JPH0132380B2 - - Google Patents

Info

Publication number
JPH0132380B2
JPH0132380B2 JP57181006A JP18100682A JPH0132380B2 JP H0132380 B2 JPH0132380 B2 JP H0132380B2 JP 57181006 A JP57181006 A JP 57181006A JP 18100682 A JP18100682 A JP 18100682A JP H0132380 B2 JPH0132380 B2 JP H0132380B2
Authority
JP
Japan
Prior art keywords
axis
sphere
rotation
point
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57181006A
Other languages
Japanese (ja)
Other versions
JPS5969565A (en
Inventor
Ryosuke Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18100682A priority Critical patent/JPS5969565A/en
Publication of JPS5969565A publication Critical patent/JPS5969565A/en
Publication of JPH0132380B2 publication Critical patent/JPH0132380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/503Gearings providing a continuous range of gear ratios in which two members co-operate by means of balls or rollers of uniform effective diameter, not mounted on shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は球体を使用した無段変速装置に関す
るものである。 従来この種の装置としては第1図に示すものが
あつた。第1図は従来の装置を示す一部断面図
で、図において1は鋼球(一般的には球体)、2
は鋼球1の中心孔に挿入されたスピンドル軸、3
は鋼球1とスピンドル軸2間のニードルベアリン
グ、4はアイリスプレート、4aはアイリスプレ
ート4に設けられスピンドル軸2が貫通するカム
溝、4bはアイリスプレート4の外周に設けられ
たウオームホイール、5はウオームホイール4b
に設けられたウオームギヤ、6はハウジング、
7,8はそれぞれブラケツトで6,7,8を総称
してハウジング構造と称し、7a,8aはそれぞ
れブラケツト7,8内に設けられた溝、9は入力
軸(一般的には第1の回転軸)、10は出力軸
(一般的には第2の回転軸)である。軸9,10
の軸心は一致し、この軸心をx軸とする直角座標
を考えるとき、第1図に示す断面はx軸を含む平
面による断面であり、鋼球1はx軸に直角な平面
上に各球の中心がx軸から距離rの点、すなわち
半径rの円周上にあるように複数個設けられ、か
つ隣接する2鋼球1の中心間距離が均一になるよ
うに配置される。溝7a,8aの方向はx軸に直
角な平面への投影がx軸を中心とし半径方向に延
びており、カム溝4aはアイリスプレート4がx
軸のまわりに回転するときスピンドル軸2の両端
が溝7a,8aに嵌合して動くような形状に構成
されている。 11はアウタリング(outer ring)、12は入
力側ドライブコーン(drive cone)、13は出力
側ドライブコーン、14は入力側加圧ローラ、1
5は出力側加圧ローラ、16はベアリング、17
は潤滑油、18,19はそれぞれオイルシールで
ある。アウタリング11は鋼球1の外側を圧接
し、ドライブコーン12,13は鋼球1に圧接し
て摩擦により回転を伝達し、加圧ローラ14,1
5はドライブコーン12,13を鋼球1に圧接す
る力を作用し、ベアリング16は出力軸10をブ
ラケツト8で支持するために設けられ潤滑油17
はハウジング構造内に形成された油槽に入つてい
る。 次に動作について説明する。ハンドル(図示せ
ず)によりウオームギヤ5を回転するとウオーム
ホイール4bを介してアイリスプレート4がx軸
のまわりに回転する。この時溝7a,8aとカム
溝4aの位置関係が変化し、スピンドル軸2がx
軸に平行な方向から傾くことになる。 第2図は第1図の装置の動作を説明する説明図
で、第1図と同一符号は同一部分を示し、N1
入力回転数、N2は出力回転数、R1,R2はそれぞ
れドライブコーン12,13の接触部半径、r1
r2はそれぞれ鋼球1のドライブコーン12,13
との接触半径、θはスピンドル軸2の傾斜とする
と、N2=R1/r1・r2/R2・N1でR1=R2のときN2=r2/r1 N1となり、r1>r2で減速し、θが第2図に示す例
と逆方向になるとr1<r2となり増速される。 この場合各ドライブコーン12,13は加圧ロ
ーラ14,15によりそれぞれ軸9,10と一体
的に回転すると同時に、伝達トルクに応じた軸方
向分力によりドライブコーン12,13を中心部
に向つて押圧することになり、各ドライブコーン
12,13と鋼球1との間に摩擦伝動に必要な押
圧力を生じる。また鋼球1はアウタリング11に
より内側方向の押圧力を受けることで各押圧力間
の平衡が保たれているのである。 ところで、摩擦伝動に必要な押圧力は伝動すべ
きトルクが大きくなると大きくなるので、トルク
の大きな低速回転側にだけ大きな押圧力を加えて
やればよいのであるが、第1図に示す構造では押
圧力の平衡のために高速回転側にも同様に大きい
押圧力が作用することになる。高速回転側に過大
な押圧力を加えることは大きな摩擦損失を発生す
ることとなるので、許容し得る押圧力の上限値が
制限されこれがそのまま低速回転側の押圧力の上
限となる。しかし、低速回転側の押圧力が低いと
回転トルクが大きい場合にすべりを発生し、この
すべりを所定%以下に制限せねばならず、したが
つて高速回転側の押圧力の上限値が低速回転側の
トルクを制限し、綜合して伝達馬力の容量が制限
されることになる。また第1図から明らかなよう
に球体にスピンドル軸を設けそのスピンドル軸の
傾斜角度を制御する構造は、部品点数が多く、高
精度の工作が要求され、製造原価が高くなるばか
りでなく、上述のように伝達馬力が制限され、か
つ耐久性も低くなるという欠点があつた。 この発明は上記のような従来装置の欠点を除去
するためになされたもので、以下図面によりこの
発明の実施例を説明する。 第3図はこの発明の一実施例を示す一部断面図
で、6,7,8,9,10,17,18,19は
第1図の同一符号に相当する部分を示し、9aは
入力軸9に設けられたスプライン部、21は鋼球
(一般的には球体)である。第1及び第2の回転
軸9,10の軸方向をx軸とし、複数個の鋼球2
1の各中心がx軸に直角な平面上、x軸から距離
rの円周上に、その中心間距離を均一にして配列
されることは第1図の場合と同様であり、かつ第
3図の断面はx軸を含む平面による断面を示して
いることも第1図に場合と同様である。22はハ
ウジング構造に固定され鋼球21と圧接する円錐
面22aを有するアウタリング(outer ring)、
28は外周面が凹わん曲状で鋼球21の外周と点
接触する入力側ドライブコーン(drive cone)、
29は入力側ドライブコーン28の位置決め用固
定プレート、30は固定プレート29と入力側ド
ライブコーン28間のスラストベアリング、31
は固定プレート29に設けられブラケツト7を貫
通している複数個のピン、32は変速用のナツト
で、左右に回転させることで、ピン31、固定プ
レート29、スラストベアリング30を介し入力
側ドライブコーン28をx軸方向に移動させる。
33,34は入力軸9を支持するブラケツト7に
設けられたベアリング、35は半月溝35aを設
け鋼球21の外周と点接触する出力側ドライブプ
レートでこの出力側ドライブプレート35は出力
軸10に固定される。 第4図は第3図に示す装置の動作例を説明する
説明図で、各鋼球21について、鋼球の中心を原
点とし入力軸9の方向(x軸方向)に平行な方向
をX軸とし、x軸とX軸とを含む平面(第4図の
紙の面)に垂直な方向をY軸とし、X軸とY軸を
含む平面に垂直な方向をZ軸とする直角座標で表
示する。またA点は入力側ドライブコーン28と
鋼球21との接触点、B点は出力側ドライブプレ
ート35と鋼球21との接触点、C点はアウタリ
ング22と鋼球21との接触点で、各接触点A,
B,Cでの押圧力をそれぞれ図に示す如くFA
FB,FCとする。 次に座標変換
The present invention relates to a continuously variable transmission using spheres. A conventional device of this type is shown in FIG. Figure 1 is a partial cross-sectional view showing a conventional device. In the figure, 1 is a steel ball (generally a sphere), 2
3 is the spindle shaft inserted into the center hole of steel ball 1;
4 is a needle bearing between the steel ball 1 and the spindle shaft 2, 4 is an iris plate, 4a is a cam groove provided in the iris plate 4 and through which the spindle shaft 2 passes, 4b is a worm wheel provided on the outer periphery of the iris plate 4, 5 is worm wheel 4b
worm gear provided in , 6 is a housing,
7 and 8 are brackets, respectively, and 6, 7, and 8 are collectively referred to as the housing structure, 7a and 8a are grooves provided in the brackets 7 and 8, respectively, and 9 is an input shaft (generally the first rotating shaft). 10 is an output shaft (generally a second rotating shaft). Axis 9, 10
The axes of the steel ball 1 coincide with each other, and when considering rectangular coordinates with this axis as the x-axis, the cross section shown in Fig. 1 is a cross section on a plane that includes the A plurality of balls are provided so that the center of each ball is located at a point at a distance r from the x-axis, that is, on the circumference of a radius r, and two adjacent steel balls 1 are arranged so that the distance between their centers is uniform. The direction of the grooves 7a and 8a is such that the projection on a plane perpendicular to the x-axis extends in the radial direction with the x-axis as the center, and the cam groove 4a has a direction in which the iris plate 4
The spindle shaft 2 is shaped so that when it rotates around the shaft, both ends of the spindle shaft 2 fit into grooves 7a and 8a and move. 11 is an outer ring, 12 is an input side drive cone, 13 is an output side drive cone, 14 is an input side pressure roller, 1
5 is the output side pressure roller, 16 is the bearing, 17
is lubricating oil, and 18 and 19 are oil seals, respectively. The outer ring 11 is in pressure contact with the outside of the steel ball 1, and the drive cones 12 and 13 are in pressure contact with the steel ball 1 to transmit rotation by friction, and the pressure rollers 14 and 1
5 exerts a force to press the drive cones 12 and 13 against the steel ball 1, and a bearing 16 is provided to support the output shaft 10 with the bracket 8, and a lubricating oil 17 is provided.
is contained in an oil reservoir formed within the housing structure. Next, the operation will be explained. When the worm gear 5 is rotated by a handle (not shown), the iris plate 4 rotates around the x-axis via the worm wheel 4b. At this time, the positional relationship between the grooves 7a, 8a and the cam groove 4a changes, and the spindle shaft 2
It will be tilted from a direction parallel to the axis. Fig. 2 is an explanatory diagram explaining the operation of the device shown in Fig. 1, where the same symbols as in Fig. 1 indicate the same parts, N 1 is the input rotation speed, N 2 is the output rotation speed, and R 1 and R 2 are Contact radius of drive cones 12 and 13, r 1 ,
r 2 are drive cones 12 and 13 of steel ball 1, respectively
If the radius of contact and θ is the inclination of the spindle shaft 2, then N 2 = R 1 / r 1・r 2 / R 2・N 1 and when R 1 = R 2 , N 2 = r 2 / r 1 N 1 Therefore, when r 1 > r 2 , the speed is decelerated, and when θ is in the opposite direction to the example shown in FIG. 2, r 1 <r 2 , and the speed is increased. In this case, each drive cone 12, 13 is rotated integrally with the shaft 9, 10 by pressure rollers 14, 15, respectively, and at the same time, the drive cone 12, 13 is rotated toward the center by an axial component force corresponding to the transmitted torque. As a result, a pressing force necessary for frictional transmission is generated between each drive cone 12, 13 and the steel ball 1. Further, the steel ball 1 receives an inward pressing force from the outer ring 11, so that the balance between the respective pressing forces is maintained. By the way, the pushing force required for friction transmission increases as the torque to be transmitted increases, so it is sufficient to apply a large pushing force only on the low-speed rotation side where the torque is large, but with the structure shown in Figure 1, the pushing force increases. In order to balance the pressure, a similarly large pressing force acts on the high-speed rotation side. Since applying an excessive pressing force on the high-speed rotation side will generate a large friction loss, the upper limit of the allowable pressing force is limited, and this becomes the upper limit of the pressing force on the low-speed rotation side. However, if the pressing force on the low-speed rotation side is low, slippage will occur when the rotational torque is large, and this slippage must be limited to a predetermined percentage or less. Therefore, the upper limit of the pressing force on the high-speed rotation side is This limits the side torque, which in turn limits the transmission horsepower capacity. Furthermore, as is clear from Figure 1, the structure in which a spindle shaft is provided on a sphere and the inclination angle of the spindle shaft is controlled requires a large number of parts and requires high-precision machining, which not only increases manufacturing costs but also increases the manufacturing cost as described above. The disadvantages were that the transmitted horsepower was limited and the durability was low. This invention was made to eliminate the above-mentioned drawbacks of the conventional apparatus, and embodiments of the invention will be described below with reference to the drawings. FIG. 3 is a partial sectional view showing an embodiment of the present invention, in which 6, 7, 8, 9, 10, 17, 18, and 19 indicate parts corresponding to the same reference numerals in FIG. 1, and 9a is an input A spline portion 21 provided on the shaft 9 is a steel ball (generally a sphere). The axial direction of the first and second rotating shafts 9 and 10 is the x-axis, and a plurality of steel balls 2
1 are arranged on a plane perpendicular to the x-axis, on the circumference at a distance r from the x-axis, with uniform distances between the centers, as in the case of FIG. Similarly to FIG. 1, the cross section in the figure shows a cross section along a plane including the x-axis. 22 is an outer ring fixed to the housing structure and having a conical surface 22a in pressure contact with the steel ball 21;
28 is an input side drive cone whose outer circumferential surface is concavely curved and makes point contact with the outer circumference of the steel ball 21;
29 is a fixed plate for positioning the input side drive cone 28; 30 is a thrust bearing between the fixed plate 29 and the input side drive cone 28; 31
are a plurality of pins provided on the fixing plate 29 and passing through the bracket 7; 32 is a gear nut; by rotating it left and right, the input side drive cone is connected via the pin 31, the fixing plate 29, and the thrust bearing 30; 28 in the x-axis direction.
33 and 34 are bearings provided on the bracket 7 that supports the input shaft 9; 35 is an output side drive plate having a semicircular groove 35a and making point contact with the outer periphery of the steel ball 21; this output side drive plate 35 is connected to the output shaft 10; Fixed. FIG. 4 is an explanatory diagram illustrating an example of the operation of the device shown in FIG. 3. For each steel ball 21, the origin is the center of the steel ball, and the and expressed in rectangular coordinates, with the Y axis being the direction perpendicular to the plane containing the x-axis and the X-axis (the plane of the paper in Figure 4), and the Z-axis being the direction perpendicular to the plane containing the X-axis and Y-axis. do. Also, point A is the contact point between the input side drive cone 28 and the steel ball 21, point B is the contact point between the output side drive plate 35 and the steel ball 21, and point C is the contact point between the outer ring 22 and the steel ball 21. , each contact point A,
The pressing force at B and C is F A , as shown in the figure, respectively.
Let F B and F C be. Next, coordinate transformation

【式】を考えX− Z面をY軸の回りに角度βだけ回転させ、すなわ
ち角XOM=βとして次にYOM面をζ軸の回り
に角度θだけ回転させることでB点がξ軸上に来
るものとする。 この場合座標変換の式は次のようになる。 ところで、第4図に示す座標軸に関しては、位
置決め用固定プレート29のx軸上の位置が固定
されている限り、点A,B,Cの位置は固定され
ており、この3点で支持して鋼球21の中心点0
を固定していると見ることができる。したがつて
押圧力FA,FB,FCはベクトル的に平衡を保つて
おればよろしく、第1図の場合のように低速回転
側の押圧力と高速回転側の押圧力とが等しくなけ
れば平衡しないという制限はない。したがつて、
第3図の装置では低速回転側も高速回転側も負荷
トルクに応じただけの押圧力でかつ摩擦伝動に必
要なだけの最小限の押圧力ですむことになる。
FA,FBを任意に定めればそれに平衡するFCが発
生する。なお、半月溝35aの球状を第5図乃至
第7図に示す。第5図はドライブプレート35の
正面図、第6図は第5図の−による断面図、
第7図は第5図の−による円周上展開断面図
である。これらの図において第3図、第4図と同
一符号は同一部分を示し、2点鎖線で表す35b
は半月溝35aの等高線を示す。 また、第4図に示す座標軸に関しては、鋼球1
はξ軸のまわりの回転は自由であるのでξ軸のま
わりに自転する。一方x軸上の一点を原点とする
座標軸から見ると、入力側ドライブコーン28は
x軸のまわりに回転しているので、A点も同様に
回転し、鋼球21はこの回転に応じてξ軸まわり
の自転の外に公転をともなう遊星運動となりこの
運動がB点から出力側ドライブプレート35に伝
達される。 入力回転数をNIN、出力回転数をNOUT、x軸か
らA点までの距離をR1、x軸からC点までの距
離をR3、ξ軸からA点までの距離をr1、ξ軸から
C点までの距離をr3とすると NIN=(1+r1/R1・R3/r3)NOUT ………(2) となる。 変速比を変える場合には変速用ナツト32を右
又は左に回転させ入力側ドライブコーン28の軸
方向位置を変えることで、第4図X−Y−Z座標
に関する点A,B,Cの位置を変化させ、式(2)の
R1,R3,r1,r3の値を変化させる。X−Y−Z座
標に関するB点の位置の変化は、ξ軸の変化とな
り、ひいてはr1,r3の値の変化となつてNOUT
NINの変速比に影響する。鋼球21の運動につい
て更に第4図を参照して説明すると、点A,B,
C,Oはξηζ座標に関しては固定しているが、x
軸上の一点を原点とする座標から見るとドライブ
コーン28はA点を介してO点をx軸の回りに回
転させ、O点の回転はB点を介してドライブプレ
ート35をx軸の回りに回転させる。B点のx軸
の回りの回転数はO点のx軸回りの回転数と同一
である。O点がx軸の回りに回転するとき鋼球2
1にC点で接触しているアウタリング22は固定
しているのでC点を介して鋼球21をB−Oの回
りに自転させる結果になる。ドライブプレート3
5の回転数NOUT(O点の回転数に等しい)に対し
自転の回転数は点AにおいてはNOUT(r1・R3)/
R1・r3となり、点Aのx軸の回りの回転数NIN
NOUTと点Aにおける鋼球21の自転の回数の和
になるので式(2)が成立する。なお、出力側ドライ
ブプレート35の半月溝35aは第5図乃至第7
図に示すようにx軸上の点を原点とする座標軸に
関し鋼球21の中心位置Oの予期される変化範囲
において鋼球21の表面と一点接触できる形状で
あり、その接触点Bでは鋼球21に対して滑るこ
とのないように大きな押圧力で押し付けられてお
り、鋼球21はB点を頂点として自転しながら公
転によつてドライブプレート35にトルクを与え
て出力軸10を回転させる。 以上のようにこの発明では、鋼球に圧接する3
点の力の平衡により鋼球の自転中心が自動的に定
まるように入力軸ドライブコーン、アウタリン
グ、出力側ドライブプレートの半月溝を構成する
ことで部品数が少く、構造が簡単で、安価に製造
でき、小形で長寿命の無段変速装置を提供するこ
とができる。 なお、入出力軸を逆にしても変速比が逆になる
だけで動作は同一であり、ドライブプレートに設
けた半月溝の円周方向の傾斜角を両回転方向に設
けることで、入出力軸の回転方向の左右どちらで
も動作させることができる。
Considering [Formula], rotate the X-Z plane by an angle β around the Y axis, that is, set the angle XOM = β, and then rotate the YOM plane around the ζ axis by an angle θ, so that point B is on the ξ axis. shall come to In this case, the coordinate transformation formula is as follows. By the way, regarding the coordinate axes shown in FIG. 4, as long as the position of the positioning fixing plate 29 on the x-axis is fixed, the positions of points A, B, and C are fixed, and the points A, B, and C are supported by these three points. Center point 0 of steel ball 21
It can be seen that it is fixed. Therefore, it is best if the pressing forces F A , F B , and F C are vectorally balanced, and the pressing force on the low-speed rotation side and the pressing force on the high-speed rotation side must be equal, as in the case of Fig. 1. There is no restriction that there is no equilibrium. Therefore,
In the device shown in FIG. 3, the pressing force on both the low-speed rotation side and the high-speed rotation side is sufficient to correspond to the load torque, and the minimum pressing force required for frictional transmission is sufficient.
If F A and F B are arbitrarily determined, F C that is in equilibrium with them will be generated. The spherical shape of the semilunar groove 35a is shown in FIGS. 5 to 7. FIG. 5 is a front view of the drive plate 35, FIG. 6 is a cross-sectional view taken by - in FIG.
FIG. 7 is a developed cross-sectional view on the circumference of FIG. 5. In these figures, the same reference numerals as in FIGS. 3 and 4 indicate the same parts, and 35b is indicated by a two-dot chain line.
indicates the contour lines of the semilunar groove 35a. Regarding the coordinate axes shown in Fig. 4, the steel ball 1
Since rotation around the ξ-axis is free, it rotates around the ξ-axis. On the other hand, when viewed from the coordinate axis with one point on the x-axis as the origin, the input side drive cone 28 is rotating around the x-axis, so point A also rotates, and the steel ball 21 moves ξ according to this rotation. In addition to rotation around the axis, the planetary motion is accompanied by revolution, and this motion is transmitted from point B to the output side drive plate 35. The input rotation speed is N IN , the output rotation speed is N OUT , the distance from the x-axis to point A is R 1 , the distance from the x-axis to point C is R 3 , the distance from the ξ-axis to point A is r 1 , If the distance from the ξ axis to point C is r 3 , then N IN = (1 + r 1 /R 1 · R 3 /r 3 )N OUT (2). When changing the gear ratio, by rotating the gear nut 32 to the right or left and changing the axial position of the input drive cone 28, the positions of points A, B, and C on the X-Y-Z coordinates in Figure 4 can be changed. By changing the equation (2),
Change the values of R 1 , R 3 , r 1 , and r 3 . A change in the position of point B with respect to the X-Y-Z coordinates results in a change in the ξ axis, which in turn results in a change in the values of r 1 and r 3 , resulting in N OUT /
Affects the N IN gear ratio. To further explain the motion of the steel ball 21 with reference to FIG. 4, points A, B,
C, O are fixed in terms of ξηζ coordinates, but x
Viewed from the coordinates with one point on the axis as the origin, the drive cone 28 rotates the O point around the x-axis via the A point, and the rotation of the O point rotates the drive plate 35 around the x-axis via the B point. Rotate it. The number of rotations around the x-axis at point B is the same as the number of rotations around the x-axis at point O. When point O rotates around the x-axis, steel ball 2
Since the outer ring 22 that is in contact with the outer ring 1 at the point C is fixed, the steel ball 21 is rotated about B-O through the point C. Drive plate 3
5's rotation speed N OUT (equal to the rotation speed at point O), the rotation speed at point A is N OUT (r 1・R 3 )/
R 1・r 3 , and the rotation speed N IN around the x-axis at point A is
Since it is the sum of N OUT and the number of rotations of the steel ball 21 at point A, equation (2) holds true. The semicircular groove 35a of the output side drive plate 35 is shown in FIGS. 5 to 7.
As shown in the figure, the shape is such that it can come into contact with the surface of the steel ball 21 at one point in the expected range of change of the center position O of the steel ball 21 with respect to the coordinate axis with the origin at a point on the x-axis, and at the contact point B, the steel ball The steel ball 21 is pressed against the drive plate 35 with a large pressing force to prevent it from slipping, and the steel ball 21 rotates around the point B and rotates on its axis, applying torque to the drive plate 35 and rotating the output shaft 10. As described above, in this invention, the three
By configuring the input shaft drive cone, outer ring, and semicircular groove of the output side drive plate so that the center of rotation of the steel ball is automatically determined by the equilibrium of point forces, the number of parts is small, the structure is simple, and the cost is low. It is possible to provide a continuously variable transmission device that can be manufactured, is small, and has a long life. Note that even if the input and output shafts are reversed, the operation is the same except that the gear ratio is reversed. It can be operated in either the left or right direction of rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置を示す一部断面図、第2図
は第1図の装置の動作を説明する説明図、第3図
はこの発明の一実施例を示す一部断面図、第4図
は第3図の装置の動作を説明する説明図、第5図
は出力側ドライブプレートの正面図、第6図はそ
の断面図、第7図はその円周上展開断面図であ
る。 6……ハウジング、7,8……ブラケツト、9
……入力軸、10……出力軸、17……潤滑油、
18,19……オイルシール、21……鋼球、2
2……アウタリング、28……入力側ドライブコ
ーン、35……出力側ドライブプレート、35a
……半月溝。なお、図中同一符号は同一又は相当
部分を示す。
FIG. 1 is a partial cross-sectional view showing a conventional device, FIG. 2 is an explanatory diagram explaining the operation of the device shown in FIG. 1, FIG. 3 is a partial cross-sectional view showing an embodiment of the present invention, and FIG. 5 is a front view of the output side drive plate, FIG. 6 is a sectional view thereof, and FIG. 7 is a circumferentially developed sectional view thereof. 6... Housing, 7, 8... Bracket, 9
...Input shaft, 10...Output shaft, 17...Lubricating oil,
18, 19...Oil seal, 21...Steel ball, 2
2...Outer ring, 28...Input side drive cone, 35...Output side drive plate, 35a
...Semilunar groove. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の回転軸と、この第1の回転軸の軸方向
をx軸とするときx軸に直角な平面内において上
記x軸から互いに等距離の点に中心を有しかつ中
心間距離が均一になるように配列された複数個の
互いに同一形状の球体と、この複数個の球体を収
容しかつ上記第1の回転軸をx軸まわりの回転が
自在でかつx軸方向の位置が固定されるように保
持するハウジング構造と、このハウジング構造に
固定されx軸を含む平面による切断面が上記球体
の接線となる一辺を有し上記球体の中心位置Oの
上記x軸からの距離の変化によつて上記一辺と上
記球体との接点位置Cが変化するよう構成された
アウタリングと、上記第1の回転軸に対しx軸方
向に摺動可能でかつx軸のまわりの回転に関して
は上記第1の回転軸に対し固定されるように連結
された軸を有し、x軸を含む平面による切断面が
上記球体の外周と一点接触を保ちかつその接触点
Aが上記球体中心とのx軸方向の関係位置によつ
て定まる凹わん曲形状となるドライブコーンと、
x軸を含む平面による切断面が上記球体の外周の
上記アウタリング及びドライブコーンとの接触点
と反対側の点において一点接触を保ちかつその接
触点Bが上記球体の中心位置Oの上記x軸からの
距離の変化によつて変化する凹わん曲の半月溝を
有するドライブプレートと、このドライブプレー
トの回転軸を形成しその軸心がx軸と合致し上記
ハウジング構造によりx軸まわりの回転が自在で
かつx軸方向の位置が上記第1の回転軸と反対の
位置で固定される第2の回転軸と、上記第1の回
転軸と上記ドライブコーンとのx軸方向の関係位
置を調整して上記球体の中心位置Oの上記x軸か
らの距離を調整する手段とを備え、上記ドライブ
コーンが接触点Aを介して球体をx軸の回りに回
転する回転角を上記球体の中心位置Oのx軸の回
りの回転により接触点Bを介して上記ドライブプ
レートをx軸の回りに回転する回転角と、接触点
Cが固定されているため上記位置Oの回転により
発生するOBを軸とする球体の自転の点Aにおけ
る回転角とに分配することによつて上記ドライブ
コーンの回転数と上記ドライブプレートの回転数
との関係が定められることを特徴とする無段変速
装置。
1. A first rotation axis, which has its centers at points equidistant from the x-axis in a plane perpendicular to the x-axis, when the axial direction of the first rotation axis is the x-axis, and has a center-to-center distance. A plurality of spheres having the same shape as each other uniformly arranged, and a first rotating shaft that accommodates the plurality of spheres and is rotatable about the x-axis and fixed in position in the x-axis direction. a housing structure that is fixed to this housing structure and has one side whose cut surface by a plane including the x-axis is a tangent to the sphere, and a change in the distance of the center position O of the sphere from the x-axis; an outer ring configured to change the contact position C between the one side and the sphere; and an outer ring configured to be slidable in the x-axis direction with respect to the first rotation axis and configured to rotate around the x-axis as described above. It has an axis fixedly connected to the first rotation axis, and a cut surface by a plane including the x-axis maintains one-point contact with the outer periphery of the sphere, and the contact point A is at the x-axis with the center of the sphere. A drive cone that has a concave curved shape determined by the relative position in the axial direction,
A cross section taken by a plane including the x-axis maintains one point contact on the outer periphery of the sphere at a point opposite to the contact point with the outer ring and drive cone, and the contact point B is the x-axis at the center position O of the sphere. The drive plate has a semicircular groove with a concave curve that changes depending on the distance from Adjusting the relative position in the x-axis direction between a second rotating shaft that is freely movable and fixed at a position opposite to the first rotating shaft in the x-axis direction, and the first rotating shaft and the drive cone. means for adjusting the distance of the center position O of the sphere from the x-axis, and the rotation angle at which the drive cone rotates the sphere around the x-axis via the contact point A is adjusted to the center position of the sphere. The rotation angle of the drive plate around the x-axis through the contact point B due to the rotation of O around the x-axis, and the rotation angle of OB generated by the rotation of the above-mentioned position O because the contact point C is fixed. A continuously variable transmission characterized in that the relationship between the rotation speed of the drive cone and the rotation speed of the drive plate is determined by dividing the rotation angle at point A of the rotation of a sphere.
JP18100682A 1982-10-13 1982-10-13 Stepless speed change gear Granted JPS5969565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18100682A JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18100682A JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Publications (2)

Publication Number Publication Date
JPS5969565A JPS5969565A (en) 1984-04-19
JPH0132380B2 true JPH0132380B2 (en) 1989-06-30

Family

ID=16093086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18100682A Granted JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Country Status (1)

Country Link
JP (1) JPS5969565A (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503712B1 (en) * 2002-05-14 2005-07-26 김선조 Continuously speed variable motor
US7011600B2 (en) 2003-02-28 2006-03-14 Fallbrook Technologies Inc. Continuously variable transmission
JP4974896B2 (en) 2004-10-05 2012-07-11 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
CA2620951C (en) * 2005-08-24 2013-10-01 Fallbrook Technologies Inc. Continuously variable transmission
CN102425649B (en) 2005-10-28 2014-09-24 福博科知识产权有限责任公司 Electromotive drives
US20070155567A1 (en) 2005-11-22 2007-07-05 Fallbrook Technologies Inc. Continuously variable transmission
CN102226464B (en) 2005-12-09 2013-04-17 福博科技术公司 Axial force production mechanism for transmission
EP1811202A1 (en) * 2005-12-30 2007-07-25 Fallbrook Technologies, Inc. A continuously variable gear transmission
CN102269056B (en) 2006-06-26 2013-10-23 福博科技术公司 Continuously variable transmission
PL2089642T3 (en) 2006-11-08 2013-09-30 Fallbrook Ip Co Llc Clamping force generator
US8738255B2 (en) 2007-02-01 2014-05-27 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
WO2008100792A1 (en) 2007-02-12 2008-08-21 Fallbrook Technologies Inc. Continuously variable transmissions and methods therefor
EP2700843A3 (en) 2007-02-16 2017-11-08 Fallbrook Intellectual Property Company LLC Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
JP5591686B2 (en) 2007-04-24 2014-09-17 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Electric traction drive
US8641577B2 (en) 2007-06-11 2014-02-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
CA2983530A1 (en) 2007-07-05 2009-01-08 Fallbrook Intellectual Property Company, Llc Continuously variable transmission
CN101861482B (en) 2007-11-16 2014-05-07 福博科知识产权有限责任公司 Controller for variable transmission
JP5783723B2 (en) 2007-12-21 2015-09-24 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Automatic transmission and method thereof
CA2716908C (en) 2008-02-29 2017-06-27 Fallbrook Technologies Inc. Continuously and/or infinitely variable transmissions and methods therefor
US8317651B2 (en) 2008-05-07 2012-11-27 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
JP5457438B2 (en) 2008-06-06 2014-04-02 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Infinitely variable transmission and control system for infinitely variable transmission
CN102084155B (en) 2008-06-23 2014-06-11 福博科知识产权有限责任公司 Continuously variable transmission
US8818661B2 (en) 2008-08-05 2014-08-26 Fallbrook Intellectual Property Company Llc Methods for control of transmission and prime mover
US8469856B2 (en) 2008-08-26 2013-06-25 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US8167759B2 (en) 2008-10-14 2012-05-01 Fallbrook Technologies Inc. Continuously variable transmission
KR101904040B1 (en) * 2008-10-14 2018-10-04 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Continuously variable transmission
RU2011140072A (en) 2009-04-16 2013-05-27 Фоллбрук Текнолоджиз Инк. (Сша/Сша) STATOR ASSEMBLY AND GEAR SHIFTING MECHANISM FOR THE TRANSMISSION-FREE TRANSMISSION
US8512195B2 (en) 2010-03-03 2013-08-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US8888643B2 (en) 2010-11-10 2014-11-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US20140094339A1 (en) * 2011-06-10 2014-04-03 Toyota Jidosha Kabushiki Kaisha Continuously variable transmission
CN104302949B (en) 2012-01-23 2017-05-03 福博科知识产权有限责任公司 Infinitely variable transmissions, continuously variable transmissions methods, assemblies, subassemblies, and components therefor
KR102433297B1 (en) 2013-04-19 2022-08-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Continuously variable transmission
JP6408327B2 (en) * 2014-09-30 2018-10-17 日本電産シンポ株式会社 Friction type continuously variable transmission
CN105059466A (en) * 2015-08-10 2015-11-18 宁波市龙嘉摩托车有限公司 Gear shift mechanism for motorcycle
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
KR102364407B1 (en) 2016-03-18 2022-02-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 continuously variable transmission system and method
US10023266B2 (en) 2016-05-11 2018-07-17 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmissions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
WO2020176392A1 (en) 2019-02-26 2020-09-03 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JPS5969565A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
JPH0132380B2 (en)
US8992376B2 (en) Power transmission device
US3581587A (en) Transmission
US6960147B2 (en) Planet gear and use thereof
US7354347B2 (en) Constant velocity universal joint
JPH04272552A (en) Differential reduction gear of rolling ball type
JPH04122848U (en) Toroidal continuously variable transmission
US20010014639A1 (en) Disk for toroidal type continuously variable transmission and working method therefor
JPS62255615A (en) Slide type constant speed universal coupling
JP6831904B2 (en) Pressing device for toroidal continuously variable transmission
JP4640635B2 (en) Toroidal continuously variable transmission
JP2598886Y2 (en) Toroidal type continuously variable transmission
JP2023012100A (en) toroidal type continuously variable transmission
JPH0621621B2 (en) Planetary roller reducer
JP3522522B2 (en) Toroidal type continuously variable transmission
JP2000337465A (en) Spherical reduction gear
JP2620186B2 (en) Continuously variable transmission
JPH10141462A (en) Troidal type continuously variable transmission
JPH02212651A (en) Speed change gear
JPS6053266A (en) Planetary frictional transmission
JPH04132222U (en) Tripod type constant velocity joint
JPS6053265A (en) Planetary frictional transmission
JPH04114130U (en) Tripod type constant velocity joint
JPH0619862Y2 (en) Constant velocity universal joint
JP5761445B2 (en) Continuously variable transmission