JPH01320295A - Production of bi12geo20 single crystal - Google Patents
Production of bi12geo20 single crystalInfo
- Publication number
- JPH01320295A JPH01320295A JP15399888A JP15399888A JPH01320295A JP H01320295 A JPH01320295 A JP H01320295A JP 15399888 A JP15399888 A JP 15399888A JP 15399888 A JP15399888 A JP 15399888A JP H01320295 A JPH01320295 A JP H01320295A
- Authority
- JP
- Japan
- Prior art keywords
- melt
- single crystal
- crystal
- bi12geo20
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000000155 melt Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000004857 zone melting Methods 0.000 claims abstract description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 abstract description 6
- 238000002834 transmittance Methods 0.000 abstract description 6
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 abstract 4
- 230000001105 regulatory effect Effects 0.000 abstract 3
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- 239000002994 raw material Substances 0.000 description 9
- 229910052797 bismuth Inorganic materials 0.000 description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はBi12GeOta(以下BGOと記載する)
単結晶の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention relates to Bi12GeOta (hereinafter referred to as BGO).
This invention relates to a method for producing a single crystal.
BGO単結晶は大きな電気光学効果を存し、電圧センサ
ー素子や画像記憶素子用材料として官用なものである。BGO single crystal has a large electro-optic effect and is used as a material for voltage sensor elements and image storage elements.
従来技術
従来、BGO単結晶は結晶組成に近いBi2O2:Ge
0t ” 6 : lの組成の融液から回転引上げ法で
育成されてきた。Conventional technology Conventionally, BGO single crystal has a Bi2O2:Ge crystal composition close to the crystal composition.
It has been grown by the rotary pulling method from a melt with a composition of 0t''6:l.
しかし、この方法で育成されたBGO単結晶は、ビスマ
ス成分が過剰に結晶中に取り込まれ、そのために380
〜500 nmの波長領域で純粋な化学両輪化組成を持
ったBGOの理論特性よりもはるかに大きな光吸収を示
す、しかも光吸収の度合は育成条件を敏感に反映するの
で、育成条件が結晶成長時に変動すると単結晶の特性値
(光透過率など)にバラツキが生ずる。また育成された
結晶中のコア(あるいはファセット)と呼ばれる領域と
それ以外の領域では光吸収の度合が異なったり、両領域
の境界で歪が生じたりする。このようなりGO単結晶の
光学特性の不均一や結晶内歪の存在は、素子の信頼性や
素子製作上の歩留まりに厳しい制限を課してきた。However, in the BGO single crystal grown by this method, the bismuth component is excessively incorporated into the crystal, resulting in 380%
In the wavelength region of ~500 nm, it exhibits much greater light absorption than the theoretical properties of BGO, which has a pure chemically balanced composition.Moreover, the degree of light absorption sensitively reflects the growth conditions, so the growth conditions are suitable for crystal growth. If it fluctuates over time, the characteristic values (light transmittance, etc.) of the single crystal will vary. Furthermore, the degree of light absorption differs between a region called the core (or facet) and other regions in the grown crystal, and distortion occurs at the boundary between the two regions. The non-uniformity of optical properties and the presence of intracrystalline strain in GO single crystals have placed severe restrictions on device reliability and device manufacturing yield.
発明の目的
本発明は従来のBGO単結晶の製造法の欠点を解消しよ
うとするもので、その目的は光透過率が純粋なりGOの
理想特性に近く、しかも光学特性が均一で結晶内置のな
いBGO単結晶を製造する方法を提供しようとするもの
である。Purpose of the Invention The present invention aims to solve the drawbacks of the conventional BGO single crystal manufacturing method.The purpose of the present invention is to provide a method of producing a single crystal of BGO with pure light transmittance, which is close to the ideal properties of GO, and with uniform optical properties and no internal crystals. The present invention aims to provide a method for manufacturing BGO single crystals.
発明の構成
本発明者らは前記目的を達成すべく鋭意研究の結果、B
GOの過剰ビスマス成分は融液のビスマス成分濃度と直
接関係し、融液中のビスマス成分製素子としての信頼性
、歩留まりも優れたものとなることを知見し得た。この
知見に基づいて本発明を完成した。Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have discovered B.
It has been found that the excess bismuth component of GO is directly related to the bismuth component concentration in the melt, and that the reliability and yield of an element made of a bismuth component in the melt are excellent. The present invention was completed based on this knowledge.
本発明の要旨は、Bi+xGeOt++単結晶を融液か
ら育成する方法において、その融液組成をゲルマニウム
成分過剰なGaol/l’Biz03−1−Ge09モ
ル分率=0.18〜0.28の範囲に保った融液から育
成することを特徴とするBtlzGeOz。単結晶の製
造方法にある。The gist of the present invention is a method for growing a Bi+xGeOt++ single crystal from a melt, in which the composition of the melt is adjusted to a Gaol/l'Biz03-1-Ge09 mole fraction in the range of 0.18 to 0.28 with an excess of germanium. BtlzGeOz is characterized by being grown from a retained melt. It is in the method of manufacturing single crystals.
前記モル分率が0.18より小さいと、ゲルマニウム成
分過剰にする効果が小さく、結晶中のBi成分変動を制
御しきれない。If the molar fraction is less than 0.18, the effect of making the germanium component excessive is small, and fluctuations in the Bi component in the crystal cannot be fully controlled.
また、0.28を超えると、ゲルマニウム成分過剰側の
共晶点に近づきすぎ、ゲルマニウムをより含んだ他相の
析出が結晶中で見られるようになる。On the other hand, if it exceeds 0.28, it approaches too much the eutectic point on the side where the germanium component is excessive, and precipitation of other phases containing more germanium becomes visible in the crystal.
従って、0.18〜0.28の範囲であることが必要で
ある。理想的には0.25〜0.28に制御した方がよ
い。Therefore, it is necessary to be in the range of 0.18 to 0.28. Ideally, it is better to control it to 0.25 to 0.28.
本発明における融液から単結晶を育成する方法としては
、引上げ法、ブリッジマン法、帯溶融法。Methods for growing a single crystal from a melt in the present invention include a pulling method, a Bridgman method, and a zone melting method.
フローティングゾーン法などいずれの方法でもよい、し
かし、育成結晶の高品質化が達成し易い点から引上げ法
、帯溶融法、フローティングゾーン法が好ましい。Any method such as the floating zone method may be used, but the pulling method, zone melting method, and floating zone method are preferable because it is easy to achieve high quality grown crystals.
本発明に用いる出発原料としは市販の99.99%純度
の81703、Gem、でも良いができるだけ純度の高
い原料を使用するのが好ましい、フローティングゾーン
法の場合には、それら出発原料粉末をBizO,:
Ge0z −6: 1 (化学両輪比組成)に混合し、
棒状に成形・焼結して原料棒とする。また、溶融帯の融
液組成をゲルマニウム成分過剰にするために、ゲルマニ
ウム成分過剰(GeO□/(BItOt +Ge0z)
モル分率−0,18〜0.28好ましくは0.25程度
)のベレット状の焼結体(好ましくは熔融帯と同程度の
容積を持つ)を用意し、あらかじめ種結晶上に置き、加
熱して融解させ溶融帯を形成してから育成を始める。The starting raw material used in the present invention may be commercially available 99.99% pure 81703 or Gem, but it is preferable to use raw materials with as high a purity as possible.In the case of the floating zone method, these starting raw material powders are mixed with BizO, :
Ge0z -6: 1 (chemical ratio composition),
It is formed into a rod shape and sintered to make a raw material rod. In addition, in order to make the melt composition in the melt zone excessive in germanium component, an excess germanium component (GeO□/(BItOt +Ge0z)
Prepare a pellet-shaped sintered body (preferably with a volume comparable to that of the molten zone) with a molar fraction of -0.18 to 0.28 (preferably about 0.25), place it on a seed crystal in advance, and heat it. After melting and forming a molten zone, growth begins.
本発明における結晶の成長速度は、0.1〜15III
IlI時、好ましくは0.5〜4.0−7時である。育
成雰囲気は、酸素、窒素、空気のいずれでも可能である
。The crystal growth rate in the present invention is 0.1 to 15III
IlI time, preferably 0.5 to 4.0-7 h. The growth atmosphere can be oxygen, nitrogen, or air.
フローティングゾーン法では、アフターヒーターなどを
利用して、成長した結晶の急冷による割れなどを防ぐ事
が好ましい。さらに、育成した結晶は約780〜820
°Cで焼鈍する事が好ましい。In the floating zone method, it is preferable to use an after-heater or the like to prevent cracking of the grown crystals due to rapid cooling. Furthermore, the grown crystals are approximately 780 to 820
It is preferable to anneal at °C.
実施例
市販の高純度(99,9999%) B1101とGe
0t (純度99.99%)原料粉末を6:1のモル比
で混合し、1ion/cm”の静水圧で棒状にラバープ
レス成形し、810’Cの酸素中で焼結し原料棒を作成
した。また、溶融帯の組成をゲルマニウム成分過剰にす
るために、同様のプロセスでGe0z/(BizOs+
Ge0t)モル分率0.26の組成をもった焼結ベレッ
トを用意した。Example Commercially available high purity (99,9999%) B1101 and Ge
0t (purity 99.99%) raw material powders are mixed at a molar ratio of 6:1, rubber press molded into a rod shape with a hydrostatic pressure of 1 ion/cm", and sintered in oxygen at 810'C to create a raw material rod. In addition, in order to make the composition of the melt zone excessive in germanium, Ge0z/(BizOs+
A sintered pellet having a composition with a molar fraction of 0.26 (Ge0t) was prepared.
次に、原料棒を回転楕円面鏡を用いた集光式フローティ
ングゾーン法単結晶製造装置に装填し、別に準備した8
00種結晶そ装填し、その種結晶上に焼結ベレットを置
いた。雰囲気ガスとして窒素ガスを毎分2リツトルの割
合で流しながらランプ出力を上げて加熱し、焼結ベレッ
トを融解したところで原料棒と接合させ、安定した溶融
帯を形成した後、フローティングゾーン法の常法に従っ
て、結晶育成操作を行った。Next, the raw material rod was loaded into a condensing floating zone method single crystal production apparatus using a spheroidal mirror, and the separately prepared 8
A 0.00 seed crystal was loaded and a sintered pellet was placed on top of the seed crystal. While flowing nitrogen gas as an atmospheric gas at a rate of 2 liters per minute, the lamp output is increased to heat the sintered pellet, and once the sintered pellet is melted, it is joined to the raw material rod to form a stable molten zone. Crystal growth operations were performed according to the method.
育成条件は、原料棒及び種結晶の回転速度が逆方向にそ
れぞれ400z/、結晶成長速度は3m/時であった。The growth conditions were that the raw material rod and the seed crystal were rotated at 400 z/hr in opposite directions, and the crystal growth rate was 3 m/hr.
得られたBGO単結晶を20時間約800°Cで焼鈍し
、わずかに黄色味を帯びた透明な結晶体を得た。The obtained BGO single crystal was annealed at about 800°C for 20 hours to obtain a slightly yellowish transparent crystal.
得られたBGQ単結晶を光学的に評価したところ、従来
の引上げ法で育成したものよりも、390〜500n−
の波長領域で著しく透過率が高くなっている事が判明し
た。When the obtained BGQ single crystal was optically evaluated, it was found to be 390 to 500n-
It was found that the transmittance was significantly high in the wavelength range of .
BGO単結晶の光透過率(%)
さらにコア領域とそれ以外の領域での光学特性の差も、
従来のBGO結晶よりもはるかに減少している事が認め
られた。Light transmittance (%) of BGO single crystal Furthermore, the difference in optical properties between the core region and other regions,
It was observed that the amount was much reduced compared to conventional BGO crystals.
発明の効果
本発明の方法によると、高い光透過率を有し、しかも光
学特性の均質なりGO単結晶を得ることができる。 B
GO単結晶の電気光学効果を利用したセンサーや画像記
憶素子を製作する場合に、従来の方法で育成した単結晶
では光学特性不均一や結晶内束の存在で、信頼性に問題
があった。しかし、本発明により、より高品位なりGO
単結晶育成が可能で、優れた特性を存する電圧センサー
素子や画像記憶素子等が高歩留まりで得られる。Effects of the Invention According to the method of the present invention, a GO single crystal having high light transmittance and homogeneous optical properties can be obtained. B
When manufacturing sensors and image storage devices that utilize the electro-optic effect of GO single crystals, single crystals grown using conventional methods have problems with reliability due to non-uniform optical properties and the presence of intracrystalline bundles. However, with the present invention, higher quality and GO
Single crystal growth is possible, and voltage sensor elements, image storage elements, etc. with excellent characteristics can be obtained with high yield.
Claims (1)
する方法において、その融液組成をゲルマニウム成分過
剰なGeO_2/(Bi_2O_3+GeO_2)モル
分率=0.18〜0.28の範囲に保った融液から育成
することを特徴とするBi_1_2GeO_2_0単結
晶の製造方法。 2)融液から単結晶を育成する方法が、引上げ法、ブリ
ッジマン法、帯溶融法、フローティングゾーン法である
前記1)の製造方法。[Claims] 1) In a method of growing a Bi_1_2GeO_2_0 single crystal from a melt, the melt composition is maintained in the range of GeO_2/(Bi_2O_3+GeO_2) molar fraction = 0.18 to 0.28 with an excess of germanium. A method for producing a Bi_1_2GeO_2_0 single crystal, characterized by growing it from a melt. 2) The manufacturing method of 1) above, wherein the method for growing a single crystal from the melt is a pulling method, a Bridgman method, a zone melting method, or a floating zone method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15399888A JPH01320295A (en) | 1988-06-22 | 1988-06-22 | Production of bi12geo20 single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15399888A JPH01320295A (en) | 1988-06-22 | 1988-06-22 | Production of bi12geo20 single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01320295A true JPH01320295A (en) | 1989-12-26 |
JPH0521877B2 JPH0521877B2 (en) | 1993-03-25 |
Family
ID=15574680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15399888A Granted JPH01320295A (en) | 1988-06-22 | 1988-06-22 | Production of bi12geo20 single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01320295A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683322A1 (en) * | 1991-10-30 | 1993-05-07 | Imaje | HIGH FREQUENCY ACOUSTIC RHEOMETER AND DEVICE FOR MEASURING THE VISCOSITY OF A FLUID USING THE RHEOMETER. |
-
1988
- 1988-06-22 JP JP15399888A patent/JPH01320295A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683322A1 (en) * | 1991-10-30 | 1993-05-07 | Imaje | HIGH FREQUENCY ACOUSTIC RHEOMETER AND DEVICE FOR MEASURING THE VISCOSITY OF A FLUID USING THE RHEOMETER. |
US5302878A (en) * | 1991-10-30 | 1994-04-12 | Imaje S.A. | High-frequency acoustic rheometer and device to measure the viscosity of a fluid using this rheometer |
Also Published As
Publication number | Publication date |
---|---|
JPH0521877B2 (en) | 1993-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115504480B (en) | Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof | |
JPH01320295A (en) | Production of bi12geo20 single crystal | |
JPH0336797B2 (en) | ||
JPH01320296A (en) | Production of bi12sio20 single crystal | |
US6485562B1 (en) | Production of material with improved infrared transmission | |
EP0148946B1 (en) | Method of producing a chrysoberyl single crystal | |
US4708763A (en) | Method of manufacturing bismuth germanate crystals | |
JPH01320294A (en) | Production of lithium niobate single crystal | |
JPS58115090A (en) | Synthesis of beryl crystal by f-z process | |
JPH06279174A (en) | Production of oxide single crystal | |
US2985520A (en) | Method for preparation of monocrystalline material | |
SU1691302A1 (en) | Method for treating amorphous silicon dioxide | |
JP3724509B2 (en) | LiTaO3 single crystal for light and manufacturing method thereof | |
JPH01115897A (en) | Production of magnesium fluoride single crystal | |
JP2000233997A (en) | Device for producing single crystal by pulling-up method | |
JPS63218596A (en) | Lithium tantalate single crystal excellent in light transmittance and production thereof | |
JP3021937B2 (en) | Method for producing cadmium manganese tellurium single crystal | |
JPH042683A (en) | Production of rutile single crystal | |
JPH0471877B2 (en) | ||
JPH025720B2 (en) | ||
JP2622165B2 (en) | Method for producing bismuth germanate single crystal | |
JPH08295507A (en) | Optical crystal and its production | |
JPS59174591A (en) | Method for synthesizing artificial ruby crystal by f-z method | |
JPS62275097A (en) | Macro single crystal of barium tetratitanate and its production | |
JPS58115091A (en) | Synthesis of beryl crystal by f-z process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |