JPH0324590B2 - - Google Patents
Info
- Publication number
- JPH0324590B2 JPH0324590B2 JP60040086A JP4008685A JPH0324590B2 JP H0324590 B2 JPH0324590 B2 JP H0324590B2 JP 60040086 A JP60040086 A JP 60040086A JP 4008685 A JP4008685 A JP 4008685A JP H0324590 B2 JPH0324590 B2 JP H0324590B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- deflector
- water
- needle
- setting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 71
- 238000000034 method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B15/00—Controlling
- F03B15/02—Controlling by varying liquid flow
- F03B15/04—Controlling by varying liquid flow of turbines
- F03B15/06—Regulating, i.e. acting automatically
- F03B15/14—Regulating, i.e. acting automatically by or of water level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Water Turbines (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、余水路の省略された流れ込み発電所
におけるペルトン水車の放流運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for operating a Pelton turbine in a run-of-river power plant in which a spillway is omitted.
ペルトン水車の構造要部の概要を第2図に示
す。第2図において図示しないヘツドタンクから
水を導く導水管31には複数に分岐した分岐管3
2,32aが設けられている。分岐管32,32
aにはそれぞれ先端にニードル33が設けられた
ニードルシヤフト33aが曲管34,34aをそ
れぞれ貫通しノズルパイプ35,35aに設けら
れた図示しない軸受によつて支持され、図示しな
い駆動装置により往復動される。ニードルシヤフ
ト33aの往復動によりニードル33はノズル3
6,36aに挿入、引抜きされ、ノズルの開度が
調整され、ヘツドタンクからの水流をこの開度で
ジエツト水流として噴出する。このジエツト水流
はランナ37に多数設けられたバケツト37aに
当り、ランナ37を矢印の方向に回転させる。そ
してランナ37の軸37bに結合した発電機を駆
動し電力を取り出すことができる。
Figure 2 shows an overview of the main structural parts of a Pelton turbine. In FIG. 2, a water conduit 31 that leads water from a head tank (not shown) has a plurality of branch pipes 3.
2, 32a are provided. Branch pipes 32, 32
Needle shafts 33a each having a needle 33 at its tip pass through bent pipes 34, 34a, are supported by bearings (not shown) provided on nozzle pipes 35, 35a, and are reciprocated by a drive device (not shown). be done. The needle 33 is moved to the nozzle 3 by the reciprocating movement of the needle shaft 33a.
6, 36a, the opening of the nozzle is adjusted, and the water flow from the head tank is jetted out as a jet water stream at this opening. This jet water flow hits a large number of buckets 37a provided on the runner 37, causing the runner 37 to rotate in the direction of the arrow. Then, a generator connected to the shaft 37b of the runner 37 can be driven to extract electric power.
デフレクタ38はノズルを覆うように回動可能
に設けられており、デフレクタ追尾制御器により
ニードルとデフレクタとの相関特性によりニード
ルとデフレクタとの位置が最適関係になるように
している。なお系統遮断時にノズルから噴出する
ジエツト水流の方向を変えるようにデフレクタは
前記ノズルを覆うことにより、ランナの異常回転
速度上昇や水圧鉄管の急激な圧力上昇を防止して
いる。流れ込み発電所におけるペルトン水車では
ヘツドタンクに水位調節器を設け、水位に応じて
ニードルとノズルとの開度が調節され、この開度
から噴出するジエツト水流に応じた電力がランナ
37を介して発電機により取出され、いわゆる水
調運転が行われる。この場合発電機の周波数は並
入された電力網の周波数になつている。 The deflector 38 is rotatably provided to cover the nozzle, and a deflector tracking controller allows the needle and the deflector to have an optimal position due to the correlation characteristics between the needle and the deflector. The deflector covers the nozzle so as to change the direction of jet water jetted from the nozzle when the system is shut off, thereby preventing an abnormal increase in the rotational speed of the runner and a sudden pressure increase in the penstock. In a Pelton turbine in a run-of-river power plant, a water level regulator is installed in the head tank, and the opening of the needle and nozzle is adjusted according to the water level, and electric power corresponding to the jet water jet ejected from this opening is sent to the generator via the runner 37. The water is taken out and a so-called water conditioning operation is performed. In this case, the frequency of the generator is the frequency of the connected power grid.
なお、ペルトン水車の回転数を設定、制御する
周波数設定器、制御器等が設けられ電力網から解
列された時の無負荷運転時の水車の回転数を設
定、制御するようにしている。 In addition, a frequency setter, a controller, etc. are provided to set and control the rotation speed of the Pelton water turbine, and the rotation speed of the water turbine during no-load operation when disconnected from the power grid is set and controlled.
以上のようなペルトン水車の水調運転において
電力網からの系統遮断時にはデフレクタを急閉鎖
させて、ノズルから噴出するジエツト水流の方向
を変化させてランナのバケツトに当らぬようにし
てランナの回転数の上昇を抑えるとともにニード
ルも閉鎖するようにしている。 In the water control operation of the Pelton turbine as described above, when the system is cut off from the power grid, the deflector is suddenly closed and the direction of the jet water jetted from the nozzle is changed to prevent it from hitting the bucket of the runner, thereby reducing the rotational speed of the runner. We are trying to suppress the rise and also close the needle.
つぎに水調運転における従来のペルトン水車の
制御回路について説明する。第3図はペルトン水
車の制御回路の要部回路図である。第3図におい
て二群の分岐管に設けられたニードルはそれぞれ
開度調節器2,2aにより調節されるサーボモー
タ1,1aにより往復動し、ノズルに挿入、引抜
きされてニードルの開度が調節され、それぞれ開
度検出器3,3aにより開度が検出される。また
デフレクタは開度調節器5により調節され、サー
ボモータ4によりノズルを覆うように回動され、
その開度を示す開度検出器6により開度が検出さ
れる。 Next, a conventional Pelton water turbine control circuit for water control operation will be explained. FIG. 3 is a circuit diagram of the main part of the control circuit of the Pelton turbine. In Fig. 3, the needles provided in the two groups of branch pipes are reciprocated by servo motors 1 and 1a which are respectively adjusted by opening adjusters 2 and 2a, and are inserted into and withdrawn from the nozzles to adjust the opening of the needles. The opening degree is detected by opening degree detectors 3 and 3a, respectively. The deflector is adjusted by an opening adjuster 5 and rotated by a servo motor 4 so as to cover the nozzle.
The opening degree is detected by an opening degree detector 6 that indicates the opening degree.
ペルトン水車に送水するヘツドタンクの水位に
より制御され水位を調整する水位調節開度設定器
7は加算器8,8aにて開度検出器3,3aから
の検出開度がフイードバツクされてサーボモータ
1,1aによりニードルの往復動を制御してい
る。またデフレクタ追尾制御器10を介して加算
器9にてデフレクタの開度検出器6からの検出開
度がフイードバツクされてサーボモータ4により
デフレクタの開度を制御している。 The water level adjustment opening setting device 7 which adjusts the water level is controlled by the water level of the head tank that supplies water to the Pelton turbine, and the detected opening from the opening detectors 3 and 3a is fed back to the servo motor 1 by adders 8 and 8a. 1a controls the reciprocating movement of the needle. Further, the detected opening from the deflector opening detector 6 is fed back to the adder 9 via the deflector tracking controller 10, and the servo motor 4 controls the opening of the deflector.
一方電力網から切離された無負荷運転時のラン
ナの回転数を設定、制御するための周波数設定器
11は加算器12,13を介してPID制御器14
を経て一方は加算器8,8aを経てサーボモータ
1,1aに、他方はデフレクタ追尾制御器10と
加算器9を経てサーボモータ4に接続されてい
る。そして加算器13には開度検出器3,3aか
らの検出開度を加算器15にて演算し、これを剛
性往復原制御器16を介して加算器13にフイー
ドバツクしている。なお周波数検出器17からの
検出周波数を加算器12にフイードバツクしてい
る。 On the other hand, the frequency setter 11 for setting and controlling the rotation speed of the runner during no-load operation disconnected from the power grid is connected to the PID controller 14 via adders 12 and 13.
One side is connected to the servo motors 1 and 1a through adders 8 and 8a, and the other side is connected to the servo motor 4 through a deflector tracking controller 10 and an adder 9. An adder 13 calculates the detected opening from the opening detectors 3 and 3a, and feeds this back to the adder 13 via a rigid reciprocating original controller 16. Note that the detected frequency from the frequency detector 17 is fed back to the adder 12.
上記のような制御回路においてペルトン水車の
水調運転ではヘツドタンクの水位を調整する水位
調節開度設定器7によりニードルはサーボモータ
1,1aによりヘツドタンクの水位が調節される
ようにニードルの開度が保持され、分岐管に送ら
れた水をこの開度からジエツト水流となつて噴出
させている。そしてこのジエツト水流はランナの
バケツトに当り、送水量に応じた電力を発電機よ
り取出している。 In the control circuit as described above, in the water adjustment operation of the Pelton turbine, the water level adjustment opening setting device 7 that adjusts the water level in the head tank controls the opening of the needle so that the water level in the head tank is adjusted by the servo motors 1 and 1a. The water that is held and sent to the branch pipe is ejected from this opening as a jet water stream. This jet water flow hits the runner's bucket, and electricity is extracted from the generator according to the amount of water being sent.
一方デフレクタはデフレクタ追尾制御器により
ニードルとデフレクタの最適位置が保たれてサー
ボモータ4によりデフレクタは回動して位置決め
されている。 On the other hand, the optimal position of the needle and deflector of the deflector is maintained by a deflector tracking controller, and the deflector is rotated and positioned by a servo motor 4.
ここで系統遮断が生じ、ランナの回転速度が上
昇すると周波数検出器17は回転数上昇を検出
し、PID制御器の作用によりデフレクタはサーボ
モータ4によりノズルを覆い、噴出するジエツト
水流の方向を変化させてバケツトに当らぬように
する。なお従来は同時にニードルをサーボモータ
1,1aによりニードルの開度を閉にしている。 When a system interruption occurs and the rotational speed of the runner increases, the frequency detector 17 detects the increase in rotational speed, and by the action of the PID controller, the deflector uses the servo motor 4 to cover the nozzle and change the direction of the jet water flow. Make sure it doesn't hit Bucket. Conventionally, the opening of the needle is simultaneously closed by the servo motors 1 and 1a.
したがつて上記のような水調運転を行う流れ込
み発電所で余水路を省略した場合、ニードルの開
度の閉鎖により水圧鉄管内の流量が減少し、ヘツ
ドタンクの水位が上昇するとともに導水路に水が
充満する。このため導水路としてのずい道は加圧
ずい道としなければならないのでずい道の土木費
が高価となるという問題があつた。 Therefore, if the spillway is omitted in a run-of-the-river power plant that performs water control operation as described above, the flow rate in the penstock decreases due to the closure of the needle opening, and the water level in the head tank rises, causing water to flow into the headrace. is full. For this reason, the tunnel used as the headrace waterway had to be a pressurized tunnel, which caused the problem that the civil engineering costs for the tunnel were high.
本発明は、前述のような点に鑑み余水路を省略
したペルトン水車発電所において導水路の土木費
を安くすることのできるペルトン水車の放流運転
方法を提供することを目的とする。
In view of the above-mentioned points, it is an object of the present invention to provide a Pelton water turbine discharge operation method that can reduce the civil engineering costs for the headrace in a Pelton water turbine power plant where a spillway is omitted.
〔発明の要旨〕
上記の目的は本発明によれば、ランナと、分岐
管に設けられたノズルへの挿入引抜きにより該ノ
ズル開度を調整自在なニードルと、該開度から噴
出するジエツ水流の方向を変化させる開度調整自
在なデフレクタとを備え;電気分岐管に送水する
ヘツドタンクの水位を調整する水位調節開度設定
器と、周波数設定器と、周波数検出器と、加算器
と、制御器とからなる回路により前記ニードルと
デフレクタとの開度を前記水位調整開度設定器に
より調整して前記ジエツト水流の噴出により前記
ランナを駆動するペルトン水車の放流運転方法で
あつて;系統遮断時の前記ランナの回転数上昇を
前記周波数検出器により検出し、所定の値が検出
されるとニードルの開度調整回路とデフレクタの
開度調整回路とを切離し、ニードルの開度調整は
前記水位調節開度設定器を介して、デフレクタの
開度調節は前記周波数設定器と制御器とを介して
行うようにして、前記ニードルの開度から放流し
ながらランナの回転数を無負荷運転時の回転数を
保持するようにすることにより達成される。[Summary of the Invention] According to the present invention, the above-mentioned object includes a runner, a needle that can freely adjust the opening degree of the nozzle by inserting and pulling out the nozzle provided in the branch pipe, and a jet water stream spouted from the opening degree. Equipped with a deflector whose opening can be freely adjusted to change the direction; a water level adjustment opening setting device which adjusts the water level of the head tank that sends water to the electric branch pipe, a frequency setting device, a frequency detector, an adder, and a controller. A discharge operation method of a Pelton turbine, in which the opening degree of the needle and the deflector is adjusted by the water level adjustment opening setting device by a circuit consisting of the following, and the jetting of the jet water flow drives the runner; An increase in the rotation speed of the runner is detected by the frequency detector, and when a predetermined value is detected, the needle opening adjustment circuit and the deflector opening adjustment circuit are separated, and the needle opening adjustment is performed by the water level adjustment circuit. The opening of the deflector is adjusted via the frequency setting device and the controller, and the rotation speed of the runner is adjusted to the rotation speed during no-load operation while discharging from the opening of the needle. This is achieved by maintaining the
以下図面に基づいて本発明の実施例を説明す
る。第1図は本発明の実施例によりペルトン水車
の水調運転をする制御回路の要部回路図である。
第1図において二群からなる分岐管に設けられる
ニードルのサーボモータ1と1a、開度調節器2
と2a、開度検出器3と3a、デフレクタのサー
ボモータ4、開度調節器5、開度検出器6、水位
調節開度設定器7、デフレクタ追尾器10、PID
制御器14、剛体復元制御器16、周波数設定器
11、周波数検出器17等の回路構成および作用
の大要は従来技術のものと同じであるが、本実施
例では回路20と21との間および回路20と回
路22とに周波数検出器17が検出するランナの
回転数上昇に連動する切替スイツチ23を取付け
ている。この切替スイツチ23は通常の水調運転
時はスイツチ接点23aは開、23bと23cは
ともに閉になつており、周波数検出器17により
検出するランナの回転数が上昇するとスイツチ接
点23aは閉、23bと23cはともに開にな
る。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a circuit diagram of a main part of a control circuit for controlling water in a Pelton water turbine according to an embodiment of the present invention.
In Fig. 1, needle servo motors 1 and 1a and an opening adjuster 2 are installed in two groups of branch pipes.
and 2a, opening detectors 3 and 3a, deflector servo motor 4, opening regulator 5, opening detector 6, water level adjustment opening setting device 7, deflector tracker 10, PID
The circuit configurations and functions of the controller 14, rigid body restoration controller 16, frequency setter 11, frequency detector 17, etc. are the same as those of the prior art, but in this embodiment, between the circuits 20 and 21 Further, a changeover switch 23 is attached to the circuit 20 and the circuit 22, which is linked to the increase in the rotational speed of the runner detected by the frequency detector 17. In this changeover switch 23, during normal water conditioning operation, the switch contact 23a is open, and both 23b and 23c are closed. When the rotational speed of the runner detected by the frequency detector 17 increases, the switch contact 23a is closed, and the switch contact 23b is closed. and 23c are both open.
したがつて水調運転時にはヘツドタンクの水位
を調整する水位調節開度設定器の信号に応じて閉
状態のスイツチ接点23b,23cを介してニー
ドルとデフレクタは前記説明のように操作され、
ヘツドタンクの水は水位を保持しながらペルトン
水車に送水される。 Therefore, during water adjustment operation, the needle and deflector are operated as described above via the closed switch contacts 23b and 23c in response to a signal from the water level adjustment opening setting device that adjusts the water level in the head tank.
The water in the head tank is sent to the Pelton turbine while maintaining its water level.
しかし系統遮断時にはランナの回転数上昇を周
波数検出器17で検出し前述のようにスイツチ接
点23b,23cを開にし23aを閉にすること
により回路21と20および22と24は切離さ
れるとともに回路20と24とは接続される。し
たがつてニードルは水位調節開度設定器7からの
信号により開度調節器2と2a、サーボモータ1
と1a、開度検出器3と3a、剛体復元制御器1
6とからなる回路によりそれぞれのニードルの開
度が調整され、ヘツドタンクからの水流はこの開
度で放流されてヘツドタンクの水位は保持され
る。これと同時にデフレクタは周波数設定器1
1、周波数検出器17、PID制御器14、開度調
節器5、サーボモータ4、開度検出器6とからな
る回路によりノズルから噴出するジエツト水流を
覆つて方向を変化させてランナの異常回転数上昇
を防ぎ、また周波数設定器、PID制御器等の作用
によりデフレクタはジエツト水流の一部をランナ
に噴出させる開度を保ち、設定した無負荷運転時
の回転数を保持する。この場合周波数不感帯制御
器26を加算器28と27との間に挿入してデフ
レクタの揺動を少なくするのが望ましい。 However, when the system is cut off, the frequency detector 17 detects an increase in the rotational speed of the runner, and as described above, by opening the switch contacts 23b and 23c and closing the switch 23a, the circuits 21 and 20 and 22 and 24 are disconnected, and the circuit is disconnected. 20 and 24 are connected. Therefore, the needle is controlled by the opening adjusters 2 and 2a and the servo motor 1 according to the signal from the water level adjustment opening setting device 7.
and 1a, opening detectors 3 and 3a, rigid body restoration controller 1
The opening degree of each needle is adjusted by a circuit consisting of 6 and 6, and the water flow from the head tank is discharged at this opening degree, so that the water level in the head tank is maintained. At the same time, the deflector is set to frequency setter 1.
1. A circuit consisting of a frequency detector 17, a PID controller 14, an opening adjuster 5, a servo motor 4, and an opening detector 6 covers the jet water jet ejected from the nozzle and changes its direction to prevent abnormal rotation of the runner. In addition, by the action of the frequency setting device, PID controller, etc., the deflector maintains an opening that allows part of the jet water flow to be ejected to the runner, and maintains the set rotation speed during no-load operation. In this case, it is desirable to insert the frequency dead band controller 26 between the adders 28 and 27 to reduce the fluctuation of the deflector.
なお電力網への並入は保持された無負荷運転時
の回転数により直ちに行われ、並入後は切替スイ
ツチ23を切替えて通常運転を行うことができ
る。 Note that the parallel connection to the power grid is immediately performed at the maintained rotation speed during no-load operation, and after the parallel connection, the changeover switch 23 can be switched to perform normal operation.
以上の説明から明らかなように、本発明によれ
ば余水路を省略したペルトン水車を備える流れ込
み発電所において、系統遮断時ニードルの開度を
閉鎖させずにヘツドタンクの水位を調整するよう
に放流し、デフレクタにより水車の無負荷運転の
回転数を保つように制御することにより系統復旧
の際迅速に電力網に並列できるとともに導水路の
ずい道は加圧ずい道とする必要がないので土木費
を安くすることができる。
As is clear from the above explanation, according to the present invention, in a run-of-river power plant equipped with a Pelton turbine without a spillway, water is discharged to adjust the water level in the head tank without closing the opening of the needle when the system is shut off. By using a deflector to control the rotation speed of the water turbine during no-load operation, it can be quickly paralleled to the power grid during system restoration, and the tunnel of the headrace does not need to be a pressurized tunnel, reducing civil engineering costs. can do.
第1図は本発明の実施例による流れ込み発電所
のペルトン水車の制御回路の要部回路図、第2図
はペルトン水車構造の要部部分断面図、第3図は
従来の流れ込み発電所のペルトン水車の制御回路
の要部回路図である。
1,1a:ニードルのサーボモータ、2,2
a:開度調節器、3,3a:開度検出器、4:デ
フレクタのサーボモータ、5:デフレクタの開度
調節器、6:デフレクタの開度検出器、7:水位
調節開度設定器、8,8a,9,12,13,1
5,27:加算器、10:デフレクタ追尾制御
器、11:周波数設定器、14:PID制御器、1
6:剛体復原制御器、17:周波数検出器、2
3:切替スイツチ、32,32a:分岐管、33
a:ニードル、36,36a:ノズル、37:ラ
ンナ、38,38a:デフレクタ。
Fig. 1 is a circuit diagram of a main part of a control circuit of a Pelton turbine in a run-of-river power plant according to an embodiment of the present invention, Fig. 2 is a partial sectional view of a main part of a Pelton turbine structure, and Fig. 3 is a Pelton turbine of a conventional run-of-river power plant. It is a principal part circuit diagram of the control circuit of a water turbine. 1, 1a: Needle servo motor, 2, 2
a: Opening degree regulator, 3, 3a: Opening degree detector, 4: Deflector servo motor, 5: Deflector opening degree adjuster, 6: Deflector opening degree detector, 7: Water level adjustment opening degree setter, 8, 8a, 9, 12, 13, 1
5, 27: Adder, 10: Deflector tracking controller, 11: Frequency setter, 14: PID controller, 1
6: Rigid body restoring controller, 17: Frequency detector, 2
3: Selector switch, 32, 32a: Branch pipe, 33
a: Needle, 36, 36a: Nozzle, 37: Runner, 38, 38a: Deflector.
Claims (1)
入引抜きにより該ノズル開度を調節自在なニード
ルと、該開度から噴出するジエツト水流の方向を
変化させる開度調節自在なデフレクタとを備え;
前記分岐管に送水するヘツドタンクの水位を調整
する水位調節開度設定器と、周波数設定器と、周
波数検出器と、加算器と、制御器とからなる回路
により、前記ニードルとデフレクタとの開度を前
記水位調節開度設定器により調整して前記ジエツ
ト水流の噴出により前記ランナを駆動するペルト
ン水車の放流運転方法であつて;系統遮断時の前
記ランナの回転数上昇を前記周波数検出器により
検出し、所定の値が検出されるとニードルの開度
調節回路とデフレクタの開度調節回路とを切離
し、ニードルの開度調節を前記水位調節開度設定
器を介して、デフレクタの開度調節は前記周波数
設定器と制御器とを介してそれぞれ行うようにし
たことを特徴とするペルトン水車の放流運転方
法。 2 特許請求の範囲第1項記載の放流運転方法に
おいて、デフレクタの開度調整を周波数不感帯制
御器により安定させるようにしたことを特徴とす
るペルトン水車の放流運転方法。[Scope of Claims] 1. A runner, a needle that can freely adjust the nozzle opening by inserting and pulling out the nozzle provided in the branch pipe, and an opening that can freely adjust the opening to change the direction of the jet water flow ejected from the opening. with a deflector;
The opening of the needle and deflector is controlled by a circuit consisting of a water level adjustment opening setting device for adjusting the water level of the head tank that supplies water to the branch pipe, a frequency setting device, a frequency detector, an adder, and a controller. is adjusted by the water level adjustment opening setting device and the runner is driven by the jet of the jet water stream; the increase in the rotational speed of the runner at the time of grid interruption is detected by the frequency detector. When a predetermined value is detected, the needle opening adjustment circuit and the deflector opening adjustment circuit are separated, and the needle opening adjustment is performed via the water level adjustment opening setting device, and the deflector opening adjustment is performed via the water level adjustment opening setting device. A discharge operation method for a Pelton water turbine, characterized in that each operation is performed via the frequency setting device and the controller. 2. A discharge operation method for a Pelton water turbine according to claim 1, characterized in that the opening degree adjustment of the deflector is stabilized by a frequency dead band controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60040086A JPS61200381A (en) | 1985-02-28 | 1985-02-28 | Discharge operating method for pelton turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60040086A JPS61200381A (en) | 1985-02-28 | 1985-02-28 | Discharge operating method for pelton turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61200381A JPS61200381A (en) | 1986-09-04 |
JPH0324590B2 true JPH0324590B2 (en) | 1991-04-03 |
Family
ID=12571080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60040086A Granted JPS61200381A (en) | 1985-02-28 | 1985-02-28 | Discharge operating method for pelton turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61200381A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2559965Y2 (en) * | 1988-10-11 | 1998-01-19 | 株式会社明電舎 | Pelton turbine driving equipment |
ES2472142B2 (en) * | 2014-06-03 | 2014-10-22 | Universidad Politécnica de Madrid | Power ramp control system and method for hydraulic groups |
-
1985
- 1985-02-28 JP JP60040086A patent/JPS61200381A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61200381A (en) | 1986-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0324590B2 (en) | ||
US3403888A (en) | Reversible pump turbines | |
CN110173358A (en) | It is a kind of power generation with free-turbine engine removal of load when method for adjusting rotation speed | |
JPH06257552A (en) | Electric speed governor for causing discharge from deflector | |
JP2816360B2 (en) | Pelton turbine start-up control method and device | |
JP3638652B2 (en) | Constant flow horizontal axis Pelton turbine | |
JP2950068B2 (en) | Pelton turbine deflector controller | |
JP2765860B2 (en) | Pelton turbine control unit | |
JP3088594B2 (en) | Waterway drainage control method in power plant using Pelton turbine | |
JP3601084B2 (en) | Pelton turbine | |
JPS60219471A (en) | Control of pelton water-wheel | |
JPH01147165A (en) | Controller for pelton wheel | |
JPH0133667B2 (en) | ||
JPH0133668B2 (en) | ||
JPH08135560A (en) | Method and device for controlling operation for removing foreign matter from water turbine | |
JPH0732945Y2 (en) | Turbine governor controller | |
JPH06288335A (en) | Flow rate control device and flow rate control method for hydroelectric power station | |
JP2759634B2 (en) | Transmission control device for underwater vehicle | |
JPH09250443A (en) | Overspeed controller of water wheel generator | |
JPH10103212A (en) | Kaplan turbine | |
JPS60206976A (en) | Pelton wheel | |
JP2685228B2 (en) | Variable speed controller for turbine generator | |
JPH02286881A (en) | Nozzle switching method for pelton hydraulic wheel | |
JPH07286573A (en) | Nozzle for pelton turbine, and control method thereof | |
JP2507914B2 (en) | Underwater vehicle propulsion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |