JPS5969565A - Stepless speed change gear - Google Patents

Stepless speed change gear

Info

Publication number
JPS5969565A
JPS5969565A JP18100682A JP18100682A JPS5969565A JP S5969565 A JPS5969565 A JP S5969565A JP 18100682 A JP18100682 A JP 18100682A JP 18100682 A JP18100682 A JP 18100682A JP S5969565 A JPS5969565 A JP S5969565A
Authority
JP
Japan
Prior art keywords
axis
steel ball
point
sphere
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18100682A
Other languages
Japanese (ja)
Other versions
JPH0132380B2 (en
Inventor
Ryosuke Okita
良介 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18100682A priority Critical patent/JPS5969565A/en
Publication of JPS5969565A publication Critical patent/JPS5969565A/en
Publication of JPH0132380B2 publication Critical patent/JPH0132380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/503Gearings providing a continuous range of gear ratios in which two members co-operate by means of balls or rollers of uniform effective diameter, not mounted on shafts

Abstract

PURPOSE:To obtain the simple constitution of the captioned apparatus at low cost by forming each semicircular groove in which the center of rotation of a steel ball is automatically determined through the equilibrium of the forces at three points at which the steel ball contacts under pressure, on a driving-side member and a trailing-side member, in a stepless speed change gear in utilization of steel ball. CONSTITUTION:An input shaft 9 and an output shaft 10 are supported through bearings 33, 34, 36 and 37 onto the brackets 7 and 8 which constitute a part of a housing, and an input-side drive cone 28 which point-contacts with the outer periphery of a steel ball 21 and whose outer surface is curved in concaved form is installed at the edge of the input shaft 9 through a spline part 9a. An output- side drive plate 35 having a semicircular groove 35a which point-contacts with the steel ball 21 is fixed at the edge of the output shaft 10, and an outer ring 22 having a conical surface 22a which press-contacts with the steel ball 21 is fixed onto the inner peripheral surface of the housing 6. The input-side drive cone 28 is shiftable in the axial direction through a pin 31 and a positioning plate 29, by the revolution of a nut 32, and thus transmission ratio can be varied.

Description

【発明の詳細な説明】 この発明は球体を使用した無段変速装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuously variable transmission using spheres.

従来この種の装置としては第1図に示すものがあった。A conventional device of this type is shown in FIG.

第1図は従来の装置を示す一部断面図で、図においてf
ilは鋼球(一般的には球体)、(2)は鋼球filの
中心孔に挿入されたスピンドル軸、(3)は鋼球(11
とスピンドル軸(2)間のニードルベアリング、(4)
ハアイリスブレー)、(4a)はアイリスプレート(4
)に設けられスピンドル軸(2)が貫通するカム溝、(
4b)はアイリスプレート(4)の外周に設けられたウ
オームホイール、(5)はウオームホイール(41) 
)に設けられたウオームギヤ、(6)はハウジング、(
7)、(8)はそれぞれブラケットで+61 、 (7
) 、 (3)を総称してハウジング構造と称し、(7
a) 、 (8a) uそれぞれブラケツ) (7)、
 (8)内に設けられた溝、(9)は人力軸(一般的(
Fは第1の回転軸)、ndは出力軸(一般的には第2の
回転軸)である。軸(9) 、 t+1の軸心は一致し
、この軸心をX軸とする直角座標を考えると久、第1図
に示す断面はX軸を含む平面による断面であり、鋼球(
1)はX軸に直角ガ平面上に各法の中心がX軸から距離
rの点、すなわち半径rの円周上にあるように複数個設
けられ、かつ隣接する2鋼球(1)の中心間距離が均一
になるように配置される。(14(7a’) 、 (8
a)の方向はX軸に直角な平面への投影がX軸を中心と
し半径方向に延びており、カム溝(4a)はアイリスプ
レート(4)がX軸の捷わりに回転するときスピンドル
軸(2)の両端が溝(7a)、(8a)に嵌合して動く
ような形状に構成さね、ている。
Figure 1 is a partial sectional view showing a conventional device, and in the figure f
il is a steel ball (generally a sphere), (2) is a spindle shaft inserted into the center hole of the steel ball fil, and (3) is a steel ball (11
needle bearing between (2) and spindle shaft (4)
(4a) is the iris plate (4
), through which the spindle shaft (2) passes, a cam groove (
4b) is a worm wheel provided on the outer periphery of the iris plate (4), and (5) is a worm wheel (41).
) is the worm gear provided, (6) is the housing, (
7) and (8) are +61 and (7) respectively in brackets.
), (3) are collectively called the housing structure, and (7
a), (8a) u each bracket) (7),
(8) Groove provided inside, (9) is a human-powered shaft (general (
F is a first rotating shaft), and nd is an output shaft (generally a second rotating shaft). The axes of the axes (9) and t+1 coincide, and if we consider rectangular coordinates with the X axis as the center of the axes, the cross section shown in Figure 1 is a cross section taken by a plane that includes the X axis, and the steel ball (
1) A plurality of steel balls (1) are provided on a plane perpendicular to the X-axis so that the center of each law is at a point at a distance r from the X-axis, that is, on the circumference of a circle with a radius r. Arranged so that the distance between centers is uniform. (14(7a'), (8
In the direction a), the projection on a plane perpendicular to the X-axis extends in the radial direction with the X-axis as the center, and the cam groove (4a) is connected to the spindle axis ( 2) is constructed in such a shape that both ends thereof fit into the grooves (7a) and (8a) and move.

(11)はアウタリング(outer ring )、
0りは入力側ドライブコーン(drive cone 
)  、(13は出力側ドライブコーン、(14は入力
側加圧ローラ、(19は出力側加圧ローラ、QQFiベ
アリング、αηは潤滑油、08、α傷はそれぞれオイル
シールである。アウタリング0印1球(1)の外側を圧
接し、ドライブコーン02 、的は鋼球(1)に圧接し
て摩擦により回転を伝達し、加圧ローラO4,aSはド
ライブコーン(19、(Llを鋼球(1)に圧接する力
を作用し、ベアリングoeFi出力軸+1[)をブラケ
ット(8)で支持するために設けられ潤滑油(1ηはハ
ウジング構造内に形成された油槽に入っている。
(11) is an outer ring;
0 is the input side drive cone (drive cone
), (13 is the output side drive cone, (14 is the input side pressure roller, (19 is the output side pressure roller, QQFi bearing, αη is lubricating oil, 08 and α scratches are oil seals. Outer ring 0 The outside of mark 1 ball (1) is pressed against the drive cone 02, and the target is pressed against the steel ball (1) to transmit rotation by friction. The lubricating oil (1η) is provided in order to apply pressure to the ball (1) and support the bearing oeFi output shaft +1[) with the bracket (8), and is contained in an oil tank formed within the housing structure.

次に動作について説明する。ハンドル(図示せず)によ
りウオームギヤ(5)f回転するとウオームホイール(
4b)を介してアイリスプレート(4)がX軸のまわり
に回転する。この時溝(7a) 、(8a)とカム溝(
4a)の位置関係が変化し、 スピンドル軸(2)がX
軸に平行な方向から傾くことになる。
Next, the operation will be explained. When the worm gear (5) is rotated by the handle (not shown), the worm wheel (
4b) through which the iris plate (4) rotates around the X-axis. At this time, the grooves (7a), (8a) and the cam groove (
The positional relationship of 4a) has changed, and the spindle axis (2) is
It will be tilted from a direction parallel to the axis.

第2図は第1図の装置の動作を説明する説明図で、第1
図と同一符号は同一部分を示し、N1は入力回転数、N
2  は出力回転数% R1+ R2はそれぞれドライ
ブコーン(12、(13の接触部半径、r  + rl
      2 はそれぞれ鋼球(1)のドライブコーン(12、(13
との接触半径、θはスピンドル軸(2)の傾斜とすると
、N2=寸N1  となり、r 1> r 2で減速し
、θが第2図に示す例と逆方向になるとr 、< r 
2となり増速される。
FIG. 2 is an explanatory diagram for explaining the operation of the device shown in FIG.
The same symbols as in the figure indicate the same parts, N1 is the input rotation speed, N
2 is the output rotation speed % R1 + R2 is the contact radius of the drive cone (12, (13), r + rl
2 are the drive cones (12, (13) of the steel ball (1), respectively.
If the contact radius and θ are the inclination of the spindle shaft (2), then N2=dimension N1, and the deceleration is at r 1 > r 2, and when θ is in the opposite direction to the example shown in Fig. 2, r , < r
2, and the speed is increased.

この場合各ドライブコーンvt 、 aiは加圧ローラ
(141、(1!3 Kよりそれぞれ軸(9)、 +1
1と一体的に回転すると同時に、伝達トルクに応じた軸
方向分力によりドライブコーンfl′A、 (11を中
心部に向って押圧することになり、各ドライブコーンQ
3 、03と鋼球(1)との間に摩擦伝動に必要な押圧
力を生じる。また鋼球(1)はアウタリングα℃により
内側方向の押圧力を受けることで各押圧力間の平衡が保
たれているのである。
In this case, each drive cone vt, ai is the axis (9), +1 from the pressure roller (141, (1!3 K)
At the same time, the drive cone fl'A, (11) is pressed toward the center by an axial component force corresponding to the transmitted torque, and each drive cone Q
A pressing force necessary for frictional transmission is generated between 3 and 03 and the steel ball (1). Further, the steel ball (1) is subjected to an inward pressing force by the outer ring α° C., so that the balance between each pressing force is maintained.

ところで、摩擦伝動に必要な押圧力は伝動すべきトルク
が大きくなると太きくなるので、トルクの大きな低速回
転側にだけ大きな押圧力を加えてやればよいのであるが
、第1図に示す構造では押圧力の平衡のために高速回転
側にも同様に大きい押圧力が作用するととになる。高速
回転側に過大な押圧力を加えることは大缶な摩擦損失を
発生することと々るので、許容し得る押圧力の上限値が
制限されこれがそのまま低速回転側の押圧力の上限とな
る。しかし、低速回転側の押圧力が低いと回転トルクが
大六い場合にすべりを発生し、このすべりを所定チ以下
に制限せねば々らず、したがって高速回転側の押圧力の
上限値が低速回転側のトルクを制限し、綜合して伝達馬
力の容量が制限されることにカる。また第1図から明ら
かなように球体にスピンドル軸を設けそのスピンドル軸
の傾斜角度を制御する構造は、部品点数が多く、高精度
の工作が要求され、製造原価が高くなるばかりでなく、
上述のように伝達馬力が制限され、かつ耐久性も低く々
るという欠点があった。
By the way, the pressing force required for friction transmission increases as the torque to be transmitted increases, so it is only necessary to apply a large pressing force only on the low-speed rotation side where the torque is large, but with the structure shown in Figure 1, In order to balance the pressing force, a similarly large pressing force acts on the high-speed rotation side. Applying an excessive pressing force on the high-speed rotation side often causes large friction losses, so the upper limit of the allowable pressing force is limited, and this becomes the upper limit of the pressing force on the low-speed rotation side. However, if the pressing force on the low-speed rotation side is low, slippage will occur when the rotational torque is large, and this slippage must be limited to a predetermined value or less. Therefore, the upper limit of the pressing force on the high-speed rotation side is This limits the torque on the rotating side, which in turn limits the capacity of transmitted horsepower. Furthermore, as is clear from Fig. 1, the structure in which a spindle shaft is provided on a sphere and the inclination angle of the spindle shaft is controlled requires a large number of parts, requires high-precision machining, and not only increases manufacturing costs.
As mentioned above, the disadvantages are that the transmitted horsepower is limited and the durability is also low.

この発明は上記のような従来装置の欠点を除去するため
になされたもので、以下図面によりこの発明の詳細な説
明する。
This invention was made to eliminate the drawbacks of the conventional apparatus as described above, and will be described in detail below with reference to the drawings.

第3図はこの発明の一実施例を示す一部断面図で、(6
)、 (7)、 (8) 、 +9) 、 110 、
 (1η、θ〜、(11u*1図の同一符号に相当する
部分を示し、(9a)は入力軸(9)に設けられたスプ
ライン部、C21)は鋼球(一般的には球体)である。
FIG. 3 is a partial sectional view showing an embodiment of the present invention.
), (7), (8), +9), 110,
(1η, θ~, (11u*1) Indicates the part corresponding to the same reference numeral in the figure, (9a) is the spline part provided on the input shaft (9), and C21 is a steel ball (generally a sphere). be.

第1及び第2の回転軸+91 、 fIOの軸方向をX
軸とし、複数個の鋼球al)の各中心がX軸に直角な平
面上、X軸から距離rの円筒上に、その中心間距離を均
一にして配列されることは第1図の場合と同様であり、
かつ第3図の断面はX軸を含む平面による断面を示して
いることも第1図の場合と同様である。(ハ)はハウジ
ング構造に固定され鋼球Qメと圧接する円錐面(22a
)を有するアウタリング(outer ring )、
(ハ)は外周面が凹わん曲状で一球Q1)の外周と点接
触する入力側ドライブコ−ン(drive cone 
)、翰は入力側ドライブコーン例の位置決め用固定プレ
ート、tAH固定プレート翰と入力側ドライブコーン(
ハ)間のスラストベアリング、クラ優は固定プレート@
に設けられブラケット(7)を貫通している複数個のビ
ン、6つは変速用のナツトで、左右に回転させることで
、ピン3す、固定プレート(ハ)、スラストベアリング
嘱を介し入力側ドライブコーン@をX軸方向に移動させ
る。
First and second rotation axes +91, the axial direction of fIO is
In the case of Fig. 1, the centers of a plurality of steel balls (al) are arranged on a plane perpendicular to the X-axis, on a cylinder at a distance r from the X-axis, with uniform distances between the centers. is similar to
Also, as in the case of FIG. 1, the cross section of FIG. 3 shows a cross section along a plane including the X-axis. (c) is a conical surface (22a) fixed to the housing structure and in pressure contact with the steel ball Q.
) having an outer ring;
(C) is an input side drive cone whose outer circumferential surface is concavely curved and makes point contact with the outer circumference of one ball Q1).
), the handle is a fixed plate for positioning the input side drive cone example, the tAH fixed plate handle and the input side drive cone (
c) Thrust bearing between C), Kura Yu is a fixed plate @
A plurality of pins are installed in the bracket (7) and pass through the bracket (7). Six of them are gear shifting nuts. By rotating them left and right, the input side is connected via the pin 3, fixed plate (c), and thrust bearing part. Move the drive cone @ in the X-axis direction.

0]、(ロ)は入力軸(9)を支持するブラケット(7
)に設けられたベアリング、6っけ半月溝(35a)を
設は鋼球e21)の外周と点接触する出力側ドライブプ
レートでこの出力側ドライブプレートcIうは出力軸(
11K固定される。
0], (b) is a bracket (7) that supports the input shaft (9).
), the output side drive plate is in point contact with the outer periphery of the steel ball e21), and this output side drive plate cI is the output shaft (
Fixed at 11K.

埴4図は坑3図に示す装置の動作例を説明する説明図で
、各・鋼球乙ηについて、鋼球の中心を原点とし入力軸
(9)の方向(X軸方向)に平行な方向をX軸とし、X
軸とX軸とを含む平面(第4図の紙の而)[垂直な方向
をY軸とし、X軸とY軸を含む平面に垂直な方向を2軸
とする直角座標で表示する。またA点は入力側ドライブ
コーン(ハ)と鋼球Q1)との接触点、B点は出力側ド
ライブブレー) 05と鋼球e2])との接触点、0点
はアウタリング(ハ)と鋼球01)との接触点で、各接
触点A、B、Cでの抑圧力をそれぞれ図に示す如(FA
、 FB、 Foとする。
Fig. 4 is an explanatory diagram for explaining an example of the operation of the device shown in Fig. 3. For each steel ball η, the center of the steel ball is the origin and the axis is parallel to the direction of the input axis (9) (X-axis direction). The direction is the X axis,
A plane containing the axis and the Also, point A is the contact point between the input side drive cone (c) and steel ball Q1), point B is the contact point between the output side drive brake) 05 and steel ball e2), and point 0 is the contact point between the outer ring (c) and the steel ball e2). At the contact point with the steel ball 01), the suppressing force at each contact point A, B, and C is as shown in the figure (FA
, FB, Fo.

をY軸の回りに角度βだけ回転させ、す々わち角XOM
 =βとして次にYOM面をξ軸の回りに角度θだけ仲
1転させることでB点がξ軸上に来るものと干る。
is rotated around the Y axis by an angle β, which is the angle
=β, and then rotate the YOM plane around the ξ-axis by an angle θ, so that point B will be on the ξ-axis.

この場合座標変換の式は次のようになる。In this case, the coordinate transformation formula is as follows.

) ところで、第4図に示す座標軸に関しては、位置決め用
固定プレート翰のX軸上の位置が固定されている限り、
点A、B、Cの位置は固定されており、この3点で支持
して一球01)の中心点Of固定していると見ることが
できる。したがって押圧力、FA* FB 、Fc  
はベクトル的に平衡を保っておればよろしく、第1図の
場合のように低速回転側の押圧力と高速回転側の押圧力
とが等しくなければ平衡し々いという制限はない。した
がって、第3図の装置では低速回転側も高速1同転側も
負荷トルクに応じただ行の押圧力でかつ摩擦伝動に必要
なだけの最小限の押圧力ですむことになる。
) By the way, regarding the coordinate axes shown in Fig. 4, as long as the position of the positioning fixed plate on the X axis is fixed,
The positions of points A, B, and C are fixed, and it can be seen that the center point Of of one ball 01) is fixed by being supported by these three points. Therefore, the pressing force, FA* FB , Fc
It suffices as long as they maintain vectorial equilibrium, and there is no limit as in the case of FIG. 1 where the pressure on the low-speed rotation side and the pressure on the high-speed rotation side are unequal to be in balance. Therefore, in the device shown in FIG. 3, both the low-speed rotation side and the high-speed single rotation side require a pressing force that is just the same according to the load torque, and requires only the minimum pressing force necessary for frictional transmission.

また、第4図に示す座標軸に関しては、鋼球(1)はξ
軸のまわりの回転は自由である′のでξ軸のまわりに自
転する。一方X軸上の一点を原点とする座標軸から見る
と、入力側ドライブコーン(ハ)はX軸の捷わりに回転
しているので、A点も同様に回転し、鋼球■】)はこの
回転に応じてξ軸まわりの自転の外に公転をともなう遊
星運動となりこの運動がB点から出力側ドライブプレー
ト(至)に伝達される。
Regarding the coordinate axes shown in Fig. 4, the steel ball (1) is ξ
Rotation around the axis is free, so it rotates around the ξ axis. On the other hand, when viewed from the coordinate axis with one point on the X-axis as the origin, the input drive cone (C) is rotating instead of the X-axis, so point A also rotates, and the steel ball ■】) rotates due to this rotation. In response to this, in addition to rotation around the ξ axis, planetary motion occurs with revolution, and this motion is transmitted from point B to the output side drive plate (to).

入力回転数をNIN%出力回転数をN。07% X軸か
らAAまでの距離をR1、X軸から0点までの距離をR
3%ξ軸からA点までの距離をrl、ξ軸から0点まで
の距離fr  とすると 3 となる。
Input rotation speed is NIN% Output rotation speed is N. 07% The distance from the X-axis to AA is R1, and the distance from the X-axis to the 0 point is R
3% If the distance from the ξ-axis to point A is rl, and the distance from the ξ-axis to point 0 is fr, then 3 is obtained.

変速比を変える場合には変速用ナツト64を右又は左に
回転させ入力側ドライブコーン(7)の軸方向位置を変
えることで、gK4図x−y−z座標に関する点A、B
、Cの位置を変化させ、式(2)のR1゜R3* rl
e r3  の値を変化させる。x−y−z座標に関す
るB点の位置の変化は、ξ軸の変化となり、ひいてはF
  or  の値の変化とガつてN0UT/3 NINの変速比に影響子る。
When changing the gear ratio, rotate the gear nut 64 to the right or left to change the axial position of the input drive cone (7), thereby changing the position between points A and B on the x-y-z coordinates in Figure gK4.
, by changing the position of C, R1°R3*rl in equation (2)
Change the value of e r3. A change in the position of point B with respect to the x-y-z coordinates results in a change in the ξ axis, and thus F
Changes in the value of or will affect the gear ratio of N0UT/3NIN.

以上のようにこの発明では、鋼球に圧接する3点の力の
平衡により鋼球の自転中心が自動的に定まるように入力
軸ドライブコーン、アウタリング、出力側ドライブプレ
ートの半月溝を構成することで部品数が少く、構造が簡
単で、安価に製造でき、小形で長寿命の無段変速装置を
提供することができる。
As described above, in this invention, the semicircular grooves of the input shaft drive cone, outer ring, and output side drive plate are configured so that the center of rotation of the steel ball is automatically determined by the balance of the forces of the three points pressing against the steel ball. This makes it possible to provide a continuously variable transmission device that has a small number of parts, a simple structure, can be manufactured at low cost, and has a small size and long life.

なお、入出力軸を逆にしても変速比が逆に々るだけで動
作は同一であり、ドライブプレートに設けた半月溝の円
周方向の傾斜角を両回転方向に設けることで、入出力軸
の回転方向の左右どちらでも動作させることができる。
Note that even if the input and output shafts are reversed, the operation is the same except that the gear ratio is reversed; It can be operated on either the left or right side of the rotation direction of the shaft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置を示す一部断面図、第2図は第1図
の装置の動作を説明する説明図、第3図はこの発明の一
実施例を示す一部断面図、第4図は第3図の装置の動作
を説明する説明図である。 (6)・−・ハウジング、(7) 、 (8)・・・ブ
ラケット、(9)・・・入力軸、(11・・・出力軸、
0η・・・潤滑油、Q8. QI・・・オイルシール、
(ハ)・・・鋼球、(至)・・・アウタリング、(ハ)
・・・入力側ドライブコーン、(ト)・・・出力側ドラ
イブプレート、(35a)・・・半月溝。 々お、図中間−符−@iFi同−又は相当部分を示す。 代理人 葛 野 信 − 第4図 7
FIG. 1 is a partial cross-sectional view showing a conventional device, FIG. 2 is an explanatory diagram explaining the operation of the device shown in FIG. 1, FIG. 3 is a partial cross-sectional view showing an embodiment of the present invention, and FIG. The figure is an explanatory diagram illustrating the operation of the apparatus shown in FIG. 3. (6) -- Housing, (7), (8) Bracket, (9) Input shaft, (11 Output shaft,
0η...Lubricating oil, Q8. QI...Oil seal,
(c)...Steel ball, (to)...outer ring, (c)
...Input side drive cone, (G)...Output side drive plate, (35a)...Semilunar groove. In the middle of the figure, the symbol -@iFi indicates the same or a corresponding part. Agent Shin Kuzuno - Figure 4 7

Claims (1)

【特許請求の範囲】[Claims] 第1の回転軸と、この第1の回転軸の軸方向をX軸とす
るときX@に直角な平面内において上記X軸から互に等
距離の点に中心を有しかつ中心間距離が均一になるよう
に配列された複数個の球体と、この複数個の球体を収容
しかつ上記第1の回転軸をX軸まわりの回転が自在でか
つX軸方向の位置が固定されるように保持するハウジン
グ構造と、このハウジング構造に固定されX軸を含む平
面による切断面が上記球体の外周の接線となる一辺を有
し上記球体の中心位置の上記X軸からの距離の変化によ
って上記−辺と上記球体との接点位置が変化するよう構
成されたアウタリングと、上記第1の回転軸に対しX軸
方向に摺動可能でかつX軸のまわりの回転に関しては固
定されるように連結された軸を有し、X軸を含む平面に
よる切断面が上記球体の外周と一点接触を保ちかつその
接触点が上記球体中心とのX軸方向の関係位置によって
定まる凹わん曲形状とhるドライブコーンと、X軸を含
む平面による切断面が上記球体の外周の上記アウタリン
グ及びドライブコーンとの接触点と反対側の点において
一点接触を保ちかつその接触点が上記球体の中心位置の
上We X軸からの距離の変化によって変化する凹わん
曲の半月溝を有するドライブプレートと、このドライブ
プレートの回転軸を形成しその軸心がX軸と合致し上記
ハウジング構造によりX軸まわりの回転が自在でかつ 
   ゛X軸方向の位置が上記第1の回転軸と反対側の
位置で固定されるか2の回転軸と、上記第1の回転軸と
上記ドライブコーンとのX軸方向の関係位置を調整する
手段とを備えた無段変速装置。
A first rotational axis, when the axial direction of the first rotational axis is the X-axis, has centers at points equidistant from the X-axis in a plane perpendicular to X@, and has a center-to-center distance. A plurality of spheres are uniformly arranged, and the first rotation axis is configured to accommodate the plurality of spheres, to freely rotate around the X-axis, and to fix the position in the X-axis direction. a housing structure to hold the housing structure; a plane fixed to the housing structure and including the X-axis has one side that is tangent to the outer periphery of the sphere; and the - an outer ring configured such that the contact position between the side and the sphere changes; and an outer ring that is connected to be slidable in the X-axis direction with respect to the first rotation axis and fixed with respect to rotation around the X-axis; has a concave curved shape, the cut surface of the plane including the X axis maintains one point contact with the outer periphery of the sphere, and the point of contact is determined by the position relative to the center of the sphere in the X axis direction. The cut surface of the drive cone and the plane including the X axis maintains one point contact with the outer periphery of the sphere at a point opposite to the contact point with the outer ring and drive cone, and the contact point is above the center position of the sphere. We have a drive plate that has a semicircular groove with a concave curve that changes depending on the change in distance from the X-axis, and forms the rotation axis of this drive plate, whose axis coincides with the X-axis, and the housing structure allows rotation around the X-axis. is free and
゛The position in the X-axis direction is fixed at a position opposite to the first rotating shaft, or the relative position in the X-axis direction of the second rotating shaft, the first rotating shaft, and the drive cone is adjusted. A continuously variable transmission device comprising means.
JP18100682A 1982-10-13 1982-10-13 Stepless speed change gear Granted JPS5969565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18100682A JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18100682A JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Publications (2)

Publication Number Publication Date
JPS5969565A true JPS5969565A (en) 1984-04-19
JPH0132380B2 JPH0132380B2 (en) 1989-06-30

Family

ID=16093086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18100682A Granted JPS5969565A (en) 1982-10-13 1982-10-13 Stepless speed change gear

Country Status (1)

Country Link
JP (1) JPS5969565A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503712B1 (en) * 2002-05-14 2005-07-26 김선조 Continuously speed variable motor
WO2007025056A1 (en) * 2005-08-24 2007-03-01 Fallbrook Technologies Inc. Continuously variable transmission
WO2007077502A1 (en) * 2005-12-30 2007-07-12 Fallbrook Technologies Inc. A continuously variable gear transmission
JP2011231929A (en) * 2004-10-05 2011-11-17 Fallbrook Technologies Inc Continuously variable transmission
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
JP2012506001A (en) * 2008-10-14 2012-03-08 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
WO2012169056A1 (en) * 2011-06-10 2012-12-13 トヨタ自動車株式会社 Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
CN105059466A (en) * 2015-08-10 2015-11-18 宁波市龙嘉摩托车有限公司 Gear shift mechanism for motorcycle
WO2016052044A1 (en) * 2014-09-30 2016-04-07 日本電産シンポ株式会社 Friction-type stepless transmission
JP2016516633A (en) * 2013-04-19 2016-06-09 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503712B1 (en) * 2002-05-14 2005-07-26 김선조 Continuously speed variable motor
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9732848B2 (en) 2003-02-28 2017-08-15 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10428939B2 (en) 2003-02-28 2019-10-01 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10036453B2 (en) 2004-10-05 2018-07-31 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2011231929A (en) * 2004-10-05 2011-11-17 Fallbrook Technologies Inc Continuously variable transmission
WO2007025056A1 (en) * 2005-08-24 2007-03-01 Fallbrook Technologies Inc. Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US10711869B2 (en) 2005-11-22 2020-07-14 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10208840B2 (en) 2005-12-09 2019-02-19 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9683638B2 (en) 2005-12-30 2017-06-20 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
WO2007077502A1 (en) * 2005-12-30 2007-07-12 Fallbrook Technologies Inc. A continuously variable gear transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9726282B2 (en) 2006-06-26 2017-08-08 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9676391B2 (en) 2007-02-01 2017-06-13 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US9878719B2 (en) 2007-02-01 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US9945456B2 (en) 2007-06-11 2018-04-17 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9869388B2 (en) 2007-07-05 2018-01-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9739375B2 (en) 2007-12-21 2017-08-22 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US10704687B2 (en) 2007-12-21 2020-07-07 Fallbrook Intellectual Property Company Llc Automatic transmissions and methods therefor
US9850993B2 (en) 2008-02-29 2017-12-26 Fallbrook Intellectual Property Company Llc Continuously and/or infinitely variable transmissions and methods therefor
US9618100B2 (en) 2008-05-07 2017-04-11 Fallbrook Intellectual Property Company Llc Assemblies and methods for clamping force generation
US10634224B2 (en) 2008-06-06 2020-04-28 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9683640B2 (en) 2008-06-06 2017-06-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9878717B2 (en) 2008-08-05 2018-01-30 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
JP2012501418A (en) * 2008-08-26 2012-01-19 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
US9903450B2 (en) 2008-08-26 2018-02-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2014139478A (en) * 2008-08-26 2014-07-31 Fallbrook Intellectual Property Co Llc Continuously Variable Transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2012506001A (en) * 2008-10-14 2012-03-08 フォールブルック テクノロジーズ インコーポレイテッド Continuously variable transmission
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9920823B2 (en) 2009-04-16 2018-03-20 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
WO2012169056A1 (en) * 2011-06-10 2012-12-13 トヨタ自動車株式会社 Continuously variable transmission
US9611921B2 (en) 2012-01-23 2017-04-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US9677650B2 (en) 2013-04-19 2017-06-13 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10323732B2 (en) 2013-04-19 2019-06-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
JP2016516633A (en) * 2013-04-19 2016-06-09 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Continuously variable transmission
US10145455B2 (en) 2014-09-30 2018-12-04 Nidec Shimpo Corporation Friction-type continuously variable transmission
WO2016052044A1 (en) * 2014-09-30 2016-04-07 日本電産シンポ株式会社 Friction-type stepless transmission
JP2016070393A (en) * 2014-09-30 2016-05-09 日本電産シンポ株式会社 Friction type stepless speed change device
EP3203114A4 (en) * 2014-09-30 2018-06-27 Nidec Shimpo Corporation Friction-type stepless transmission
CN105059466A (en) * 2015-08-10 2015-11-18 宁波市龙嘉摩托车有限公司 Gear shift mechanism for motorcycle
US10920882B2 (en) 2016-01-15 2021-02-16 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10458526B2 (en) 2016-03-18 2019-10-29 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, systems and methods
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JPH0132380B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
JPS5969565A (en) Stepless speed change gear
JP3456267B2 (en) Toroidal type continuously variable transmission
US3581587A (en) Transmission
US6960147B2 (en) Planet gear and use thereof
WO2012111562A1 (en) Toroidal type continuously variable transmission
US8382630B2 (en) High speed and continuously variable traction drive
GB2268236A (en) Toroidal race type CVT with output and cylindrical shafts mounted at central casing partition
US2646696A (en) Transmission
JPS6032056B2 (en) Axial load device
US2936638A (en) Variable speed friction drive
US1774175A (en) Variable ratio gear
JP2001227610A (en) Disc for troidal type continuously variable transmission and machining method therefor
US1774176A (en) Frictional gearing
US20180291993A1 (en) Transmission device
JP5761445B2 (en) Continuously variable transmission
JPS6057049A (en) Centrifugal stepless speed change device
US3148551A (en) Torque amplifier
JP2595544Y2 (en) Toroidal type continuously variable transmission
JP2005003108A (en) Spline device and toroidal continuously variable transmission using the same
JP2005214373A (en) Toroidal type continuously variable transmission
JPS6053265A (en) Planetary frictional transmission
JPH0942402A (en) Toroidal type continuously variable transmission
JP2013190019A (en) Continuously variable transmission
JPH02212651A (en) Speed change gear
JP2011043229A (en) Friction type transmission