JP2006274805A - Control system of furnace gas recovery turbine - Google Patents

Control system of furnace gas recovery turbine Download PDF

Info

Publication number
JP2006274805A
JP2006274805A JP2005090367A JP2005090367A JP2006274805A JP 2006274805 A JP2006274805 A JP 2006274805A JP 2005090367 A JP2005090367 A JP 2005090367A JP 2005090367 A JP2005090367 A JP 2005090367A JP 2006274805 A JP2006274805 A JP 2006274805A
Authority
JP
Japan
Prior art keywords
turbine
control system
stage
angle
top pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005090367A
Other languages
Japanese (ja)
Inventor
Isao Iwata
功 岩田
Yasuo Kurihara
康生 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005090367A priority Critical patent/JP2006274805A/en
Publication of JP2006274805A publication Critical patent/JP2006274805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control system of a furnace gas recovery turbine capable of instantaneously and optimally reducing the inflow of flue gas to the turbine when a load is cut off or the turbine is tripped without requiring a tremendously large equipment cost. <P>SOLUTION: In this control system of the furnace gas recovery turbine 1 having stators 2 and 3 and rotatingly driven by the flue gas of a blast furnace 51 to rotatingly drive a generator 81, at least one stage 3 of the second stage and after of the stators comprises angle variable mechanisms 34, 38, and 40 and is closed to its roughly flow passage full closure angle when the load of the turbine is cut off and/or the turbine is tripped. The first stage stator 2 comprises angle variable mechanisms 33, 37, and 39 and is desirably closed to a prescribed angle set to the opening side more than the flow passage full closure angle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炉頂圧回収タービンの制御システムに関する。   The present invention relates to a control system for a furnace top pressure recovery turbine.

従来、高炉プラントの排ガス経路にタービンプラントを設けて形成する炉頂圧回収タービンは、図8に示すように、高炉100から排気された排ガスが、ダストキャッチャ101、湿式集塵装置102、入口塞止弁103、危急遮断弁104を介してタービン105に導かれてタービン105を回転駆動させる。そして、このタービン105が発電機108を回転駆動させることにより、発電の利用に供するものである。   Conventionally, in a furnace top pressure recovery turbine formed by providing a turbine plant in an exhaust gas path of a blast furnace plant, as shown in FIG. 8, exhaust gas exhausted from the blast furnace 100 is converted into a dust catcher 101, a wet dust collector 102, an inlet block. The turbine 105 is rotated by being guided to the turbine 105 through the stop valve 103 and the emergency shutoff valve 104. The turbine 105 rotates the generator 108 for use in power generation.

この炉頂圧回収タービンにおいて、発電機108の負荷遮断を行った場合や、タービン105に故障等が発生してタービントリップを行った場合に、このタービン105のオーバースピードを防止するため、タービン105へ流入する排ガスを瞬時に減少させる必要がある。タービン105へ流入する排ガスを瞬時に減少させる方式として、タービン105の第1段静翼106に角度可変機構107を設け、この第1段静翼106を瞬時に流路全閉角度まで閉じることによりタービン105の流路を絞り、これによりタービン105への排ガス流入を減少させるものがある。   In this furnace top pressure recovery turbine, in order to prevent overspeed of the turbine 105 when the load of the generator 108 is cut off or when a turbine trip occurs due to a failure or the like in the turbine 105, the turbine 105 It is necessary to reduce the exhaust gas flowing into the water instantaneously. As a method for instantaneously reducing the exhaust gas flowing into the turbine 105, the angle variable mechanism 107 is provided in the first stage stationary blade 106 of the turbine 105, and the first stage stationary blade 106 is instantaneously closed to the fully closed angle of the flow path, thereby causing the flow of the turbine 105. Some throttle the path, thereby reducing the exhaust gas flow into the turbine 105.

また、図9に示すように、危急遮断弁110とタービン111との間に調速弁112を設け、この調速弁112によってタービン111への排ガス流入を減少させるものがある。このような調速弁112によるタービン111への排ガス流入遮断方式は、種々の文献にも開示されている(例えば、特許文献1参照)。
特開昭60−32942号公報(第1図)
In addition, as shown in FIG. 9, there is a type in which a governing valve 112 is provided between the emergency shutoff valve 110 and the turbine 111, and the regulating valve 112 reduces the inflow of exhaust gas into the turbine 111. Such an exhaust gas inflow blocking system to the turbine 111 by the speed control valve 112 is also disclosed in various documents (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 60-32942 (FIG. 1)

しかしながら、上述の従来の炉頂圧回収タービンの制御システムにおいて、前者のタービン105の第1段静翼106に角度可変機構107を設け、この第1段静翼106を瞬時に流路全閉角度まで閉じてタービン105の流路を絞る方式においては、湿式及び乾式双方の炉頂圧回収タービンとも、図10に示すように、第1段静翼106の背面106aに部分的にダストが付着する傾向があり、このため、この背面106aに付着したダストによって第1段静翼106を流路全閉角度まで閉じることができず、タービン105への排ガス流入を所定の流量まで減少させることができないという問題がある。また、第1段静翼106がダストを噛み込むことにより、第1段静翼106やその角度可変機構に損傷が生ずるという問題もある。   However, in the conventional control system for the furnace top pressure recovery turbine described above, the angle variable mechanism 107 is provided in the first stage stationary blade 106 of the former turbine 105, and the first stage stationary blade 106 is instantaneously closed to the fully closed channel angle. In the method of narrowing the flow path 105, both wet and dry furnace top pressure recovery turbines tend to partially adhere to the back surface 106a of the first stage stationary blade 106, as shown in FIG. The dust adhering to the back surface 106a cannot close the first stage stationary blade 106 to the fully closed angle of the flow path, and the exhaust gas flowing into the turbine 105 cannot be reduced to a predetermined flow rate. In addition, there is a problem that the first stage stationary blade 106 and the angle variable mechanism thereof are damaged when the first stage stationary blade 106 bites dust.

また、後者の調速弁112によってタービン111への排ガス流入を減少させる方式は、タービン111への排ガス流入を減少させる点においては特段の問題は見うけられないが、調速弁の設置に多大な設備費を要するという問題がある。   The latter method of reducing the exhaust gas inflow to the turbine 111 by the speed control valve 112 has no particular problem in terms of reducing the exhaust gas inflow to the turbine 111, but it is very difficult to install the speed control valve. There is a problem that a large equipment cost is required.

本発明はこのような問題を解決するためになされたもので、多大な設備費を要することなく、負荷遮断時やタービントリップ時にタービンへの排ガス流入を瞬時にかつ最適に減少させることができる炉頂圧回収タービンの制御システムを提供することを課題とする。   The present invention has been made to solve such problems, and a furnace capable of instantaneously and optimally reducing the inflow of exhaust gas to the turbine at the time of load interruption or turbine trip without requiring a large equipment cost. It is an object of the present invention to provide a control system for a top pressure recovery turbine.

上述の課題を解決するために、本発明が採用する手段は、複数段の静翼を有すると共に高炉の排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、静翼の第2段以降の少なくとも1段は、角度可変機構を有してタービンの負荷遮断時に略流路全閉角度まで閉じることにある。又は、複数段の静翼を有すると共に高炉の排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、静翼の第2段以降の少なくとも1段は、角度可変機構を有してタービンのタービントリップ時に略流路全閉角度まで閉じることにある。   In order to solve the above-mentioned problems, the means adopted by the present invention is a control system for a furnace top pressure recovery turbine having a plurality of stages of stationary blades and rotatingly driven by exhaust gas from a blast furnace to rotate a generator. At least one stage after the second stage of the blades is to have an angle variable mechanism and close to a substantially full flow path closing angle when the turbine load is interrupted. Alternatively, in a control system for a furnace top pressure recovery turbine having a plurality of stages of stationary blades and rotatingly driven by exhaust gas from a blast furnace to rotate the generator, at least one stage after the second stage of the stationary blades is a variable angle mechanism. It is to close to a substantially full flow path closing angle at the time of turbine trip of the turbine.

湿式及び乾式双方の炉頂圧回収タービンとも、通常、第2段以降の静翼にダストの付着は発生しない。このため、第2段以降の少なくとも1段が角度可変機構を備えることにより、その静翼は常に流路全閉角度まで閉じることができる。すなわち、第2段以降の少なくとも1段がタービンの負荷遮断時やタービントリップ時に流路全閉角度ないし流路全閉角度に近い角度まで閉じることにより、タービンへ流入する排ガスが瞬時に減少されて、タービンのオーバースピードを確実に防止することができる。また、設備費増加の一因となっている調速弁を排除することができる。   In both wet and dry furnace top pressure recovery turbines, no dust adheres to the second and subsequent stationary blades. For this reason, when at least one stage after the second stage is provided with the angle variable mechanism, the stationary blade can always be closed to the fully closed angle of the flow path. That is, when at least one stage after the second stage is closed to a fully closed angle of the flow path or an angle close to the full closed angle when the turbine load is interrupted or the turbine is tripped, the exhaust gas flowing into the turbine is instantaneously reduced. The turbine overspeed can be surely prevented. In addition, it is possible to eliminate the speed control valve that contributes to an increase in equipment costs.

上記タービンの第1段静翼は、角度可変機構を有すると共に、負荷遮断時に流路全閉角度よりも開側に設定された所定角度まで閉じることが望ましい。又は、タービンの第1段静翼は、角度可変機構を有すると共に、タービントリップ時に流路全閉角度よりも開側に設定された所定角度まで閉じることが望ましい。   It is desirable that the first stage stationary blade of the turbine has a variable angle mechanism and closes to a predetermined angle that is set to the open side with respect to the flow path fully closed angle when the load is interrupted. Alternatively, it is desirable that the first stage stationary blade of the turbine has a variable angle mechanism and closes to a predetermined angle that is set on the open side with respect to the flow path fully closed angle when the turbine is tripped.

第2段以降の静翼の少なくとも1段が負荷遮断時やタービントリップ時に略流路全閉角度まで閉じることにより、負荷遮断時やタービントリップ時に必ずしも第1段静翼がその流路全閉角度まで閉じる必要がなくなる。したがって、負荷遮断時やタービントリップ時に第1段静翼をその流路全閉角度までは閉じないようにすることにより、第1段静翼が背面に付着したダストと接触することが防止され、第1段静翼やその角度可変機構の損傷を防止することができる。   When at least one of the second and subsequent vanes closes to a substantially fully closed angle when the load is interrupted or when the turbine trips, the first stage vane does not necessarily close to the fully closed angle when the load is interrupted or when the turbine is tripped. There is no need. Therefore, by preventing the first stage stationary blade from closing until the fully closed angle of the flow path at the time of load interruption or turbine trip, the first stage stationary blade is prevented from coming into contact with the dust adhered to the back surface. Damage to the variable angle mechanism can be prevented.

上記負荷遮断時に略流路全閉角度まで閉じる第2段以降の静翼は、負荷遮断時に第1段静翼とは独立に制御されることが望ましい。又は、タービントリップ時に略流路全閉角度まで閉じる第2段以降の静翼は、タービントリップ時に第1段静翼とは独立に制御されることが望ましい。   It is desirable that the second and subsequent stator blades that close to the substantially full-flow-closing angle when the load is interrupted are controlled independently of the first-stage stator blades when the load is interrupted. Alternatively, it is desirable that the second and subsequent stage stationary blades that close to a substantially full-flow-closed angle when the turbine trips be controlled independently of the first stage stationary blades when the turbine trips.

第2段以降の静翼のタービンの負荷遮断時やタービントリップ時に流路全閉角度ないし流路全閉角度に近い角度まで閉じる動作を、そのときの第1段静翼の動作と切り離すことにより、この第2段以降の静翼の動作を最適に行うことができる。   By separating the operation of closing the flow path from the second stage and beyond to the turbine fully closed angle or the angle close to the flow path full closed angle at the time of turbine trip, The operations of the second and subsequent stator vanes can be performed optimally.

角度可変機構を有する静翼は、起動停止時及び通常運転時の作動がサーボアンプとサーボ弁との組み合わせにより制御される一方、負荷遮断時の作動が上記サーボアンプ及び上記サーボ弁とは別のサーボアンプとサーボ弁との組み合わせにより、又は、電磁弁とロジック弁との組み合わせにより制御されることが望ましい。又は、角度可変機構を有する静翼は、起動停止時及び通常運転時の作動がサーボアンプとサーボ弁との組み合わせにより制御される一方、タービントリップ時の作動が上記サーボアンプ及び上記サーボ弁とは別のサーボアンプとサーボ弁との組み合わせにより、又は、電磁弁とロジック弁との組み合わせにより制御されることが望ましい。   A stationary blade having a variable angle mechanism is controlled by a combination of a servo amplifier and a servo valve at the time of starting and stopping and during normal operation, while the operation at the time of load interruption is different from that of the servo amplifier and the servo valve. It is desirable to control by a combination of a servo amplifier and a servo valve or a combination of an electromagnetic valve and a logic valve. Alternatively, a stationary blade having a variable angle mechanism is controlled by a combination of a servo amplifier and a servo valve at the time of starting and stopping and during normal operation, while the operation at the time of turbine trip is different from that of the servo amplifier and the servo valve. It is desirable to control by a combination of another servo amplifier and a servo valve or a combination of a solenoid valve and a logic valve.

角度可変機構を有する静翼の負荷遮断時やタービントリップ時の作動を、起動停止時及び通常運転時のものとは別の制御機構によって制御することにより、負荷遮断時やタービントリップ時にはその作動を速やかに行うことができる一方、特に負荷遮断時については、その後の通常運転に回復するための動作を速やかに行うことができる。   By controlling the operation of a stationary blade with a variable angle mechanism when the load is interrupted or when the turbine is tripped by a control mechanism that is different from that when starting and stopping and during normal operation, the operation is interrupted when the load is interrupted or when the turbine is tripped. On the other hand, particularly when the load is interrupted, an operation for recovering to normal operation thereafter can be performed quickly.

角度可変機構を有する静翼は、相互に独立に制御される角度可変機構を有してタービンの回転数制御及び又は負荷制御及び又は圧力制御を行なうことが望ましい。このように、角度可変機構を有する静翼が相互に独立した角度可変機構を有してタービンの回転数制御及び又は負荷制御及び又は圧力制御を行なうことにより、起動停止時や通常運転時の各段静翼の角度可変制御を最適に行うことができる。   It is desirable that a stationary blade having a variable angle mechanism has a variable angle mechanism that is controlled independently of each other, and performs rotation speed control and / or load control and / or pressure control of the turbine. In this way, the stationary blade having the variable angle mechanism has the independent variable angle mechanism and performs the rotation speed control and / or load control and / or pressure control of the turbine. The angle variable control of the stage vane can be optimally performed.

本発明の炉頂圧回収タービンの制御システムは、複数段の静翼を有すると共に高炉の排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、静翼の第2段以降の少なくとも1段は、角度可変機構を有してタービンの負荷遮断時に略流路全閉角度まで閉じる。又は、複数段の静翼を有すると共に高炉の排ガスにより回転駆動されて発電機を回転駆動させる炉頂圧回収タービンの制御システムにおいて、静翼の第2段以降の少なくとも1段は、角度可変機構を有してタービンのタービントリップ時に略流路全閉角度まで閉じる。   The control system for a top pressure recovery turbine of the present invention is a control system for a top pressure recovery turbine having a plurality of stages of stationary blades and driven to rotate by an exhaust gas of a blast furnace to rotate a generator. At least one stage after the stage has an angle variable mechanism and closes to a substantially full-flow-path closed angle when the turbine load is interrupted. Alternatively, in a control system for a furnace top pressure recovery turbine having a plurality of stages of stationary blades and rotatingly driven by exhaust gas from a blast furnace to rotate the generator, at least one stage after the second stage of the stationary blades is a variable angle mechanism. When the turbine trips, the turbine closes to a substantially full flow path closing angle.

したがって、多大な設備費を要することなく、負荷遮断時やタービントリップ時にタービンへの排ガス流入を瞬時にかつ最適に減少させることができるという優れた効果を奏する。   Therefore, there is an excellent effect that the exhaust gas inflow to the turbine can be instantaneously and optimally reduced at the time of load interruption or turbine trip without requiring a large equipment cost.

本発明に係る炉頂圧回収タービンの制御システムを実施するための最良の形態を、図1ないし図7を参照して詳細に説明する。   The best mode for carrying out the control system for a furnace top pressure recovery turbine according to the present invention will be described in detail with reference to FIGS.

図1に示すように、高炉プラントとして高炉51、ダストキャッチャ52、湿式集塵装置53、並列に配設されたバイパス主弁54及びバイパス制御弁55、ガスホルダ56がこの順に配設される。高炉プラントでは、高炉51の炉頂圧検出器61で検出した炉頂圧を、炉頂圧設定器62で設定した炉頂圧に一致させるための炉頂圧調節計63と炉頂圧調節制御装置64と電油変換器65とが配設される。   As shown in FIG. 1, as a blast furnace plant, a blast furnace 51, a dust catcher 52, a wet dust collector 53, a bypass main valve 54 and a bypass control valve 55 arranged in parallel, and a gas holder 56 are arranged in this order. In the blast furnace plant, the furnace top pressure controller 63 and the furnace top pressure adjustment control for matching the furnace top pressure detected by the furnace top pressure detector 61 of the blast furnace 51 with the furnace top pressure set by the furnace top pressure setter 62. A device 64 and an electro-oil converter 65 are disposed.

高炉51の排ガスは湿式集塵装置53の下流で分岐され、入口塞止弁57、危急遮断弁58を介してタービン1に導かれ、出口塞止弁59を介してガスホルダ56に排気される。タービン1に入るガス圧はタービン前圧検出器66により検知され、このガス圧をタービン前圧設定器67で設定されたガス圧に一致させるためのタービン前圧調節計68と、このタービン前圧調節計68の信号を受けて減算器69を介してバイパス主弁54及びバイパス制御弁55を作動させるバイパス弁制御装置70とが、それぞれ配設される。   The exhaust gas from the blast furnace 51 is branched downstream of the wet dust collector 53, led to the turbine 1 through the inlet closing valve 57 and the emergency shutoff valve 58, and exhausted to the gas holder 56 through the outlet blocking valve 59. A gas pressure entering the turbine 1 is detected by a turbine pre-pressure detector 66, and a turbine pre-pressure controller 68 for matching the gas pressure with a gas pressure set by a turbine pre-pressure setter 67, and the turbine pre-pressure A bypass valve control device 70 that receives the signal from the controller 68 and operates the bypass main valve 54 and the bypass control valve 55 via the subtractor 69 is provided.

バイパス弁制御装置70は、電油変換器71,72を介してバイパス主弁54及びバイパス制御弁55を作動させて、タービン1に入るガス圧を上記設定圧になるように調節する。発電機81が軸継手80を介してタービン1に連結される。このタービン1は、複数段の静翼を有するタービンの一例としての2段翼列タービンであり、第1段静翼2及び第2段静翼3からなる。   The bypass valve control device 70 operates the bypass main valve 54 and the bypass control valve 55 via the electro-oil converters 71 and 72, and adjusts the gas pressure entering the turbine 1 to the set pressure. A generator 81 is connected to the turbine 1 via a shaft joint 80. The turbine 1 is a two-stage cascade turbine as an example of a turbine having a plurality of stages of stationary blades, and includes a first stage stationary blade 2 and a second stage stationary blade 3.

図1及び図2に示すように、負荷制限設定器21、負荷設定器22、回転数設定器23、静翼角度設定器24が電気ガバナ20にそれぞれ接続される。なお、図2は、特に第2段静翼3の角度可変機構だけを、見やすいように図1から抽出したものである。電気ガバナ20からの制御信号は、複合演算器25を介して、第1段及び第2段静翼の角度制御を行なうサーボアンプ31,32に入力される。サーボアンプ31,32を出た制御信号は、第1段及び第2段静翼作動用のサーボ弁35,36でそれぞれ電油変換された後、第1段及び第2段静翼作動用の油圧アクチュエータ39,40を作動させる。油圧アクチュエータ39,40の油圧はポンプユニット41により発生し、アキュムレータ42により負荷遮断時及びタービントリップ時の油量が補充される。   As shown in FIGS. 1 and 2, a load limit setting device 21, a load setting device 22, a rotation speed setting device 23, and a stationary blade angle setting device 24 are connected to the electric governor 20. Note that FIG. 2 is extracted from FIG. 1 for ease of viewing only the angle variable mechanism of the second stage stationary blade 3 in particular. A control signal from the electric governor 20 is input to the servo amplifiers 31 and 32 that perform angle control of the first stage and the second stage stationary blades via the composite calculator 25. The control signals output from the servo amplifiers 31 and 32 are subjected to electro-oil conversion by the first stage and second stage stationary blade actuating servo valves 35 and 36, respectively, and then the first stage and second stage stationary blades actuating hydraulic actuators 39, 40 is activated. The hydraulic pressure of the hydraulic actuators 39 and 40 is generated by the pump unit 41, and the accumulator 42 replenishes the amount of oil when the load is interrupted and when the turbine trips.

一方、タービン1の負荷遮断信号及びタービントリップ信号は、電気ガバナ20を介さずに、上述のサーボアンプ31,32とは別の第1段及び第2段静翼の角度制御用サーボアンプ33,34に入力される。サーボアンプ33,34を出た制御信号は、上述のサーボ弁35,36とは別の第1段及び第2段静翼作動用のサーボ弁37,38に入り、それぞれ電油変換された後、上述の第1段及び第2段静翼作動用の油圧アクチュエータ39,40を作動させる。第2段静翼作動用の油圧アクチュエータ40にはリミットスイッチ43と、このリミットスイッチ43の作動によって負荷遮断信号をリセットするためのタイマ44とがそれぞれ配設される。   On the other hand, the load cutoff signal and the turbine trip signal of the turbine 1 are sent to the servo amplifiers 33 and 34 for angle control of the first stage and the second stage stationary blades, which are different from the servo amplifiers 31 and 32, without passing through the electric governor 20. Entered. The control signals output from the servo amplifiers 33 and 34 enter the first stage and second stage stationary blade actuating servo valves 37 and 38, which are different from the servo valves 35 and 36, respectively. The hydraulic actuators 39 and 40 for operating the first stage and the second stage stationary blades are operated. The hydraulic actuator 40 for operating the second stage stationary blade is provided with a limit switch 43 and a timer 44 for resetting the load cutoff signal by the operation of the limit switch 43.

図3ないし図5に示すように、例えば、第2段静翼3の角度を変更するための角度可変機構は、図示しない第2段静翼用の油圧アクチュエータ40により、支持ローラ6によって内側ケーシング4の外側に支持された回転環5を周方向に動かす。回転環5が周方向に動くことにより、摺動自在継手7を介して静翼レバー8を揺動し、第2段静翼3を静翼軸9を中心に回転させる。第1段静翼2の角度可変機構も同様である。   As shown in FIGS. 3 to 5, for example, an angle variable mechanism for changing the angle of the second stage stationary blade 3 is moved outside the inner casing 4 by the support roller 6 by a hydraulic actuator 40 for the second stage stationary blade (not shown). The supported rotating ring 5 is moved in the circumferential direction. When the rotating ring 5 moves in the circumferential direction, the stationary blade lever 8 is oscillated through the slidable joint 7 to rotate the second stage stationary blade 3 about the stationary blade shaft 9. The same applies to the angle variable mechanism of the first stage stationary blade 2.

次に、本炉頂圧回収タービンの制御システムの作動を説明する。   Next, the operation of the control system for the furnace top pressure recovery turbine will be described.

図1に示すように、タービン1の起動停止時は、上述の電気ガバナ20からの出力信号が、複合演算器25と、第1段及び第2段静翼の角度制御を行なうサーボアンプ31,32とを介して、第1段及び第2段静翼作動用のサーボ弁35,36にそれぞれ入力される。この信号はサーボ弁35,36で電油変換されて、第1段及び第2段静翼の油圧アクチュエータ39,40をそれぞれ作動させて、第1段及び第2段静翼2,3の角度を起動停止時の所定角度へ変更する。これによりタービン1を通過するガス流量は変化し、タービン1の回転数制御又は負荷制御が最適に行われる。   As shown in FIG. 1, when the turbine 1 is started and stopped, the output signal from the electric governor 20 described above is combined with the composite calculator 25 and servo amplifiers 31 and 32 for controlling the angles of the first and second stage stationary blades. Are input to the servo valves 35 and 36 for operating the first stage and the second stage stationary blades, respectively. This signal is converted into electric oil by the servo valves 35 and 36, and the hydraulic actuators 39 and 40 of the first stage and second stage stationary blades are operated, respectively, and the angles of the first stage and second stage stationary blades 2 and 3 are started and stopped. To a predetermined angle. As a result, the gas flow rate passing through the turbine 1 changes, and the rotation speed control or load control of the turbine 1 is optimally performed.

通常運転時は、同様にサーボ弁35,36及びそれにより制御される油圧アクチュエータ39,40を作動させて、第1段及び第2段静翼2,3の角度を通常運転時の所定角度へ変更して、タービン1を通過するガス流量を変化させる。これにより、タービン1の負荷制御又は圧力制御が行われる。この場合、負荷遮断用及びタービントリップ用の第1段及び第2段静翼作動用のサーボ弁37,38はそれぞれロック位置にされており、サーボ弁37,38は油量調整を行わない。   During normal operation, the servo valves 35 and 36 and hydraulic actuators 39 and 40 controlled by the servo valves 35 and 36 are similarly operated to change the angles of the first stage and second stage stationary blades 2 and 3 to the predetermined angles during normal operation. Thus, the flow rate of gas passing through the turbine 1 is changed. Thereby, load control or pressure control of the turbine 1 is performed. In this case, the first stage and second stage stationary blade actuating servo valves 37 and 38 for load shedding and turbine trip are respectively in the locked position, and the servo valves 37 and 38 do not adjust the oil amount.

このように、第1段及び第2段静翼2,3は、相互に独立に制御される角度可変機構にを有して、回転数制御、負荷制御、圧力制御(炉頂圧制御)等が行われる。これにより、タービン1の回転数制御、負荷制御、圧力制御を最適に行うことができる。   As described above, the first stage and second stage stationary blades 2 and 3 have variable angle mechanisms that are controlled independently of each other, and perform rotation speed control, load control, pressure control (furnace top pressure control), and the like. Is called. Thereby, the rotation speed control, load control, and pressure control of the turbine 1 can be optimally performed.

次に、タービン1の負荷遮断時及びタービン1に故障等が発生した場合のタービントリップ時の制御について説明する。   Next, the control at the time of turbine trip when the load of the turbine 1 is interrupted and when a failure or the like occurs in the turbine 1 will be described.

負荷遮断時やタービントリップ時には、負荷遮断信号又はタービントリップ信号が、電気ガバナ20を通さずに、第1段及び第2段静翼用のサーボアンプ33,34にそれぞれ直接入力される。このサーボアンプ33,34が第1段及び第2段静翼用のサーボ弁37,38に制御信号を出力し、電油変換によって油量調整を行わせ、油圧アクチュエータ39,40をそれぞれ独立に作動させる。これにより、第2段静翼3は直ちにその流路全閉角度まで閉じる。これにより、タービン1へ流入する排ガスが瞬時に減少し、タービン1のオーバースピードが確実に防止される。   At the time of load interruption or turbine trip, the load interruption signal or the turbine trip signal is directly input to the first and second stage stationary blade servo amplifiers 33 and 34 without passing through the electric governor 20. The servo amplifiers 33 and 34 output control signals to the servo valves 37 and 38 for the first and second stage stationary blades, adjust the oil amount by electro-oil conversion, and operate the hydraulic actuators 39 and 40 independently. . As a result, the second stage stationary blade 3 is immediately closed to its fully closed angle. Thereby, the exhaust gas flowing into the turbine 1 is instantaneously reduced, and the overspeed of the turbine 1 is reliably prevented.

第1段静翼2も第2段静翼3と同様に、直ちに閉側へ回転するが、第2段静翼3のようにその流路全閉角度までは閉じず、流路全閉角度よりも開側に設定された所定角度θでその回転を停止する。この所定角度θは、第1段静翼2がその角度まで閉じても、第1段静翼2がその背面2aに付着したダストに接触ないし噛み込むことがないような角度に適切に設定される。   Like the second stage stationary blade 3, the first stage stationary blade 2 immediately rotates to the closed side, but unlike the second stage stationary blade 3, it does not close to the flow channel fully closed angle and is set to the open side with respect to the flow channel fully closed angle. The rotation is stopped at the predetermined angle θ. This predetermined angle θ is appropriately set to such an angle that even if the first stage stationary blade 2 is closed to that angle, the first stage stationary blade 2 does not contact or bite dust attached to the back surface 2a.

これは、上述のように、負荷遮断時やタービントリップ時には第2段静翼3がその流路全閉角度まで閉じるから、従来のように第1段静翼2をその流路全閉角度にまで閉じる必要がなくなるためである。これにより、図6に示すように、第1段静翼2の背面2aにダストの付着があっても、第1段静翼2がダストに接触ないし噛み込むことはなく、第1段静翼2やその角度可変機構の損傷を確実に防止することができる。   As described above, since the second stage stationary blade 3 closes to its fully closed angle when the load is interrupted or when the turbine trips, it is necessary to close the first stage stationary blade 2 to its fully closed angle as in the prior art. This is because it disappears. As a result, as shown in FIG. 6, even if dust adheres to the back surface 2a of the first stage stationary blade 2, the first stage stationary blade 2 does not contact or bite the dust, and the first stage stationary blade 2 and its angle variable mechanism Can be reliably prevented.

一方、上述の負荷遮断信号やタービントリップ信号は、電気ガバナ20にも別経路で入力される。電気ガバナ20はそれに基づいて回転数制御信号を出力し、上述の起動停止時と同様に、サーボアンプ31,32とサーボ弁35,36とを介して、第1段及び第2段静翼の油圧アクチュエータ39,40を作動させて、第1段及び第2段静翼2,3をそれぞれ上述の所定角度θ及び流路全閉角度になるように指令する。   On the other hand, the load cutoff signal and the turbine trip signal described above are also input to the electric governor 20 via another path. Based on this, the electric governor 20 outputs a rotational speed control signal, and the hydraulic actuators of the first and second stage stationary blades are connected via the servo amplifiers 31 and 32 and the servo valves 35 and 36 in the same manner as at the time of starting and stopping. 39 and 40 are operated to instruct the first stage and second stage stationary blades 2 and 3 to have the predetermined angle θ and the flow path fully closed angle, respectively.

この電気ガバナ20による制御は、上述のサーボアンプ33,34による直接制御よりも動作が遅くなり、負荷遮断時やタービントリップ時の緊急動作には適さないが、特に負荷遮断時については負荷遮断後の運転回復に備えて、適切な角度制御を行なうために必要となる動作である。   The control by the electric governor 20 is slower than the direct control by the servo amplifiers 33 and 34 described above, and is not suitable for emergency operation at the time of load interruption or turbine trip, but especially at the time of load interruption after the load interruption. This operation is necessary for appropriate angle control in preparation for the recovery of operation.

そして、負荷遮断時に関しては、第2段静翼3の油圧アクチュエータ40の流路全閉角度位置への移動によりリミットスイッチ43が作動し、このリミットスイッチ43の作動によってタイマ44が作動する。このタイマ44が所定時間(一般には0.5秒程度)をカウントしたとき負荷遮断信号をリセットし、サーボアンプ33,34を介して、第1段及び第2段静翼2,3のサーボ弁37,38をそれぞれロック位置にする。   When the load is interrupted, the limit switch 43 is operated by the movement of the hydraulic actuator 40 of the second stage stationary blade 3 to the fully closed angle position of the flow path, and the timer 44 is operated by the operation of the limit switch 43. When the timer 44 counts a predetermined time (generally about 0.5 seconds), the load cutoff signal is reset, and the servo valves 37, 1 and 2 of the first stage and second stage stationary blades 2, 3 via the servo amplifiers 33, 34 are reset. 38 is in the locked position.

これにより負荷遮断時の緊急動作は終了し、電気ガバナ20、複合演算器25、サーボアンプ31,32、サーボ弁35,36による通常制御に戻り、タービン1の通過ガス量の増減による回転数制御が行われる。この一方、タービントリップ時には、タービン1は緊急停止後そのままの状態が維持される。したがって、上述のリミットスイッチ43、タイマ44等による回復動作は行われない。   As a result, the emergency operation when the load is interrupted is terminated, and the normal control by the electric governor 20, the composite arithmetic unit 25, the servo amplifiers 31, 32, and the servo valves 35, 36 is resumed, and the rotational speed control by increasing / decreasing the amount of gas passing through the turbine 1 Is done. On the other hand, during the turbine trip, the turbine 1 is maintained as it is after the emergency stop. Therefore, the recovery operation by the limit switch 43 and the timer 44 described above is not performed.

上述の炉頂圧回収タービンの制御システムにおいては、サーボアンプ33,34とサーボ弁37,38との組み合わせにより、負荷遮断時やタービントリップ時の第1段及び第2段の静翼2,3の作動を制御したが、これに代えて、図7に示すように、電磁弁とロジック弁との組み合わせからなる制御弁45を用いて、負荷遮断時やタービントリップ時に油圧アクチュエータ46を作動させ、第2段静翼10をその流路全閉角度にまで閉じるようにすることもできる。   In the above-described furnace top pressure recovery turbine control system, the combination of the servo amplifiers 33 and 34 and the servo valves 37 and 38 allows the first stage and second stage stationary blades 2 and 3 at the time of load interruption or turbine trip. However, instead of this, as shown in FIG. 7, the hydraulic actuator 46 is operated at the time of load interruption or turbine trip by using a control valve 45 composed of a combination of an electromagnetic valve and a logic valve, It is also possible to close the second stage stationary blade 10 to its fully closed angle.

また、負荷遮断時やタービントリップ時に第1段静翼をその流路全閉角度よりも開側に設定された所定角度θへ閉じる動作も、電磁弁とロジック弁との組み合わせにより実施することができる。その他の説明は、上述の炉頂圧回収タービンの制御システムと同様である。   Further, the operation of closing the first stage stationary blade to the predetermined angle θ set to the open side with respect to the fully closed angle of the flow path at the time of load interruption or turbine trip can be performed by a combination of the electromagnetic valve and the logic valve. The other description is the same as that of the control system for the furnace top pressure recovery turbine described above.

このように、本炉頂圧回収タービンの制御システムによれば、複数段の静翼2,3を有する炉頂圧回収タービンにおいて、静翼の第2段以降の少なくとも1段、すなわち、この場合は第2段静翼3が角度可変機構を備え、この第2段静翼3がタービンの負荷遮断時やタービントリップ時に全閉になるから、タービン1へ流入する排ガスが瞬時に減少されて、タービン1のオーバースピードが確実に防止される。   Thus, according to the furnace top pressure recovery turbine control system, in the furnace top pressure recovery turbine having a plurality of stages of stationary blades 2 and 3, at least one stage after the second stage of the stationary blades, that is, in this case Since the second stage stationary blade 3 is provided with a variable angle mechanism, and the second stage stationary blade 3 is fully closed when the turbine load is interrupted or when the turbine trips, the exhaust gas flowing into the turbine 1 is instantaneously reduced and the turbine 1 is overloaded. Speed is reliably prevented.

また、第1段静翼2及び第2段静翼3の角度可変機構はそれぞれ独立に制御されるから、タービンの負荷遮断時やタービントリップ時に所定の位置へ全閉になる動作を、それぞれ最適に行うことができる。また、第1段静翼2及び第2段静翼3の角度可変機構は、負荷遮断時やタービントリップ時の作動を起動停止時や通常運転時のものとは別の制御機構、例えば、サーボアンプ33,34とサーボ弁37,38との組み合わせにより、又は、電磁弁とロジック弁との組み合わせにより制御されるから、負荷遮断時やタービントリップ時にはその作動を速やかに行うことができる一方、特に負荷遮断時については、サーボアンプ31,32及びサーボ弁35,36によって、その後の通常運転に回復するための動作を速やかに行うことができる。   In addition, since the variable angle mechanisms of the first stage stationary blade 2 and the second stage stationary blade 3 are independently controlled, the operation of fully closing to a predetermined position when the turbine load is interrupted or when the turbine trips can be optimally performed. it can. Further, the variable-angle mechanism of the first stage stationary blade 2 and the second stage stationary blade 3 is a control mechanism different from that at the time of starting and stopping or during normal operation when the load is interrupted or when the turbine trips, for example, servo amplifiers 33 and 34. And servo valves 37 and 38, or a combination of solenoid valve and logic valve, the operation can be performed quickly when the load is interrupted or when the turbine trips. The servo amplifiers 31 and 32 and the servo valves 35 and 36 can quickly perform an operation for recovering the subsequent normal operation.

なお、上述の炉頂圧回収タービンの制御システムは一例にすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。   The above-described control system for the furnace top pressure recovery turbine is merely an example, and various modifications can be made based on the gist of the present invention, and they are not excluded from the scope of the present invention.

例えば、負荷遮断時やタービントリップ時に、第1段静翼2を第2段静翼3と同様に、その流路全閉角度ないしそれに近い角度まで閉じるようにすることもできる。また、負荷遮断時及びタービントリップ時に、第1段静翼2の角度可変機構と第2段静翼3角度可変機構とをそれぞれ独立に制御するのではなく、一体に制御してもよい。   For example, when the load is interrupted or when the turbine trips, the first stage stationary blade 2 can be closed to the fully closed angle of the flow channel or an angle close thereto, similarly to the second stage stationary blade 3. Further, the angle variable mechanism of the first stage stationary blade 2 and the second stage stationary blade 3 angle variable mechanism may be controlled integrally instead of being independently controlled at the time of load interruption and turbine trip.

タービン1の負荷遮断時やタービントリップ時の作動制御を、サーボアンプとサーボ弁との組合せ又は電磁弁とロジック弁との組合せによるのではなく、他の機構により行ってもよい。また、上述の炉頂圧回収タービンの制御システムは、2段の静翼2,3を有するタービン1であったが、3段以上の静翼を有するタービンについても同様に実施することができ、また、負荷遮断時やタービントリップ時にその流路全閉角度にまで閉じる静翼は、第2段以降の任意の段の静翼でよい。さらに、この負荷遮断時やタービントリップ時に閉じる第2段以降の静翼は、必ずしもその流路全閉角度にまで閉じる必要はなく、流路全閉に近い角度(略流路全閉角度)まで閉じるものであってもよい。   The operation control at the time of load interruption or turbine trip of the turbine 1 may be performed not by a combination of a servo amplifier and a servo valve or a combination of an electromagnetic valve and a logic valve, but by another mechanism. Moreover, although the control system of the above-mentioned furnace top pressure recovery turbine was the turbine 1 having two stages of stationary blades 2 and 3, it can be similarly applied to a turbine having three or more stages of stationary blades. In addition, the stationary blade that closes to the fully closed angle of the flow path when the load is interrupted or when the turbine trips may be a stationary blade in any stage after the second stage. Further, the second and subsequent stationary blades that are closed when the load is interrupted or when the turbine trips are not necessarily closed to the fully closed angle of the flow path, but to an angle close to the fully closed flow path (substantially closed angle of the flow path). It may be closed.

本発明の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of the furnace top pressure recovery turbine of this invention. 第2段静翼の角度可変機構を示す系統図である。It is a systematic diagram which shows the angle variable mechanism of a 2nd stage stationary blade. 第2段静翼の角度可変機構の詳細を示す側面図である。It is a side view which shows the detail of the angle variable mechanism of a 2nd stage stationary blade. 第2段静翼の角度可変機構の作動を示す模試図である。FIG. 10 is a schematic diagram showing the operation of the second stage stationary blade angle variable mechanism. 第2段静翼の角度可変機構の作動を示す模試図である。FIG. 10 is a schematic diagram showing the operation of the second stage stationary blade angle variable mechanism. 本発明の炉頂圧回収タービンの制御システムの作動を示す模試図である。It is a trial figure which shows the action | operation of the control system of the furnace top pressure recovery turbine of this invention. 別の第2段静翼の角度可変機構を示す系統図である。It is a systematic diagram which shows the angle variable mechanism of another 2nd stage stationary blade. 従来の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of the conventional furnace top pressure recovery turbine. 従来の別の炉頂圧回収タービンの制御システムを示す系統図である。It is a systematic diagram which shows the control system of another conventional furnace top pressure recovery turbine. 従来の炉頂圧回収タービンの制御システムの作動を示す模試図である。It is a trial figure which shows the action | operation of the control system of the conventional furnace top pressure recovery turbine.

符号の説明Explanation of symbols

1 タービン
2 第1段静翼
2a 背面
3 第2段静翼
4 内側ケーシング
5 回転環
6 支持ローラ
7 摺動自在継手
8 静翼レバー
9 静翼軸
13 第2段静翼
20 電気ガバナ
21 負荷制限設定器
22 負荷設定器
23 回転数設定器
24 静翼角度設定器
25 複合演算器
31,32,33,34 サーボアンプ
35,36,37,38 サーボ弁
39、40 油圧アクチュエータ
41 ポンプユニット
42 アキュムレータ
43 リミットスイッチ
44 タイマ
45 制御弁
46 油圧アクチュエータ
51 高炉
52 ダストキャッチャ
53 湿式集塵装置
54 バイパス主弁
55 バイパス制御弁
56 ガスホルダ
57 入口塞止弁
58 危急遮断弁
59 出口塞止弁
61 炉頂圧検出器
62 炉頂圧設定器
63 炉頂圧調節計
64 炉頂圧調節制御装置
65 電油変換器
66 タービン前圧検出器
67 タービン前圧設定器
68 タービン前圧調節計
69 減算器
70 バイパス弁制御装置
71,72 電油変換器
80 軸継手
81 発電機
100 高炉
101 ダストキャッチャ
102 湿式集塵装置
103 入口塞止弁
104 危急遮断弁
105 タービン
106 第1段静翼
106a 背面
107 角度可変機構
108 発電機
110 危急遮断弁
111 タービン
112 調速弁
DESCRIPTION OF SYMBOLS 1 Turbine 2 1st stage stationary blade 2a Back surface 3 2nd stage stationary blade 4 Inner casing 5 Rotating ring 6 Support roller 7 Sliding universal joint 8 Stator blade lever 9 Stator blade shaft 13 Second stage stationary blade 20 Electric governor 21 Load limit setting device 22 Load setting device 23 Rotational speed setter 24 Stator blade angle setter 25 Combined computing units 31, 32, 33, 34 Servo amplifiers 35, 36, 37, 38 Servo valves 39, 40 Hydraulic actuator 41 Pump unit 42 Accumulator 43 Limit switch 44 Timer 45 Control Valve 46 Hydraulic actuator 51 Blast furnace 52 Dust catcher 53 Wet dust collector 54 Bypass main valve 55 Bypass control valve 56 Gas holder 57 Inlet closing valve 58 Emergency shutoff valve 59 Outlet closing valve 61 Furnace top pressure detector 62 Furnace top pressure setter 63 Furnace Top Pressure Controller 64 Furnace Top Pressure Control Controller 65 Electro-Oil Converter 66 Turbi Pre-pressure detector 67 Turbine pre-pressure setter 68 Turbine pre-pressure controller 69 Subtractor 70 Bypass valve control devices 71 and 72 Electro-oil converter 80 Shaft coupling 81 Generator 100 Blast furnace 101 Dust catcher 102 Wet dust collector 103 Inlet block Stop valve 104 Emergency shut-off valve 105 Turbine 106 First stage stationary blade 106a Back face 107 Angle variable mechanism 108 Generator 110 Emergency shut-off valve 111 Turbine 112 Control valve

Claims (9)

複数段の静翼(2,3,13)を有すると共に高炉(51)の排ガスにより回転駆動されて発電機(81)を回転駆動させる炉頂圧回収タービン(1)の制御システムにおいて、前記静翼の第2段以降の少なくとも1段(3,13)は、角度可変機構(34,38,40,45,46)を有して前記タービンの負荷遮断時に略流路全閉角度まで閉じることを特徴とする炉頂圧回収タービンの制御システム。   In the control system for a furnace top pressure recovery turbine (1) having a plurality of stages of stationary blades (2, 3, 13) and being rotationally driven by exhaust gas from a blast furnace (51) to rotationally drive a generator (81), At least one stage (3, 13) after the second stage of the blades has a variable angle mechanism (34, 38, 40, 45, 46) and closes to a substantially full flow path closing angle when the turbine load is interrupted. A control system for a furnace top pressure recovery turbine. 前記タービン(1)の第1段静翼(2)は、角度可変機構(33,37,39)を有すると共に前記負荷遮断時に流路全閉角度よりも開側に設定された所定角度(θ)まで閉じることを特徴とする請求項1に記載の炉頂圧回収タービンの制御システム。   The first stage stationary blade (2) of the turbine (1) has a variable angle mechanism (33, 37, 39) and at a predetermined angle (θ) set to an open side with respect to the fully closed angle of the flow path when the load is interrupted. The furnace top pressure recovery turbine control system according to claim 1, wherein the control system is closed. 前記負荷遮断時に略流路全閉角度まで閉じる前記第2段以降の静翼(3,13)は、前記負荷遮断時に前記第1段静翼(2)とは独立に制御されることを特徴とする請求項2に記載の炉頂圧回収タービンの制御システム。   The second and subsequent stator vanes (3, 13) that close to a substantially full flow path closing angle when the load is interrupted are controlled independently of the first stage stator blade (2) when the load is interrupted. The control system for a furnace top pressure recovery turbine according to claim 2. 角度可変機構を有する前記静翼(2,3,13)は、起動停止時及び通常運転時の作動がサーボアンプ(31,32)とサーボ弁(35,36)との組み合わせにより制御される一方、前記負荷遮断時の作動が前記サーボアンプ及び前記サーボ弁とは別のサーボアンプ(33,34)とサーボ弁(37,38)との組み合わせにより、又は、電磁弁(45)とロジック弁(45)との組み合わせにより制御されることを特徴とする請求項1ないし3のいずれか一つに記載の炉頂圧回収タービンの制御システム。   The stationary blades (2, 3, 13) having the variable angle mechanism are controlled by a combination of the servo amplifiers (31, 32) and the servo valves (35, 36) at the time of starting and stopping and normal operation. The operation at the time of the load shut-off is a combination of a servo amplifier (33, 34) and a servo valve (37, 38) different from the servo amplifier and the servo valve, or a solenoid valve (45) and a logic valve ( 45) The control system for the top pressure recovery turbine according to any one of claims 1 to 3, wherein the control system is controlled by a combination with (45). 複数段の静翼(2,3,13)を有すると共に高炉(51)の排ガスにより回転駆動されて発電機(81)を回転駆動させる炉頂圧回収タービン(1)の制御システムにおいて、前記静翼の第2段以降の少なくとも1段(3,13)は、角度可変機構(34,38,40,45,46)を有して前記タービンのタービントリップ時に略流路全閉角度まで閉じることを特徴とする炉頂圧回収タービンの制御システム。   In the control system for a furnace top pressure recovery turbine (1) having a plurality of stages of stationary blades (2, 3, 13) and being rotationally driven by exhaust gas from a blast furnace (51) to rotationally drive a generator (81), At least one stage (3, 13) after the second stage of the blades has an angle variable mechanism (34, 38, 40, 45, 46) and closes to a substantially full-flow-closing angle when the turbine is tripped. A control system for a furnace top pressure recovery turbine. 前記タービン(1)の第1段静翼(2)は、角度可変機構(33,37,39)を有すると共に前記タービントリップ時に流路全閉角度よりも開側に設定された所定角度(θ)まで閉じることを特徴とする請求項5に記載の炉頂圧回収タービンの制御システム。   The first stage stationary blade (2) of the turbine (1) has a variable angle mechanism (33, 37, 39) and reaches a predetermined angle (θ) set to the open side with respect to the flow path fully closed angle during the turbine trip. 6. The furnace top pressure recovery turbine control system according to claim 5, wherein the control system is closed. 前記タービントリップ時に略流路全閉角度まで閉じる前記第2段以降の静翼(3,13)は、前記タービントリップ時に前記第1段静翼(2)とは独立に制御されることを特徴とする請求項6に記載の炉頂圧回収タービンの制御システム。   The second and subsequent stage stationary blades (3, 13) that close to a substantially full-flow-closing angle during the turbine trip are controlled independently of the first stage stationary blade (2) during the turbine trip. The furnace top pressure recovery turbine control system according to claim 6. 角度可変機構を有する前記静翼(2,3,13)は、起動停止時及び通常運転時の作動がサーボアンプ(31,32)とサーボ弁(35,36)との組み合わせにより制御される一方、前記タービントリップ時の作動が前記サーボアンプ及び前記サーボ弁とは別のサーボアンプ(33,34)とサーボ弁(37,38)との組み合わせにより、又は、電磁弁(45)とロジック弁(45)との組み合わせにより制御されることを特徴とする請求項5ないし7のいずれか一つに記載の炉頂圧回収タービンの制御システム。   The stationary blades (2, 3, 13) having the variable angle mechanism are controlled by a combination of the servo amplifiers (31, 32) and the servo valves (35, 36) at the time of starting and stopping and normal operation. The operation at the time of the turbine trip is based on a combination of a servo amplifier (33, 34) and a servo valve (37, 38) different from the servo amplifier and the servo valve, or an electromagnetic valve (45) and a logic valve ( 45) The control system for a furnace top pressure recovery turbine according to any one of claims 5 to 7, wherein the control system is controlled by a combination with (45). 角度可変機構を有する前記静翼(2,3,13)は、相互に独立に制御される前記角度可変機構(31,32,35,36,39,40)を有して前記タービンの回転数制御及び又は負荷制御及び又は圧力制御を行なうことを特徴とする請求項1ないし8のいずれか一つに記載の炉頂圧回収タービンの制御システム。
The stationary blades (2, 3, 13) having a variable angle mechanism have the variable angle mechanisms (31, 32, 35, 36, 39, 40) controlled independently of each other, and the rotational speed of the turbine. The control system for a top pressure recovery turbine according to any one of claims 1 to 8, wherein control and / or load control and / or pressure control are performed.
JP2005090367A 2005-03-28 2005-03-28 Control system of furnace gas recovery turbine Pending JP2006274805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090367A JP2006274805A (en) 2005-03-28 2005-03-28 Control system of furnace gas recovery turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090367A JP2006274805A (en) 2005-03-28 2005-03-28 Control system of furnace gas recovery turbine

Publications (1)

Publication Number Publication Date
JP2006274805A true JP2006274805A (en) 2006-10-12

Family

ID=37209822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090367A Pending JP2006274805A (en) 2005-03-28 2005-03-28 Control system of furnace gas recovery turbine

Country Status (1)

Country Link
JP (1) JP2006274805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536346A (en) * 2011-12-30 2012-07-04 内蒙古包钢钢联股份有限公司 Application of constant power control to operation of TRT (blast furnace gas top pressure recovery turbine unit)
WO2015029724A1 (en) * 2013-08-29 2015-03-05 ヤンマー株式会社 Electricity-generating device
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
CN115354096A (en) * 2022-08-18 2022-11-18 中天钢铁集团有限公司 TRT stationary blade control method and system
CN117138463A (en) * 2023-08-31 2023-12-01 烟台市特种设备检验研究院 Boiler flue gas desulfurization and denitrification integrated device with waste heat deep recovery function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211424A (en) * 1964-08-19 1965-10-12 Chrysler Corp Control mechanism for adjustable gas turbine nozzle
JPS48100512A (en) * 1972-03-02 1973-12-19
JPS6024833U (en) * 1983-07-28 1985-02-20 三井造船株式会社 Hydraulic system for flow adjustment and emergency shutoff in gas turbine equipment
JPS61223227A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Operating method for generating equipment on top of blast furnace
JPS63111207A (en) * 1986-10-28 1988-05-16 Kawasaki Heavy Ind Ltd Turbine clogging monitor
JPH03932A (en) * 1989-02-10 1991-01-07 Toshiba Corp Control process of turbo machine and controller thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211424A (en) * 1964-08-19 1965-10-12 Chrysler Corp Control mechanism for adjustable gas turbine nozzle
JPS48100512A (en) * 1972-03-02 1973-12-19
JPS6024833U (en) * 1983-07-28 1985-02-20 三井造船株式会社 Hydraulic system for flow adjustment and emergency shutoff in gas turbine equipment
JPS61223227A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Operating method for generating equipment on top of blast furnace
JPS63111207A (en) * 1986-10-28 1988-05-16 Kawasaki Heavy Ind Ltd Turbine clogging monitor
JPH03932A (en) * 1989-02-10 1991-01-07 Toshiba Corp Control process of turbo machine and controller thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536346A (en) * 2011-12-30 2012-07-04 内蒙古包钢钢联股份有限公司 Application of constant power control to operation of TRT (blast furnace gas top pressure recovery turbine unit)
WO2015029724A1 (en) * 2013-08-29 2015-03-05 ヤンマー株式会社 Electricity-generating device
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
JP2015048711A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
CN115354096A (en) * 2022-08-18 2022-11-18 中天钢铁集团有限公司 TRT stationary blade control method and system
CN115354096B (en) * 2022-08-18 2024-05-28 中天钢铁集团有限公司 TRT stationary blade control method and system
CN117138463A (en) * 2023-08-31 2023-12-01 烟台市特种设备检验研究院 Boiler flue gas desulfurization and denitrification integrated device with waste heat deep recovery function

Similar Documents

Publication Publication Date Title
JP5608657B2 (en) System for controlling a variable geometry device of a gas turbine engine with a barrel link in particular
JP6223847B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
US20170254295A1 (en) Overspeed Protection System and Method
JP5897274B2 (en) Steam turbine flow control system
JP2006274805A (en) Control system of furnace gas recovery turbine
JP2000291449A (en) Gas turbine start method
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
RU2507402C2 (en) Control system for equipment with variable-geometry of gas turbine engine comprises, in particular, trackway joint
KR101319055B1 (en) Steam driven compressor
US11608809B2 (en) Startup method of Francis turbine and Francis turbine
JPS6038527B2 (en) Steam turbine control device
JP2006283563A (en) Control system of furnace top pressure recovery turbine
EP3619404B1 (en) Systems and methods for dynamic balancing of steam turbine rotor thrust
JP2015124710A (en) Control device and activation method
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JPS607169B2 (en) Turbine control device for driving water pump
JP2006316759A (en) Compression device
EP2460983B1 (en) Steam-driven power plant
JP2007192124A (en) Turbocharger
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JPH07158406A (en) Power generating radial turbine stop device
CN220909778U (en) Stationary blade protecting device of gas turbine unit
JP3909466B2 (en) Steam turbine operation method
JP2006029201A (en) Pump water turbine and method for operating the same
JPH045404A (en) Compound electric power generating plant and method and device for preventing overspeed thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720