JPH02212651A - Speed change gear - Google Patents

Speed change gear

Info

Publication number
JPH02212651A
JPH02212651A JP3204289A JP3204289A JPH02212651A JP H02212651 A JPH02212651 A JP H02212651A JP 3204289 A JP3204289 A JP 3204289A JP 3204289 A JP3204289 A JP 3204289A JP H02212651 A JPH02212651 A JP H02212651A
Authority
JP
Japan
Prior art keywords
input shaft
rolling body
rolling element
output shaft
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3204289A
Other languages
Japanese (ja)
Other versions
JPH0567822B2 (en
Inventor
Kazuichi Ito
伊藤 一一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3204289A priority Critical patent/JPH02212651A/en
Publication of JPH02212651A publication Critical patent/JPH02212651A/en
Publication of JPH0567822B2 publication Critical patent/JPH0567822B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the reduction of local friction of a rolling body and the like through enlargement of a speed change range by a method wherein rotation of an input shaft is transmitted to the rolling body, and the rolling body is revolved as it is rotated in a state to make contact with first and second guide surfaces and a guide groove. CONSTITUTION:When, by a transmission gear, a cylinder member 5 is moved laterally, a round part 6a of a rolling body 6 engaged with a guide groove 26 is moved laterally in a state to be engaged with the groove 26, and inclination of the rolling body 6 is changed. However, since a size relation is established among first and second guide surfaces 14 and 17, the groove 26, the round part 6a of the rolling body 6, and a spherical part 6b, even when inclination is changed, a contact state therebetween can be held. Since through rotation of an input shaft 2, a force, by which an input member 10 is forced to approach the rolling body 6, is exerted on the input member, contact of the rolling body 6 with the guide surfaces 14 and 17 and the groove 26 is further ensured. Rotation of the input member 10 occasioned by rotation of the input shaft 2 is transmitted to the rolling body 6, the rolling body 6 is revolved as it is rotated in a state that the rolling body is brought into contact with the guide surfaces 14 and 17 and the groove 26. A current differential action causes the change of the speed of rotation of the input shaft 2 to transmit it to an output shaft 3.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、負荷に応じて変速比が自動的に変化する自
動変速装置または変速比が無段階に変えられる無段変速
装置として使用される変速装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a transmission that is used as an automatic transmission that automatically changes the gear ratio depending on the load or a continuously variable transmission that changes the gear ratio steplessly. Regarding.

従来の技術および発明の課題 自動変速装置または無段変速装置として使用される変速
装置として、入力軸と出力軸の間に、自転と公転を行な
う球状または円錐状の転動体が複数介在させられた摩擦
遊星機構を用いたものが知られている。
Background Art and Problems of the Invention As a transmission used as an automatic transmission or a continuously variable transmission, a plurality of spherical or conical rolling elements that rotate and revolve are interposed between an input shaft and an output shaft. One using a friction planetary mechanism is known.

ところが、このような従来の変速装置には、次のような
問題がある。
However, such conventional transmission devices have the following problems.

すなわぢ、構造」二、変速範囲が比較的小さい。In other words, the structure is 2. The shifting range is relatively small.

また、転動体の摺接状態を維持するために皿ばねなとの
ばねか必要であり、転動体との摺接点が常に一定である
ため、局部摩耗が生じ、寿命が短い。
In addition, a spring such as a disc spring is required to maintain the sliding state of the rolling elements, and since the sliding contact point with the rolling elements is always constant, local wear occurs and the service life is short.

この発明の目的は、上記の問題を全て解決した変速装置
を提供することにある。
An object of the present invention is to provide a transmission that solves all of the above problems.

課題を解決するための手段 この発明による変速装置は、 入力軸と、入力軸と同軸に配置された出力軸と、入力軸
と出力軸の周囲に同軸にかつ回転自在に配置された保持
器と、保持器の周囲に同軸にかつ軸線方向に移動しうる
ように配置された円筒部材と、自身の軸線を中心に自転
しつるように保持器に保持された複数の転動体とを備え
ており、 入力軸またはこれと一体に回転する部分に入力軸の軸線
と直交する第1ガイド面が設けられ、出力軸またはこれ
と一体に回転する部分に45度のテーパ状をなす第2ガ
イド面が設けられ、円筒部材の内周面に円弧状断面形状
を有する環状のガイドみぞが設けられており、 転動体が略円柱状をなし、転動体の一端部外周縁全周に
丸み部が設けられ、他端面に転動体の軸線上に中心を有
する球面部が設けられ、転動体の丸み部の対称2箇所が
第1ガイド面とガイドみぞの底に接触し、転勤□体の球
面部が第2ガイド面に接触させられているものである。
Means for Solving the Problems A transmission device according to the present invention includes an input shaft, an output shaft disposed coaxially with the input shaft, and a retainer coaxially and rotatably disposed around the input shaft and the output shaft. , is equipped with a cylindrical member disposed coaxially and axially movably around the cage, and a plurality of rolling elements held by the cage so as to rotate about their own axis and hang. A first guide surface perpendicular to the axis of the input shaft is provided on the input shaft or a part that rotates together with the input shaft, and a second guide surface tapered at 45 degrees is provided on the output shaft or a part that rotates together with the input shaft. An annular guide groove having an arcuate cross-sectional shape is provided on the inner peripheral surface of the cylindrical member, the rolling element has a substantially cylindrical shape, and a rounded part is provided around the entire outer periphery of one end of the rolling element. , a spherical part having a center on the axis of the rolling element is provided on the other end surface, two symmetrical places of the rounded part of the rolling element contact the first guide surface and the bottom of the guide groove, and the spherical part of the rolling element contacts the first guide surface and the bottom of the guide groove. 2 guide surfaces.

作   用 転動体の丸み部が円筒部材のガイドみぞにはまっている
ので、円筒部材が軸線方向に移動することにより、転動
体の傾きが変る。そして、転動体の球面部の半径を適当
に決定することによって、転動体の傾きが変っても、常
に転動体と第1ガイド面、第2ガイド面およびガイドみ
ぞとの接触状態が保たれるようにすることができる。こ
のため、転動体の摺接状態を維持するための皿ばねなど
が不要であり、ばねの劣化を考慮する必要がない。また
、転動体の傾きが変ると、転動体の接触点および転動体
との接触点が変るので、局部的な摩耗が小さくなる。
Operation Since the rounded portion of the rolling element fits into the guide groove of the cylindrical member, the inclination of the rolling element changes as the cylindrical member moves in the axial direction. By appropriately determining the radius of the spherical portion of the rolling element, even if the inclination of the rolling element changes, the state of contact between the rolling element and the first guide surface, second guide surface, and guide groove is always maintained. You can do it like this. Therefore, there is no need for a disc spring or the like to maintain the sliding state of the rolling elements, and there is no need to consider deterioration of the spring. Furthermore, when the inclination of the rolling elements changes, the contact points of the rolling elements and the contact points with the rolling elements change, thereby reducing local wear.

入力軸の回転が転動体に伝えられて、転動体が第1ガイ
ド面、第2ガイド面およびガイドみぞと接触した状態で
自転しながら公転し、このときの差動作用によって入力
軸の回転が変速されて出力軸に伝えられる。そして、転
動体の傾きが変ることによって変速比が変り、転動体の
傾きを大きく変化させることができるため、変速範囲が
非常に大きくなる。
The rotation of the input shaft is transmitted to the rolling elements, and the rolling elements rotate while contacting the first guide surface, the second guide surface, and the guide groove, and the rotation of the input shaft is controlled by the differential action at this time. The speed is changed and transmitted to the output shaft. By changing the inclination of the rolling elements, the gear ratio changes, and since the inclination of the rolling elements can be changed greatly, the speed change range becomes very large.

実  施  例 以下、図面を参照して、この発明の1実施例を説明する
Embodiment Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図面は負荷に応じて変速比が自動的に変わる自動変速装
置の1例を示す。なお、以下の説明において、上下左右
は第1図についていうものとする。
The drawing shows an example of an automatic transmission that automatically changes the gear ratio depending on the load. In addition, in the following explanation, upper, lower, left, and right refer to FIG. 1.

第1図および第2図において、変速装置は、ケース(1
)、入力軸(2)、出力軸(3)、保持器(4)、円筒
部材(5)および複数たとえば5個の転動体(6)を備
えている。
In FIGS. 1 and 2, the transmission includes a case (1
), an input shaft (2), an output shaft (3), a cage (4), a cylindrical member (5), and a plurality of rolling elements (6), for example, five.

ケース(1)は円筒状をなし、軸線(C)が左右方向の
水平線となるように配置されている。ケース(])の左
端には、中央に円形穴(7)を有する端壁(1a)が設
けられている。ケース(])の右端は開口しており、こ
の部分の内側に円筒状の軸受ハウジング(8)が同軸に
固定されている。
The case (1) has a cylindrical shape and is arranged so that the axis (C) is a horizontal line in the left-right direction. An end wall (1a) having a circular hole (7) in the center is provided at the left end of the case (]). The right end of the case ( ) is open, and a cylindrical bearing housing (8) is coaxially fixed inside this part.

ハウジング(8)の右端にはフランジ部(8a)が−体
に形成され、この部分がケース(1)の右端部の内側に
はめ止められている。入力軸(2)と出力軸(3)は、
ケース(1)の軸線(C)上に、入力軸(2)が左、出
力軸(3)が右にくるように同軸に配置されている。
A flange portion (8a) is formed in a negative shape at the right end of the housing (8), and this portion is fitted inside the right end portion of the case (1). The input shaft (2) and output shaft (3) are
They are arranged coaxially on the axis (C) of the case (1) so that the input shaft (2) is on the left and the output shaft (3) is on the right.

人力軸(2)の軸線(C)上に、左端面から長さの中間
部に達する穴(9)が形成されている。入力軸(2)の
長さの中間部にフランジ部(2a)が同軸に形成されて
おり、その右側に入力部材支持軸部(2b)が、さらに
その右側にこれより外径の小さい連結軸部(2c)が同
軸に形成されている。
A hole (9) is formed on the axis (C) of the human power shaft (2), reaching the middle part of the length from the left end surface. A flange part (2a) is coaxially formed at the middle part of the length of the input shaft (2), an input member support shaft part (2b) is on the right side of the flange part (2a), and a connecting shaft with a smaller outer diameter is further on the right side of the flange part (2a). The portion (2c) is formed coaxially.

入力軸(2)の支持軸部(2b)の外側に、穴あき円板
状の入力部材(10)が回転自在にはめられている。入
力軸(2)のフランジ部(2a)と入力部材(10)の
対向面に複数組の円錐状四部(11)(12)が円周方
向に等間隔をおいて対向するように形成されており、対
向する四部(11,)(12)の間に鋼球(13)がは
められている。そして、入力部材(10)の右端面が、
人力軸(2)の軸線(C)と直交する第1ガイド面(1
4)となっている。入力軸(2)の回転は、凹所(+、
1.)(1,2)間の鋼球(13)を介して入力部材(
10)に伝えられる。このとき、鋼球(13)が凹所(
11,)(12)の円錐状の壁に当るので、入力軸(2
)の回転により入力部材(10)はフランジ部(2a)
から離れる方向すなわち右方向に力を受ける。
A perforated disk-shaped input member (10) is rotatably fitted on the outside of the support shaft portion (2b) of the input shaft (2). A plurality of sets of four conical portions (11, 12) are formed on opposing surfaces of the flange portion (2a) of the input shaft (2) and the input member (10) so as to face each other at equal intervals in the circumferential direction. A steel ball (13) is fitted between the four opposing parts (11,) (12). Then, the right end surface of the input member (10) is
The first guide surface (1) perpendicular to the axis (C) of the human power shaft (2)
4). The rotation of the input shaft (2) is controlled by the recess (+,
1. ) (1, 2) via the steel ball (13) between the input member (
10). At this time, the steel ball (13) is placed in the recess (
11,) (12), so the input shaft (2
), the input member (10) is rotated by the flange part (2a).
Force is applied in the direction away from the object, that is, in the right direction.

出力軸(3)の軸線(C)上に、左端面から長さの中間
部に達する第1−穴(15)と右端面から長さの中間部
に達する第2穴(16)が形成されている。
A first hole (15) reaching the middle part of the length from the left end surface and a second hole (16) reaching the middle part of the length from the right end surface are formed on the axis (C) of the output shaft (3). ing.

出力軸(3)の左端部に他の部分より外径の大きい大径
部(3a)が同軸に形成されており、大径部(3a)の
外周左端部に45度のテーバ状をなす第2ガイド面(1
7)が形成されている。
A large-diameter portion (3a) having a larger outer diameter than other portions is coaxially formed at the left end of the output shaft (3), and a 45-degree tapered groove is formed at the left end of the outer periphery of the large-diameter portion (3a). 2 guide surfaces (1
7) is formed.

出力軸(3)の第1穴(15)に入力軸(2)の連結軸
部(2c)か回転自在にはめ入れられており、このよう
にして連結された入力軸(2)と出力軸(3)が互いに
独立して回転しつるように軸受(18)(19) (2
0)を介してケース(1)およびハウジング(8)に支
持されている。すなわち、入力軸(2)のフランジ部(
2a)の左側の部分とケース(1)の左端壁(1a)の
内周部との間に第1スラスト玉軸受(I8)が、出力軸
(3)の大径部(3a)の右側の部分とハウジング(8
)の左端部との間に第2スラスト玉軸受(19)が、出
力軸(3)の右端寄りの部分とハウジング(8)の右端
寄りの部分との間にラジアル玉軸受(20)がそれぞれ
設けられている。
The connecting shaft part (2c) of the input shaft (2) is rotatably fitted into the first hole (15) of the output shaft (3), and the input shaft (2) and output shaft connected in this way Bearings (18), (19), and (2) rotate independently of each other.
0) is supported by the case (1) and the housing (8). In other words, the flange portion of the input shaft (2) (
A first thrust ball bearing (I8) is connected between the left side part of the output shaft (2a) and the inner peripheral part of the left end wall (1a) of the case (1), and the first thrust ball bearing (I8) is connected to the right side of the large diameter part (3a) of the output shaft (3) parts and housing (8
), and a radial ball bearing (20) between the right end portion of the output shaft (3) and the right end portion of the housing (8). It is provided.

入力軸(2)はケース(1)の左端壁(la)より少し
突出しており、これらの間にはシール(21)が設けら
れている。出力軸(3)はハウジング(8)の右端より
少し突出しており、これらの間にもシール(22)が設
けられている。
The input shaft (2) projects slightly from the left end wall (la) of the case (1), and a seal (21) is provided between them. The output shaft (3) protrudes a little from the right end of the housing (8), and a seal (22) is also provided between them.

保持器(4)は、第1図の下側に断面形状を示すように
、内面および外面に段のついた円筒状をなし、左端部内
面が入力部)rA(10)の外面に、右端部内面が出力
軸(3)の大径部(3a)の外面に回転自在に受けられ
ている。保持器(4)には、転動体(6)を支持するた
めの5つのポケット(23)が円周方向に等間隔をおい
て形成されている。
The retainer (4) has a cylindrical shape with steps on the inner and outer surfaces, as shown in the cross-sectional shape at the bottom of FIG. The inner surface of the output shaft (3) is rotatably received by the outer surface of the large diameter section (3a) of the output shaft (3). Five pockets (23) for supporting the rolling elements (6) are formed in the cage (4) at equal intervals in the circumferential direction.

円筒部材(5)は、保持器(4)の周囲のケース(1)
の内面に回転および軸線方向の移動ができるように配置
されている。円筒部材(5)には、第3図に示すように
、軸線(C)と平行な方向に対して傾斜した長穴(24
)が形成されている。ケース(1)の内面には、この長
穴(24)にはまって円筒部材(5)の運動を規制する
ピン(25)が固定状に設けられている。また、長大(
24)より右側の円筒部材(5)の内面に、断面円弧状
の浅いガイドみぞ(26)が環状に形成されている。
The cylindrical member (5) is a case (1) surrounding the cage (4).
is arranged on the inner surface for rotational and axial movement. As shown in FIG. 3, the cylindrical member (5) has an elongated hole (24
) is formed. A pin (25) is fixedly provided on the inner surface of the case (1) to fit into the elongated hole (24) and restrict the movement of the cylindrical member (5). Also, Chodai (
24) A shallow guide groove (26) having an arcuate cross section is formed in an annular shape on the inner surface of the cylindrical member (5) on the right side.

第4図に詳細に示すように、転動体(6)は短円柱状を
なし、一端部の外周縁全周に半径aの丸み部(8a)が
設けられ、他端面に軸線(A)上に中心を有する半径す
の球面部(6b)が設けられている。転動体(6)は、
丸み部(6a)の対称2箇所が第]ガイド面(14)と
ガイドみぞ(26)の底に接触し、球面部(6b)が第
2ガイド面(17)に接触するように、軸線(A)を傾
けた状態で保持器(4)のポケッ1−(23)に収容さ
れている。転動体(6)の中間の円柱状の部分の外面が
ポケット(23)の円周方向両側の壁に受けられており
、これにより、転動体(8)はその軸線(A)を中心に
自転する。また、転動体(6)は、保持器(4)の回転
にともなって、入力軸(2)および出力軸(3)の周囲
を公転する。第4図の断面図において、第1ガイド面(
14)より右側に丸み部(6a)の半径aだけ離れた垂
直線(LL)とガイドみぞ(2G)の底より下側に丸み
部(6a)の半径aだけ離れた水平線(L2)の交点を
(0)とすると、この交点(0)から第2ガイド面(1
7)までの距離が球面部(6b)の半径すとなる。
As shown in detail in FIG. 4, the rolling element (6) has a short cylindrical shape, has a rounded part (8a) with a radius of a around the entire outer periphery of one end, and has a rounded part (8a) on the other end surface along the axis (A). A spherical portion (6b) having a radius centered at is provided. The rolling element (6) is
The axis line ( A) is housed in the pocket 1-(23) of the holder (4) in a tilted state. The outer surface of the middle cylindrical portion of the rolling element (6) is received by the walls on both sides of the pocket (23) in the circumferential direction, so that the rolling element (8) rotates about its axis (A). do. Further, the rolling elements (6) revolve around the input shaft (2) and the output shaft (3) as the cage (4) rotates. In the cross-sectional view of FIG. 4, the first guide surface (
14) Intersection of a vertical line (LL) located to the right of the radius a of the rounded part (6a) and a horizontal line (L2) located below the bottom of the guide groove (2G) by the radius a of the rounded part (6a) (0), then from this intersection (0) to the second guide surface (1
7) is the radius of the spherical portion (6b).

ハウジング(8)の周囲のフランジ部(8a)と円筒部
材(5)の右端面との間に、円筒部材(5)を左向きに
付勢する圧縮コイルばね(27)が設けられている。
A compression coil spring (27) that biases the cylindrical member (5) leftward is provided between the flange portion (8a) around the housing (8) and the right end surface of the cylindrical member (5).

上記の変速装置において、円筒部材(5)が左右に移動
すると、ガイドみぞ(26)にはまっている転動体(6
)の丸み部(6a)がガイドみぞ(26)にはまったま
ま左右に移動し、これにより、転勤体(6)の傾き(軸
線(A)の傾き)が変る。ところが、第1ガイド面(1
4)、第2ガイド面(17)、ガイドみそ(26)、転
動体(6)の丸み部(6a)および球面部(6b)の間
に前記のような寸法関係があるので、第5図に示すよう
に、転動体(6)の傾きか変っても、常に転動体(6)
とガイド面(14)(17)およびガイドみぞ(26)
との接触状態が保たれる。また、前記のように、入力軸
(2)の回転によって入力部材(10)が転動体(6)
に接近する右方向の力を受けるので、転動体(6)とガ
イド面(14,)(1,7)およびガイドみぞ(26)
との接触がより確実になる。このため、皿ばねなどを用
いて転動体(6)を接触させる必要がなく、ばねの劣化
を考慮することか不要になる。そして、入力軸(2)の
回転による入力部材(10)の回転が転動体(6)に伝
えられて、転動体(6)がガイド面(14)(1,7)
およびガイドみぞ(26)と接触した状態で自転しなが
ら公転し、このときの差動作用によって入力軸(2)の
回転が変速されて出力軸(3)に伝えられる。
In the above transmission, when the cylindrical member (5) moves left and right, the rolling elements (6) fitted in the guide grooves (26)
) The rounded portion (6a) of the guide groove (26) moves from side to side while remaining in the guide groove (26), thereby changing the inclination of the transfer body (6) (the inclination of the axis (A)). However, the first guide surface (1
4) Since there is the above-mentioned dimensional relationship between the second guide surface (17), the guide center (26), the rounded part (6a) and the spherical part (6b) of the rolling element (6), FIG. As shown in , even if the inclination of the rolling element (6) changes, the rolling element (6) always
and guide surface (14) (17) and guide groove (26)
contact is maintained. Further, as described above, the input member (10) is rotated by the rotation of the input shaft (2) to the rolling element (6).
As the rolling element (6), the guide surface (14,) (1,7) and the guide groove (26) receive a force in the right direction approaching the
contact becomes more reliable. For this reason, there is no need to use a disc spring or the like to bring the rolling elements (6) into contact, and there is no need to consider deterioration of the spring. The rotation of the input member (10) due to the rotation of the input shaft (2) is transmitted to the rolling elements (6), and the rolling elements (6) move toward the guide surfaces (14) (1, 7).
The input shaft (2) rotates and revolves in contact with the guide groove (26), and the rotation of the input shaft (2) is changed in speed by the differential operation at this time and transmitted to the output shaft (3).

第5図において、転動体(6)と第1ガイド面り14)
との接触点(第1接触点) (PL)から軸線(C)ま
での距離をR1、第1接触点(Pl)から軸線(A)ま
での距離をrl、転動体(6)と第2ガイド面(17)
との接触点(第2接触点> (R2)から軸線(C)ま
での距離をR2、第2接触点(R2)から軸線(A)ま
での距離をR2、転動体(6)とガイドみそく26)と
の接触点(第3接触点) (R3)から軸線(C)まで
の距離をR3、第3接触点(R3)から軸線(A)まで
の距離をR3とする。転動体(6)の傾きが変ると、R
3は一定であるが、R1、R2、rl、R2およびR3
は変化し、これにより、変速比(出力軸(3)の回転速
度と入力軸(2)の回転速度の比)が変る。第2接触点
(R2)については、転動体(6)の傾きが小さいとき
には、第5図(a)および(b)に示すように、軸線(
A)に対して第1接触点(Pl)と同じ側にあるが、転
動体(6)の傾きが大きいときには、同図(C)および
(D)に示すように、第1接触点(Pl)と反対側にあ
り、とくにこのように転動体(6)の傾きが大きく変化
して第] 2 2接触点(R2)が大きく変ることにより、変速比を広
範囲に変化させることが可能になる。また、転動体(6
)の傾きが変ると、第1ガイド面(14)上の第1接触
点(Pl)、第2ガイド面(17)上の第2接触点(R
2)、転動体(6)上の第1接触点(Pl)、第2接触
点(R2)および第3接触点(R3)も変り、したがっ
て、局部的な摩耗の発生が小さくなる。
In Fig. 5, the rolling element (6) and the first guide surface 14)
The distance from the contact point (first contact point) (PL) to the axis (C) is R1, the distance from the first contact point (Pl) to the axis (A) is rl, and the distance between the rolling element (6) and the second Guide surface (17)
The distance from the contact point (second contact point> (R2) to the axis (C) is R2, the distance from the second contact point (R2) to the axis (A) is R2, and the distance between the rolling element (6) and the guide mist is The distance from the contact point (third contact point) (R3) to the axis (C) is R3, and the distance from the third contact point (R3) to the axis (A) is R3. When the inclination of the rolling element (6) changes, R
3 is constant, R1, R2, rl, R2 and R3
changes, thereby changing the gear ratio (the ratio of the rotational speed of the output shaft (3) to the rotational speed of the input shaft (2)). Regarding the second contact point (R2), when the inclination of the rolling element (6) is small, as shown in FIGS. 5(a) and (b), the axis (
A), but when the inclination of the rolling element (6) is large, the first contact point (Pl) is on the same side as the first contact point (Pl), as shown in FIGS. ), and in particular, the inclination of the rolling element (6) changes greatly in this way, and the contact point (R2) changes greatly, making it possible to change the gear ratio over a wide range. . In addition, rolling elements (6
) changes, the first contact point (Pl) on the first guide surface (14) and the second contact point (R) on the second guide surface (17) change.
2) The first contact point (Pl), second contact point (R2) and third contact point (R3) on the rolling element (6) also change, thus reducing the occurrence of local wear.

上記の変速装置では、また、出力軸(3)の負荷が変る
と、円筒部材(5)に作用するトルクが変るため、ピン
(25)と長穴(24)の作用によって円筒部材(5)
の軸線(C)方向の位置が変化し、これによって前記の
ように転動体(6)の傾きが自動的に変化する。すなわ
ち、出力軸(3)に負荷が作用していないときは、第5
図(a)に示すように、円筒部材(5)はばね(27)
によって左端位置まで移動させられ、転動体(6)の傾
きは小さい。出力軸(3)に負荷が作用すると、円筒部
祠(5)はばね(27)に抗して右側に移動し、転動体
(6)の傾きが大きくなる。このときの円筒部材(5)
の移動量は負荷の大きさに対応し、負荷が大きくなるに
つれて、第5図(b)、第4図、第5図(C)および(
d)の順に転動体(6)の傾きが大きくなる。
In the above transmission, when the load on the output shaft (3) changes, the torque acting on the cylindrical member (5) changes, so the action of the pin (25) and the long hole (24) causes the cylindrical member (5) to change.
The position of the rolling element (6) in the direction of the axis (C) changes, thereby automatically changing the inclination of the rolling element (6) as described above. In other words, when no load is acting on the output shaft (3), the fifth
As shown in Figure (a), the cylindrical member (5) is a spring (27).
The rolling element (6) is moved to the left end position, and the inclination of the rolling element (6) is small. When a load is applied to the output shaft (3), the cylindrical part (5) moves to the right against the spring (27), and the inclination of the rolling element (6) increases. Cylindrical member (5) at this time
The amount of movement corresponds to the size of the load, and as the load increases,
The inclination of the rolling element (6) increases in the order of d).

第5図(a、)のように、出力軸に負荷が作用していな
いときは、変速比は1より大きく、出力軸(3)は入力
軸(2)と同方向に人力軸(2)より大きい速度で回転
する。すなわち、入力軸(2)の回転が同方向に増速さ
れて出力軸(3)に伝えられる。たとえば、このときの
変速比は約1゜12である。
As shown in Figure 5(a), when no load is acting on the output shaft, the gear ratio is greater than 1, and the output shaft (3) is connected to the human power shaft (2) in the same direction as the input shaft (2). Rotate at a greater speed. That is, the rotation of the input shaft (2) is accelerated in the same direction and transmitted to the output shaft (3). For example, the gear ratio at this time is approximately 1°12.

無負荷状態から負荷が大きくなると、変速比は徐々に小
さくなり、第5図(b)の状態になると、変速比は1に
なり、入力軸(2)の回転がそのまま出力軸(3〉に伝
えられて、出力軸(3)は入力軸(2)と同方向に同速
度で回転する。
When the load increases from a no-load state, the gear ratio gradually decreases, and when the state shown in Fig. 5(b) is reached, the gear ratio becomes 1, and the rotation of the input shaft (2) is directly transferred to the output shaft (3). As a result, the output shaft (3) rotates in the same direction and at the same speed as the input shaft (2).

負荷がさらに大きくなると、変速比は1より小さくなり
、出力軸(3)は入力軸(2〉と同方向に入力軸(2)
より小さい速度で回転する。すなわち、入力軸(2)の
回転が同方向に減速されて出力軸(3)に伝えられる。
When the load becomes even larger, the gear ratio becomes smaller than 1, and the output shaft (3) rotates in the same direction as the input shaft (2).
Rotate at a smaller speed. That is, the rotation of the input shaft (2) is decelerated in the same direction and transmitted to the output shaft (3).

そして、たとえば、第4図の状態になると、変速比は約
0,61になり、負荷がさらに大きくなると、変速比は
さらに小さくなる。
For example, in the state shown in FIG. 4, the gear ratio becomes approximately 0.61, and as the load increases further, the gear ratio becomes even smaller.

第5図(C)の状態になると、変速比は0になり、出力
軸(3)は回転速度が0になって停止する。
When the state shown in FIG. 5(C) is reached, the gear ratio becomes 0, the rotational speed of the output shaft (3) becomes 0, and the output shaft (3) stops.

第5図(rl)の状態になると、変速比は負の値になり
、出力軸(3)は入力軸(2)と逆方向に入力軸(2)
より小さい速度で回転する。すなわぢ、入力軸(2)の
回転が逆方向に減速12て出力軸(3)に伝えられる。
When the state shown in Fig. 5 (rl) is reached, the gear ratio becomes a negative value, and the output shaft (3) is connected to the input shaft (2) in the opposite direction to the input shaft (2).
Rotate at a smaller speed. In other words, the rotation of the input shaft (2) is transmitted to the output shaft (3) through deceleration 12 in the opposite direction.

たとえば、このときの変速比は約−0,1である。For example, the gear ratio at this time is about -0.1.

このように、上記の変速装置では、出力軸(3)の負荷
に応じて変速比が自動的に変化し、しかも変速比はたと
えば、約−0,1から約1゜12までの非常に広い範囲
を変化する。
In this way, in the above-mentioned transmission, the gear ratio changes automatically according to the load on the output shaft (3), and the gear ratio can be varied over a very wide range, for example from about -0.1 to about 1°12. Change range.

上記実施例には自動変速装置を示したが、円筒部月(5
)を適宜な手段により軸線方向に移動して所定の位置に
固定するようにすれば、外部から変速比が無段階に変え
られる無段変速装置となる。
Although the automatic transmission device is shown in the above embodiment, the cylindrical part (5
) is moved in the axial direction by appropriate means and fixed at a predetermined position, resulting in a continuously variable transmission in which the gear ratio can be changed steplessly from the outside.

発明の効果 この発明の変速装置によれば、上述のように、変速範囲
を非常に広くすることができ、転動体などの局部的な摩
耗を小さくすることができる。
Effects of the Invention According to the transmission device of the present invention, as described above, the speed change range can be made very wide, and local wear of the rolling elements can be reduced.

また、転動体の摺接状態を維持するための皿ばねなどが
不要になり、ばねの劣化を考慮する必要がなくなる。
Further, there is no need for a disc spring or the like to maintain the sliding state of the rolling elements, and there is no need to consider deterioration of the spring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の1実施例を示す自動変速装置の縦断
面図、第2図は第1図■−■線の断面図、第3図は第1
図■−■線の断面図、第4図は第1図の転動体の部分の
拡大断面図、第5図は4つの異なる変速状態を示す転動
体の部分の断面図である。 (2)・・・入力軸、(3)・・・出力軸、(4)・・
・保持器、(5)・・・円筒部材、(6)・・・転動体
、(6a)・・・丸み部、(6b)・・・球面部、(1
0)・・・入力部材、(14)・・・第1ガイド面、(
17)・・・第2ガイド面、(26)・・・ガイドみぞ
、(A)・・・軸線、(C)・・・軸線。 ] 6
FIG. 1 is a longitudinal cross-sectional view of an automatic transmission showing one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, and FIG.
4 is an enlarged sectional view of the rolling element portion of FIG. 1, and FIG. 5 is a sectional view of the rolling element portion showing four different speed change states. (2)...Input shaft, (3)...Output shaft, (4)...
・Cage, (5)... Cylindrical member, (6)... Rolling element, (6a)... Rounded part, (6b)... Spherical part, (1
0)...Input member, (14)...First guide surface, (
17)...Second guide surface, (26)...Guide groove, (A)...Axis line, (C)...Axis line. ] 6

Claims (1)

【特許請求の範囲】 入力軸と、入力軸と同軸に配置された出力軸と、入力軸
と出力軸の周囲に同軸にかつ回転自在に配置された保持
器と、保持器の周囲に同軸にかつ軸線方向に移動しうる
ように配置された円筒部材と、自身の軸線を中心に自転
しうるように保持器に保持された複数の転動体とを備え
ており、 入力軸またはこれと一体に回転する部分に入力軸の軸線
と直交する第1ガイド面が設けられ、出力軸またはこれ
と一体に回転する部分に45度のテーパ状をなす第2ガ
イド面が設けられ、円筒部材の内周面に円弧状断面形状
を有する環状のガイドみぞが設けられており、 転動体が略円柱状をなし、転動体の一端部外周縁全周に
丸み部が設けられ、他端面に転動体の軸線上に中心を有
する球面部が設けられ、転動体の丸み部の対称2箇所が
第1ガイド面とガイドみぞの底に接触し、転動体の球面
部が第2ガイド面に接触させられている変速装置。
[Claims] An input shaft, an output shaft disposed coaxially with the input shaft, a retainer coaxially and rotatably disposed around the input shaft and the output shaft, and coaxially disposed around the retainer. It is equipped with a cylindrical member disposed so as to be able to move in the axial direction, and a plurality of rolling elements held in a cage so as to be able to rotate around its own axis, and is mounted on the input shaft or integrally therewith. A first guide surface perpendicular to the axis of the input shaft is provided on the rotating portion, a second guide surface tapered at 45 degrees is provided on the output shaft or a portion that rotates integrally with the output shaft, and the inner circumference of the cylindrical member is An annular guide groove with an arcuate cross-sectional shape is provided on the surface, the rolling element is approximately cylindrical, a rounded part is provided around the entire outer periphery of one end of the rolling element, and the axis of the rolling element is provided on the other end surface. A spherical part having a center on a line is provided, two symmetrical places of the rounded part of the rolling element are in contact with the first guide surface and the bottom of the guide groove, and the spherical part of the rolling element is brought into contact with the second guide surface. gearbox.
JP3204289A 1989-02-10 1989-02-10 Speed change gear Granted JPH02212651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3204289A JPH02212651A (en) 1989-02-10 1989-02-10 Speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204289A JPH02212651A (en) 1989-02-10 1989-02-10 Speed change gear

Publications (2)

Publication Number Publication Date
JPH02212651A true JPH02212651A (en) 1990-08-23
JPH0567822B2 JPH0567822B2 (en) 1993-09-27

Family

ID=12347811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204289A Granted JPH02212651A (en) 1989-02-10 1989-02-10 Speed change gear

Country Status (1)

Country Link
JP (1) JPH02212651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137398A (en) * 1992-05-20 1994-05-17 Kazuichi Ito Speed changing device
WO2008040281A1 (en) * 2006-09-28 2008-04-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Planetary drive with continuously variable transmission
EP3187751A1 (en) * 2015-12-30 2017-07-05 Wolfgang Rodi Infinitely adjustable planetary gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137398A (en) * 1992-05-20 1994-05-17 Kazuichi Ito Speed changing device
WO2008040281A1 (en) * 2006-09-28 2008-04-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Planetary drive with continuously variable transmission
EP3187751A1 (en) * 2015-12-30 2017-07-05 Wolfgang Rodi Infinitely adjustable planetary gear
WO2017114691A1 (en) * 2015-12-30 2017-07-06 Wolfgang Rodi Continuously variable planetary gear mechanism
US10876609B2 (en) 2015-12-30 2020-12-29 Rolless Gmbh Continuously-variable planetary transmission

Also Published As

Publication number Publication date
JPH0567822B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
US8303462B2 (en) Friction-ring transmission having a friction ring, and method for producing a friction cone
US5536091A (en) Thrust ball bearing for use with power rollers
JPS62270819A (en) Roller bearing
US4224840A (en) Traction roller transmission
JPH02212651A (en) Speed change gear
US2205768A (en) Transmission
JP3692330B2 (en) Micro traction drive
JP3326950B2 (en) Thrust ball bearing for half toroidal type continuously variable transmission
JP3617645B2 (en) Micro traction drive
JPH06137398A (en) Speed changing device
JPH10196754A (en) Toroidal type continuously variable transmission
US6896414B2 (en) Ball roller
JP2002181148A (en) Friction roller type transmission
JP4706960B2 (en) Toroidal continuously variable transmission
JPH0323782B2 (en)
JP5082498B2 (en) Toroidal continuously variable transmission
JP2598886Y2 (en) Toroidal type continuously variable transmission
CA1149642A (en) Torque transmitting body for traction drive transmissions and normal friction force developing method
US4454782A (en) Torque transmitting body for traction drive transmissions and normal friction force developing method
JP3293306B2 (en) Toroidal type continuously variable transmission
JPS6388366A (en) Power transmission device
JPH07239003A (en) Thrust ball bearing for power roller
JP2022063414A (en) Toroidal type non-stage transmission
JP2000310308A (en) Toroidal type continuously variable transmission
JPH01153858A (en) Transmission