
JP3780789B2 (en) | Steam turbine equipment | |
JP2509631B2 (en) | Pump controller | |
JP2765637B2 (en) | Steam turbine power generation equipment | |
JP3324899B2 (en) | Turbine gland steam pressure controller | |
JP2554704B2 (en) | Turbine controller | |
JPH0467001B2 (en) | ||
JPH04342806A (en) | Steam turbine control device for combined power plant | |
JPH0814009A (en) | Operation control method for pressurized fluidized bed boiler type composite cycle power plant | |
JPS63117106A (en) | Stoppage controlling method and device for turbine plant | |
JPH01193507A (en) | Pressure and wafer level controller of aerator at the time of sudden decrease of load | |
JPS63143305A (en) | Turbine overload preventing method | |
JP2523493B2 (en) | Turbin bypass system | |
JPH01187304A (en) | Steam turbine control device | |
JPS6239654B2 (en) | ||
JPH0399101A (en) | Controller of exhaust heat recovering heat exchanger | |
JPH051507A (en) | Pressure controlling device for composite power generation plant |