JPS63255570A - Pelton wheel - Google Patents

Pelton wheel

Info

Publication number
JPS63255570A
JPS63255570A JP62088837A JP8883787A JPS63255570A JP S63255570 A JPS63255570 A JP S63255570A JP 62088837 A JP62088837 A JP 62088837A JP 8883787 A JP8883787 A JP 8883787A JP S63255570 A JPS63255570 A JP S63255570A
Authority
JP
Japan
Prior art keywords
deflector
slit
water
synchronous
jet flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088837A
Other languages
Japanese (ja)
Inventor
Jiro Ota
太田 二郎
Keitaro Takiguchi
滝口 啓太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62088837A priority Critical patent/JPS63255570A/en
Publication of JPS63255570A publication Critical patent/JPS63255570A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/04Nozzles; Nozzle-carrying members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To omit a spirallway by forming a slit through which a portion of the jet flow can pass, at the top edge of a deflector for cutting off the jet flow on a nozzle. CONSTITUTION:A slit 2-1 is formed at the top edge of the deflector 2 of a Pelton wheel. When the deflector 2 is finely moved in the opening direction in the case when the water wheel is started from the discharge flow state, the injection flow quantity is jetted, passing through the slit 2-1, and the water wheel is accelerated. Further, after the deflector 2 is finely operated to the stable state at a synchronous revolution speed, synchronous parallel operation is generated. Therefore, the synchronous parallel operation is generated by the deflector 2 without stopping the deflector discharge flow, and the spillway in a hydraulic power generation installation can be omitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペル1−ン水車に係り、特に発電停止時にも
下流へ放流する必要がある流れ込み式、発電所用ペルト
ン水車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Pelton water turbine, and more particularly to a run-of-river type Pelton water turbine for use in power plants that requires discharge of water downstream even when power generation is stopped.

〔従来の技術〕[Conventional technology]

(]) 近年では、立地上の制約および、電力供給体系の変化に
伴い、中小水力発電の開発が著しい。この中小水力発電
設備は、発電量当りの建設コスト  ′が、他の発電設
備に比べ割高になる。
(]) In recent years, due to locational constraints and changes in the power supply system, the development of small and medium-sized hydropower generation has been remarkable. The construction cost per unit of power generated by these small and medium-sized hydroelectric power generation facilities is relatively high compared to other power generation facilities.

このため、発電所の建設計画に当っては、土木及び機器
のコスト低減を計からねばならない。
Therefore, when planning the construction of power plants, it is necessary to reduce the cost of civil engineering and equipment.

一般に、水力発電設備の建設コストは、土木の占める割
合が、かなり大きいので、土木費の低減が、中小水力開
発の重要な課題となる。
In general, the construction cost of hydropower generation facilities is dominated by civil engineering, so reducing civil engineering costs is an important issue for small and medium-sized hydropower development.

又従来多くの中小水発電所は、下流への責任放流及び下
流域の水位変化を規制される流域に計画される。この様
な地点に段nされろ水力発電設備は、流込み式で、水流
に応じ発電するので上水槽は、大きくなく、事故等で水
車を急停止した場合オバーフローする他工法への影響が
あるので上水槽から、発電所をバイパスして1、下流に
放流する余水路が、設けられているが、この余水路は、
水車運転中は使用しない設備であり利用率は低いのにも
かかわらず、費用のかかる設備である。中小水力発電設
備ではこの様な設備を、省略することができれば、中小
水力発電設備コストの割合の大きい土木費を低減できる
ので1−一タルコス1−の大巾な低減となる。
Furthermore, conventionally, many small and medium-sized water power plants are planned in basins where responsible discharge to downstream areas and changes in water levels in downstream areas are regulated. Hydroelectric power generation equipment installed at such points is a run-of-river type and generates power according to the water flow, so the water tank is not large, and if the water turbine suddenly stops due to an accident, it will overflow and affect other construction methods. Therefore, a spillway is installed to bypass the power plant and discharge water downstream from the water tank, but this spillway is
Although the utilization rate is low because the equipment is not used while the water turbine is in operation, it is an expensive equipment. If such equipment can be omitted in small and medium-sized hydroelectric power generation facilities, civil engineering costs, which account for a large proportion of the cost of small and medium-sized hydroelectric power generation facilities, can be reduced, resulting in a significant reduction of 1-1 Tarcos 1-.

一方、ペルトン水車は、第5図、第6図に示す如く、水
車急停止時、ニードル3の閉動作に、先行して噴射流5
をしゃ断するデフレクタ−2が具備されている。従って
、特開昭61−83487号公報に記載の如くペル1〜
ン水車は、事故により急停止する場合でも、ニードル3
を停止前の状態に保持した状態でデフレクタ−2のみを
動作させ、噴射流5をバケット1に作用させることなく
、放路へ導く所謂、デフレクタ−放流が可能である。
On the other hand, as shown in FIGS. 5 and 6, in the Pelton turbine, when the turbine suddenly stops, the jet flow is
A deflector 2 is provided to cut off the Therefore, as described in Japanese Patent Application Laid-Open No. 61-83487,
Even if a water turbine suddenly stops due to an accident, needle 3
So-called deflector discharge is possible in which only the deflector 2 is operated while the bucket 1 is maintained in the state before stopping, and the jet flow 5 is guided to the discharge path without acting on the bucket 1.

しかしながら、テフレクター放流中に、事故が複旧し、
水車を再起動する場合、一旦、ニードル3を全閉し通常
の水車起動、即ち、 デフレクタ−2開→デフレクタ−2に追従してニードル
3小開→同期回転速度→並列→負荷の順序で行なうのが
従来の方法である。
However, during the teflector discharge, multiple accidents occurred,
When restarting the water turbine, first close the needle 3 completely and start the water turbine normally, that is, in the following order: Deflector 2 open → Needle 3 slightly open following deflector 2 → Synchronous rotation speed → Parallel → Load This is the conventional method.

この場合、ニードル3を全閉してから負荷を取るまでに
数分間の時間が必要となり、この間十分な放流ができな
いのでデフレクタ−2による放流だけでは、余水路を完
全に省略することはできない。
In this case, several minutes are required from fully closing the needle 3 to taking the load, and sufficient water cannot be discharged during this time, so it is not possible to completely omit the spillway only by discharging water from the deflector 2.

別の方法の一例として、特開昭60−206978号公
報に記載の如く、通常のノズルの他に同期並列操作用小
口径のノズルを備えたペルトン水車とデフレクタ−放流
と組合せて、余水路を省略する方法も可能であるが、機
械及び制御が複雑、機器コスト高となる。
As an example of another method, as described in Japanese Patent Application Laid-Open No. 60-206978, a Pelton turbine equipped with a small-diameter nozzle for synchronous parallel operation in addition to a normal nozzle is combined with a deflector discharge to create a spillway. Although it is possible to omit it, the machine and control would be complicated and the equipment cost would be high.

上述のような、状況より、簡単で、安価なデフレクタ−
による放流を中止することなくニードル3開度を保持の
状態で、デフレクタ−2の操作により水車起動、同期並
列に操作する方法が考えられるが、起動、同期速度に安
定させるためには、ノズル4から噴射している噴射流5
を微妙にコントロールしなければならない。しかし、デ
フレクタ−2は従来、噴射流5をしゃ断する目的で設計
されているため、第7図に示す如く先端は直線となって
いるので、第8図に示す如く、デフレクタ=2を微動し
、ノズル径4−1から噴射する噴射流5の一部をバケッ
ト1に唆射し水車を起動し、同期速度に安定せしめなけ
ればならないが、同期速度に達するのに必要な噴射流量
Qと、デフレクタ−2のストロークSは、第4図に示す
目線の如く、小さいストロークで達してしまうので、調
速機の追従が困難な上に噴射流の乱れも加わり、同期並
列操作は非常に困難である。
A simpler and cheaper deflector than the situation described above.
It is conceivable to start the water turbine by operating the deflector 2 and operate the turbine in synchronous parallel mode while maintaining the opening degree of the needle 3 without stopping the discharge by the nozzle 4. Jet stream 5 injected from
must be delicately controlled. However, since the deflector 2 is conventionally designed for the purpose of cutting off the jet flow 5, its tip is straight as shown in Fig. 7, so the deflector 2 can be slightly moved as shown in Fig. 8. , a part of the jet stream 5 injected from the nozzle diameter 4-1 must be injected into the bucket 1 to start the water turbine and stabilize it at the synchronous speed, but the injection flow rate Q required to reach the synchronous speed, As the stroke S of the deflector 2 is reached with a small stroke as shown in the line of sight shown in Fig. 4, it is difficult for the governor to follow and turbulence of the jet flow is added, making synchronous parallel operation very difficult. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如〈従来のデフレクタ−2は、噴射流量の微小調
整を容易に行うことの配慮がされておjらず、デフレク
タ−2による水車起動、同期並入が困難である問題があ
った。
As described above, the conventional deflector 2 does not take into consideration the ease of making minute adjustments to the injection flow rate, and there is a problem in that it is difficult to start and synchronize the water turbine using the deflector 2.

本発明の目的は、デフレクタ−による、放流を中止する
ことなく水車起動、同期並入を可能にし、余水路を省略
するにある。
An object of the present invention is to enable starting and synchronous parallel entry of a water turbine without interrupting water discharge using a deflector, and to omit a spillway.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、デフレクタ−によりしゃ断されていた噴射
流を同期回転速度に加速するのに必要な量を、バケット
に噴射するデフレクタース1〜ロークを大きく、調速機
の追従を容易にすると共に噴射流の乱れを小さくするこ
とにより達成される。
The above purpose is to increase the amount of deflector 1~roke injected into the bucket to increase the amount necessary to accelerate the jet flow that has been blocked by the deflector to a synchronous rotational speed, to make it easier for the speed governor to follow, and to This is achieved by reducing flow turbulence.

すなわち、デフレクタ−の先端にスリットを設けこのス
リット部を通過して水流により水車を起動することによ
り、デフレクタ−ストロークに対する通過水流の変化率
を小さくして、起動に必要な微妙な制御を可能とした。
In other words, by providing a slit at the tip of the deflector and starting the water wheel by the water that passes through this slit, the rate of change in the passing water flow relative to the deflector stroke can be reduced, making it possible to perform the delicate control necessary for starting. did.

〔作用〕[Effect]

デフレクタ−によりしゃ断されている噴射流をデフレク
タ−を開方向に動作させ、バケットに噴射させることに
よりバケットには回転を始めるが、デフレクタ−の先端
が直線の従来技術では、円形の噴射流は、デフレクタ−
2の動作につれで、半円状に面積が増加するのでこの面
積の増加の状態は、デフレクタ−のストロークSに対し
2次曲線に近い曲線で増加する。デフレクタ−の先端に
スリットを設け、噴射流の一部をスリッ1へを通過せし
めることにより、噴射流の通過する面積の増加をデフレ
クタースl−ロータに対して、変化させることができる
。これによって、スリット巾の選び方により同期回転速
度に加速せしめる噴射流量に達するまでの、デフレクタ
−ストロークSを従来技術により大巾に長く選定するこ
とができる。
The jet flow that has been blocked by the deflector is moved in the opening direction, and the jet flow is injected into the bucket, causing the bucket to start rotating. However, in the prior art where the tip of the deflector is straight, the circular jet flow is Deflector
2, the area increases in a semicircular manner, and the area increases in a curve close to a quadratic curve with respect to the stroke S of the deflector. By providing a slit at the tip of the deflector and allowing a portion of the jet flow to pass through the slit 1, it is possible to increase the area through which the jet flow passes relative to the deflector l-rotor. As a result, by selecting the slit width, the deflector stroke S until reaching the injection flow rate that accelerates the rotational speed to the synchronous rotational speed can be selected to be significantly longer than the prior art.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図に示す如く、デフレクタ−2,ニードル3、ノズ
ル4の構成は従来技術と同じであるが、デフレクタ−2
先端に第2図に示す様なスリット2〜1を設ける。デフ
レクタ−2は従来よりこのスリット2−1分だけ長くす
る。
As shown in FIG. 1, the structures of the deflector 2, needle 3, and nozzle 4 are the same as in the prior art,
Slits 2 to 1 as shown in FIG. 2 are provided at the tip. The deflector 2 is made longer by this slit 2-1 than the conventional one.

第1図は、デフレクタ−2により、噴射流5としゃ断し
、矢印の方向に放流している状態を示している。この状
態から、水車を起動するには、デフレクタ−2を開方向
に微動してゆくと噴射流量がスリット2−1を通過して
、バケット1に噴射し水車は加速される。更に同期回転
速度に安定するまでデフレクタ−2を微動操作(第3図
参照)したところで同期並列させ、デフレクタ−2は全
開操作すると共に流量に応じた通常に運転に移行する。
FIG. 1 shows a state in which the jet stream 5 is blocked by the deflector 2 and is discharged in the direction of the arrow. To start the water turbine from this state, when the deflector 2 is slightly moved in the opening direction, the injection flow rate passes through the slit 2-1 and is injected into the bucket 1, accelerating the water turbine. Furthermore, when the deflector 2 is slightly operated (see FIG. 3) until the rotational speed becomes stable at the synchronous speed, the deflector 2 is brought into synchronous parallel operation, and the deflector 2 is fully opened and shifted to normal operation according to the flow rate.

本実施例によれば、デフレクタ−2に設けたスリット2
−1を通過する噴射流の断面積(第3図B)は、デフレ
クタース1−〇−クSに比例するので、同期回転速度に
加速するのに必要な噴射流量Qに見合ったスリット巾W
と、スリット長さL(第2図参照)の選び方により第4
図イ線に示す如くQに達するまでのデフレクタ−ストロ
ークSと従来技術より大巾に長くすることができる。従
って、スリット2−1を通過する噴射流量をゆっくり変
化させるので、調速機の追従が容易となる。
According to this embodiment, the slit 2 provided in the deflector 2
Since the cross-sectional area of the jet flow passing through -1 (Fig. 3B) is proportional to the deflector 1-〇-k S, the slit width W is suitable for the jet flow rate Q required to accelerate to the synchronous rotation speed.
And, depending on how to choose the slit length L (see Figure 2), the fourth
As shown in line A in the figure, the deflector stroke S up to the point Q can be made much longer than in the prior art. Therefore, since the injection flow rate passing through the slit 2-1 is slowly changed, the speed governor can easily follow the flow.

又、スリット2−1により噴射流の整流がなされ噴射流
の乱れかなくなる。以上よりデフレクタ−放流を中止す
ることなくデフレクタ−制御により水車起動、同期並列
ができる効果がある。
Further, the jet flow is rectified by the slit 2-1, and there is no disturbance in the jet flow. From the above, it is possible to start the water turbine and perform synchronous parallel operation by deflector control without interrupting deflector discharge.

[発明の効果j 以上本発明によれば、デフレクタ−放流を中止すること
なく、デフレクタ−により同期並列ができるので、流れ
込み式のペルトン水車を使用した水力発電設備において
は余水路を省略することができるので、建設コストの大
巾低減できる大きな効果がある。
[Effects of the Invention j As described above, according to the present invention, synchronized parallel operation can be performed by the deflector without interrupting the deflector discharge, so the spillway can be omitted in hydroelectric power generation equipment using a run-of-river Pelton turbine. This has the great effect of significantly reducing construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例のノズル及び、デフレクタ
一部を示す断面図、第2図、は第1図のA矢視図、第3
図は、本発明のデフレクタ−動作説明図、第4図は、水
車が同期速度に達するに必要な噴射流量と、デフレクタ
ース1〜ロークの関係を示す線図、第5図はペルトン水
車の構造を示す縦断面図、第6図は、従来技術のノズル
及びデフ宝りタ一部を示す断面図、第7図は、第6図の
B矢視図、第8図は、従来技術のデフレクタ−動作説明
図。 1・・・バケット、2・・・デフレクタ−92−1・・
・スリット、3・・・ニードル、4・・・ノズル、4−
1・・ノズル径、5・・・噴射流。
FIG. 1 is a sectional view showing a nozzle and a part of a deflector according to an embodiment of the present invention, FIG. 2 is a view in the direction of arrow A in FIG. 1, and FIG.
The figure is an explanatory diagram of the deflector operation of the present invention, Figure 4 is a diagram showing the relationship between the injection flow rate required for the water turbine to reach synchronous speed and deflectors 1 to Roke, and Figure 5 is the structure of a Pelton water turbine. FIG. 6 is a cross-sectional view showing a part of the nozzle and differential deflector of the prior art, FIG. 7 is a view taken along arrow B in FIG. 6, and FIG. 8 is a deflector of the prior art. -Operation explanatory diagram. 1...Bucket, 2...Deflector-92-1...
・Slit, 3... Needle, 4... Nozzle, 4-
1... Nozzle diameter, 5... Jet flow.

Claims (1)

【特許請求の範囲】 1、バケットに噴射流を噴出する複数個のノズルと、各
々のノズルに噴射流をしや断するデフレクターを備なえ
たペルトン水車において、デフレクター先端部に噴射流
の一部を通過可能なスリット設けたことを特徴とするペ
ルトン水車。 2、デフレクター放流から、水車を起動する際、デフレ
クターに設けたスリットを通る水流により水車起動から
同期並列までを行うことを特徴とする特許請求の範囲第
1項記載のペルトン水車。
[Claims] 1. In a Pelton turbine equipped with a plurality of nozzles that eject a jet stream into a bucket and a deflector that cuts off the jet stream in each nozzle, a part of the jet stream is disposed at the tip of the deflector. A Pelton water turbine characterized by having a slit through which it can pass. 2. The Pelton water turbine according to claim 1, characterized in that when starting the water turbine from deflector discharge, the water flow from starting the water turbine to synchronous paralleling is performed by a water flow passing through a slit provided in the deflector.
JP62088837A 1987-04-13 1987-04-13 Pelton wheel Pending JPS63255570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088837A JPS63255570A (en) 1987-04-13 1987-04-13 Pelton wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088837A JPS63255570A (en) 1987-04-13 1987-04-13 Pelton wheel

Publications (1)

Publication Number Publication Date
JPS63255570A true JPS63255570A (en) 1988-10-21

Family

ID=13954065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088837A Pending JPS63255570A (en) 1987-04-13 1987-04-13 Pelton wheel

Country Status (1)

Country Link
JP (1) JPS63255570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061779U (en) * 1992-06-05 1994-01-14 株式会社東芝 Pelton turbine injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061779U (en) * 1992-06-05 1994-01-14 株式会社東芝 Pelton turbine injection device

Similar Documents

Publication Publication Date Title
JPS6411828B2 (en)
CN100386515C (en) Water pump hydroturbine and its control method and method for making hydroturbine stop
JPS63255570A (en) Pelton wheel
JP6867463B1 (en) Hydropower plant controller and method
JP4064112B2 (en) Flow rate adjusting device and adjusting method for hydroelectric generator
JPS6131671A (en) Pelton wheel
JPS55146282A (en) Halting method for main machine of turbine or pump wheel at breakage of weak parts
JPS60206976A (en) Pelton wheel
JPS6030477A (en) Pumping-out apparatus for iron pipe in pelton water wheel
JPS5465203A (en) Nozzle cut-out governor for steam turbine
JPS57212376A (en) Method of starting water turbine
JPS5925088A (en) Light load air charging controller
JPH044471B2 (en)
JPS61212671A (en) Braking method for water turbine when load is shut off
JPH08218999A (en) Constant flowrate horizontal shaft pelton turbine
JPH08135560A (en) Method and device for controlling operation for removing foreign matter from water turbine
JPS6183486A (en) Method of operating multistage hydraulic machinery
JPH0133668B2 (en)
JPS60198379A (en) Method of controlling operation of multinozzle pelton wheel
JPS60224977A (en) Control of pelton turbine
JPH09291875A (en) Speed governing controller for kaplan water turbine
JPH0637872B2 (en) How to start a hydraulic turbine
JPS61200381A (en) Discharge operating method for pelton turbine
JPH07286573A (en) Nozzle for pelton turbine, and control method thereof
JPS61279778A (en) Control method for water wheel operation