JPS62275097A - Macro single crystal of barium tetratitanate and its production - Google Patents

Macro single crystal of barium tetratitanate and its production

Info

Publication number
JPS62275097A
JPS62275097A JP11486186A JP11486186A JPS62275097A JP S62275097 A JPS62275097 A JP S62275097A JP 11486186 A JP11486186 A JP 11486186A JP 11486186 A JP11486186 A JP 11486186A JP S62275097 A JPS62275097 A JP S62275097A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
barium
raw material
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11486186A
Other languages
Japanese (ja)
Inventor
Hironao Kojima
兒嶋 弘直
Isao Tanaka
功 田中
Fumiaki Sudo
須藤 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP11486186A priority Critical patent/JPS62275097A/en
Publication of JPS62275097A publication Critical patent/JPS62275097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily produce a macro single crystal of barium tetratitanate by growing a crystal by a floating zone melting method under specified growth conditions with a bar-shaped sintered body consisting of barium oxide and titanium oxide in a specified ratio. CONSTITUTION:A round bar-shaped sintered body consisting of 1mol equiv. barium oxide and 3.8-4.2mol equiv, titanium oxide is formed as starting material. A crystal is grown on a seed crystal by a floating zone melting method at 0.5-4.0mm/hr growth rate with the bar-syhaped starting material. By this method, a macro single crystal of barium tetratitanate having a composition represented by a formula BaxTiOy (where x=0.97-1.04 and y=8.97-9.04) is obtd. The diameter of the single crystal is regulated to the desired value of about 3-8mm or above according to the size of a heating furnace and the output of light.

Description

【発明の詳細な説明】 本発明は四チタン酸バリウムの巨大単結晶及びその91
造方法に関する6 四チタン酸バリウム(以下BT4と略称することがある
)は、マイクロ波領域における誘導体特性にすぐれてお
り、マイクロ波共振器としての利用が期待されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a giant single crystal of barium tetratitanate and its 91
6 Regarding Manufacturing Method Barium tetratitanate (hereinafter sometimes abbreviated as BT4) has excellent dielectric properties in the microwave region, and is expected to be used as a microwave resonator.

従来、Br3は焼結法やホットプレス法により合成され
ているが、このような方法でBr3をNII或する場合
、原料のグレインサイズや焼結性、焼結密度等によって
得られるBr3の誘電特性のバラツキが生ずるという欠
点があり、これまでに報告されたデータにもかなりの゛
バラツキが見られる[例えば、D、 J 、Masse
  etat、、 Proc、  I EEE、  5
9(11)1628(1971)及びH,M、O’br
yan  et  al、+  J 、All1er。
Conventionally, Br3 has been synthesized by a sintering method or a hot pressing method, but when Br3 is synthesized by such a method, the dielectric properties of Br3 determined by the grain size, sinterability, sintered density, etc. of the raw materials are The disadvantage is that there are variations in the data, and there are also considerable variations in the data reported so far [for example, D, J, Masse
etat,, Proc, IEEE, 5
9 (11) 1628 (1971) and H, M, O'br.
yan et al., + J. Aller.

Ceram、 Soc、、  57(10)450(1
974)参照]。このようなバラツキには焼結体の粒界
が関係していると考えられる。従って、もしBr3を単
結晶として合成することができれば、そのような粒界の
影響を排除することができ、特性にバラツキのない高品
質のBr3が得られ、しかも結晶軸方向での異方性を利
用して、マイクロ波共振器の小形化、高性能化などの用
途への適用ら期待される。
Ceram, Soc., 57(10)450(1
974)]. It is thought that such variations are related to the grain boundaries of the sintered body. Therefore, if Br3 can be synthesized as a single crystal, the influence of such grain boundaries can be eliminated, and high-quality Br3 with consistent properties can be obtained, with anisotropy in the crystal axis direction. It is expected that this method will be used to miniaturize microwave resonators and improve their performance.

しかしながら、Br3は融点1432°Cの分解溶融化
合物であり、融点以上の温度ではT i O2+液体に
分解すると報告されており[H,M、O’bryan 
 et  at+、 J、Amer、Ceram、So
c、* 57(12)522(1974)参照]、その
ため、溶融法によりBr3の巨大単結晶をつくることは
できないと考えられていた。事実、Br3の巨大(大型
)単結晶については、本発明者らの知る限り、現在まで
如何なる方法においても製造したという報告はな(1゜ 分解溶融化合物の巨大単結晶を製造する一般的方法とし
て、(a)7ラツクス法及び(b)水熱法などがあり、
本発明者らはこれらの方法によりBr3の巨大単結晶の
育成を試みたが、満足できる結果は得られなかった。例
えば、ブラックス法の場合、これまでBaOTi0z第
0zについては、7ツ化カリウム(KF)を溶媒として
用いチタン酸バリウム(B aT io 3)の巨大単
結晶をつくるのに成功しているが、7ツ化カリウムには
Br3の合成に必要なだけの酸化チタンを溶解させるこ
とができず、この方法によるBr3の合成は極めて困難
である。また、水熱法では水溶液を用いるが、バリウム
の可溶性イオン錯体をつくるのは実際上不可能であり、
この方法によってもBr3の合成は極めて困難であると
4元られる。
However, Br3 is a decomposed molten compound with a melting point of 1432°C, and it has been reported that it decomposes into T i O2+ liquid at temperatures above the melting point [H, M, O'bryan
et at+, J, Amer, Ceram, So
c, *57 (12) 522 (1974)], therefore, it was thought that it was impossible to create a giant single crystal of Br3 by the melting method. In fact, to the best of the present inventors' knowledge, there has been no report on the production of giant (large) single crystals of Br3 by any method (a general method for producing giant single crystals of 1° decomposed molten compounds). , (a) 7 lux method and (b) hydrothermal method, etc.
The present inventors attempted to grow a giant single crystal of Br3 using these methods, but no satisfactory results were obtained. For example, in the case of the Brax method, a giant single crystal of barium titanate (BaT io 3) has been successfully created for BaOTi0z 0z using potassium heptadide (KF) as a solvent, but It is not possible to dissolve titanium oxide in an amount necessary for the synthesis of Br3 in potassium heptadide, and it is extremely difficult to synthesize Br3 by this method. In addition, although the hydrothermal method uses an aqueous solution, it is practically impossible to create a soluble ion complex of barium.
Even by this method, synthesis of Br3 is considered to be extremely difficult.

そこで、本発明者らは、Br3の巨大単結晶の!!遺法
について鋭意研究を行なった結果、今回、集光浮遊帯域
溶融法(集光FZ法)を用い、酸化バリウムと酸化チタ
ンの特定の割合の焼結体よりなる原料棒から、特定の育
成条件下に単結晶を育成させることによって、Br3の
巨大単結晶をつくるのに成功したのである。
Therefore, the present inventors developed a giant single crystal of Br3! ! As a result of intensive research on the original method, we have now used the condensed floating zone melting method (concentrated FZ method) to develop specific growth conditions from a raw material rod made of a sintered body with a specific ratio of barium oxide and titanium oxide. By growing a single crystal underneath, they succeeded in creating a giant single crystal of Br3.

前述したように、Br3の巨大単結晶はこれまで如何な
る方法によっても製造されたことがなく、新規な物質で
ある。ここで「巨大単結晶」とは、単結晶の中でも特に
大型のものをいい、一般に1つの単結晶の重量が0.1
g以上、好ましくは0.5g以上、更に好ましくは1.
0g以上のものであり、単結晶の最大径が好ましくは3
al111以上、更に好ましくは5ma1以上のもので
ある。
As mentioned above, a giant single crystal of Br3 has never been produced by any method and is a novel substance. Here, "giant single crystal" refers to a particularly large single crystal, and generally the weight of one single crystal is 0.1
g or more, preferably 0.5 g or more, more preferably 1.
0g or more, and the maximum diameter of the single crystal is preferably 3
Al is 111 or more, more preferably 5ma1 or more.

四チタン酸バリウムの化学量論組成はBaTi。The stoichiometric composition of barium tetratitanate is BaTi.

0、であるが、本発明により提供される西チタン酸パリ
ワムの巨大単結晶の組成は、その製造条件により化学量
論組成より僅かにずれていることもあり、従って、本発
明のBT4巨大単結晶は下記の組成式 %式% ここで、Xは0.97〜1.04の数であり、yは8.
97〜9.04の数である、 で示される範囲の組成を有する。
However, the composition of the giant single crystal of Pariwaum titanate provided by the present invention may slightly deviate from the stoichiometric composition depending on the manufacturing conditions. The crystal has the following composition formula: % Formula % Here, X is a number from 0.97 to 1.04, and y is 8.
It has a composition in the range shown by, which is a number from 97 to 9.04.

本発明のBT4巨大単結晶は、酸化バリウムと酸化チタ
ンとの焼結体よりなる棒状原料を用い、浮遊帯溶融法に
より!!造することがでさる。浮遊帯溶融法は、棒状焼
結体原料に、ハロゲンランプやキセノンランプなどの赤
外籾発生源より発せられる赤外線を回転楕円面鏡により
集光して原料棒の先端に溶融帯を形成し、この溶融帯に
種子結晶を接触させ、徐々に溶融帯を原料棒に沿って移
動させることにより種子結晶側の界面で結晶化な行ない
、他方の界面で原料棒の溶融を行なって種子結晶上での
結晶育成に伴う溶融法の減少を補う操作を連続的に行な
う単結晶育成法である。
The BT4 giant single crystal of the present invention is produced by a floating zone melting method using a rod-shaped raw material made of a sintered body of barium oxide and titanium oxide! ! It is possible to build. In the floating zone melting method, infrared rays emitted from an infrared rice generation source such as a halogen lamp or xenon lamp are focused on a rod-shaped sintered raw material using a spheroidal mirror to form a molten zone at the tip of the raw material rod. By bringing a seed crystal into contact with this melted zone and gradually moving the melted zone along the raw material rod, crystallization is performed at the interface on the seed crystal side, and the raw material rod is melted at the other interface to form a crystal on the seed crystal. This is a single-crystal growth method that continuously performs operations to compensate for the decrease in the melting method due to crystal growth.

BT4巨大単結晶を製造するに際しで、本発明では、原
料棒として、酸化バリウム1モル当量と酸化チタン3.
8〜4.2モル当量、好ましくは3゜85〜4.0モル
当量との棒状焼結体が使用される。この棒状焼結体は、
通常、高純度、好ましくは99.9%以上の純度の酸化
チタンと、高純度、好ましくは99.9%以上の純度の
酸化バリウム前駆化合物(焼成条件下に分解して酸化バ
リウムを与える化合物)、例えば炭酸バリウムとを酸化
物換キモル比が上記の範囲内となるような割合で湿式混
合し、その混合物を空気中で乾燥した後、空気中で70
0〜1100’Cで1〜5時間焼成して原料粉末を調製
し、次いで、この原料粉末をラバープレス法(ゴム製袋
に粉末を充填し静水圧でバインダーを用いずにラバープ
レスして成形する方法)にて0.8〜1.5トン/cm
2の靜水圧下で棒状に成形し、焼結することにより製造
することができる。焼結は通常酸化性雰囲気中で120
0〜1400°Cにて2〜5時間加熱することにより行
なうことができる。かくして得られる棒状焼結体は、浮
遊帯溶融法に使用する装置の大きさやその操作条件に応
じて、種々の大きさのものが用いられるが、一般的にい
って直径は5〜15I、好ましくは5〜10mmの範囲
内にあるのが適当である。
In producing the BT4 giant single crystal, in the present invention, 1 molar equivalent of barium oxide and 3.0 molar equivalent of titanium oxide are used as raw material rods.
A rod-shaped sintered body with a molar equivalent of 8 to 4.2, preferably 3.85 to 4.0 molar equivalent is used. This rod-shaped sintered body is
Usually, a titanium oxide of high purity, preferably 99.9% or higher purity, and a barium oxide precursor compound of high purity, preferably 99.9% or higher purity (a compound that decomposes under firing conditions to give barium oxide) , for example, with barium carbonate in a proportion such that the oxide exchange chimolar ratio is within the above range, and after drying the mixture in air,
A raw material powder is prepared by firing at 0 to 1100'C for 1 to 5 hours, and then this raw material powder is molded by rubber pressing method (filling the powder into a rubber bag and rubber pressing it with hydrostatic pressure without using a binder). 0.8 to 1.5 tons/cm
It can be manufactured by molding it into a rod shape under water pressure in step 2 and sintering it. Sintering is usually done at 120°C in an oxidizing atmosphere.
This can be done by heating at 0 to 1400°C for 2 to 5 hours. The rod-shaped sintered body thus obtained can be of various sizes depending on the size of the equipment used in the floating zone melting method and its operating conditions, but generally speaking, the diameter is 5 to 15 I, preferably 1. is suitably within the range of 5 to 10 mm.

一方、種子結晶としては、a軸方向、b軸方向及びC輪
方向のいずれのBT4結晶を用いてもよいが、C軸方向
の結晶を用いるときれいな丸棒状の単結晶が得られる。
On the other hand, as a seed crystal, any BT4 crystal oriented in the a-axis direction, b-axis direction, or C-ring direction may be used, but if a crystal oriented in the C-axis direction is used, a beautiful round rod-shaped single crystal can be obtained.

上記の棒状焼結体を用いての浮遊帯溶融法によるBT4
巨大単結晶の製造は、通常、単槽円型又は双楕円型赤外
線集中加熱炉を用いて行なうことができる。添付の第1
図は単槽円型赤外線集中加熱炉の一例の原理図であり、
該加熱論炉は2つの焦点を有する回転楕円面鏡体(1)
から構成され、一方の焦点にハロゲンランプ又はキセノ
ンランプ(2)が配置され、他方の焦点に棒状原料(3
)が位置するようにされている。1状原料(3)は上部
回転軸(4)により保持され、また、種子結晶(5)は
下部回転軸(6)にセットする。棒状原料(3)、種子
結晶(5)、上及び下部回転軸(4)、(6)は透明石
英管(7)内に封入されており、管内の雰囲気を自由に
制御することができ、また真空もしくは加圧状態にする
ことも可能である。
BT4 by floating zone melting method using the above rod-shaped sintered body
The production of giant single crystals can usually be carried out using a single-tank circular or bielliptical infrared concentrated heating furnace. Attached 1st
The figure shows the principle of an example of a single-tank circular infrared central heating furnace.
The heating furnace is a spheroidal mirror body (1) with two focal points.
A halogen lamp or xenon lamp (2) is placed at one focus, and a rod-shaped raw material (3) is placed at the other focus.
) is located. The monolithic raw material (3) is held by the upper rotating shaft (4), and the seed crystal (5) is set on the lower rotating shaft (6). The rod-shaped raw material (3), seed crystal (5), upper and lower rotating shafts (4), (6) are enclosed in a transparent quartz tube (7), and the atmosphere inside the tube can be freely controlled. It is also possible to put it in a vacuum or pressurized state.

ハロゲンランプ又はキセノンランプ(2)の出力は特に
制限されるものではないが、一般には0゜8〜4,5K
W程度のものが使用さhる。ランプ(2)を点灯すると
、そこから発せられた赤外線は他方の焦点に集中し、棒
状原料(3)のその焦点に一致する部分のみが加熱され
、その焦点部分のみに集中的に溶融帯(8)が形成され
る。溶融帯(8)は回転軸(4)、(6)を上方又は下
方に移動させることによって相対的に移動させることが
でき、これにより結晶の育成速度をコントロールするこ
とができる。
The output of the halogen lamp or xenon lamp (2) is not particularly limited, but is generally 0°8 to 4.5K.
A material of about W is used. When the lamp (2) is turned on, the infrared rays emitted from it are concentrated at the other focal point, and only the part of the rod-shaped raw material (3) that corresponds to that focal point is heated, and a molten zone ( 8) is formed. The molten zone (8) can be relatively moved by moving the rotating shafts (4), (6) upward or downward, thereby controlling the crystal growth rate.

操作はまず、棒状原料(3)と種子結晶(5)をできる
だけ近接してセットし、ランプ(2)を点灯して棒状原
料(3)の種子結晶(5)に近接した位置(焦点)に溶
融帯(8)を形成し、しかる後種子結晶(5)を上方に
移動して溶融帯(8)に接触させる。平衡状態に達した
のを確認した後、上及び下部回転軸(4)、(6)を回
転させながら、結晶の育成速度にあわせて下方に移動さ
せると、種子結晶(5)が成長した状態で透明単結晶が
得られる。すなわち、該移動により、溶融帯(8)と棒
状原料(3)の未溶融部分との界面で原料が溶融し、一
方、溶融帯(8)と種子結晶(5)の界面で結晶化が行
なわれる。
To operate, first, set the rod-shaped raw material (3) and the seed crystal (5) as close as possible, turn on the lamp (2), and place the rod-shaped raw material (3) at a position (focus) close to the seed crystal (5). A molten zone (8) is formed, after which the seed crystal (5) is moved upwards into contact with the molten zone (8). After confirming that an equilibrium state has been reached, the upper and lower rotating shafts (4) and (6) are rotated and moved downward in accordance with the crystal growth speed, and the seed crystal (5) is grown. A transparent single crystal is obtained. That is, due to the movement, the raw material melts at the interface between the melting zone (8) and the unmelted portion of the rod-shaped raw material (3), while crystallization occurs at the interface between the melting zone (8) and the seed crystal (5). It will be done.

上及び下部回転軸(4)、(6)の回転は相互に逆方向
に行なわれ、その回転速度はそれぞれ一般に10− S
 Orpm、好ましくは2O−30rp+sの範囲内が
適当である。また、上、下部回転軸(4)、(6)の移
動速度、すなわち単結晶の育成速度は0゜5−4.Om
m/時、特に1.0−2.5mm/時の範囲内であるの
が好適である。
The rotation of the upper and lower rotating shafts (4), (6) takes place in mutually opposite directions, and their rotational speeds are generally 10-S each.
Orpm, preferably within the range of 2O-30rp+s. Furthermore, the moving speed of the upper and lower rotating shafts (4) and (6), that is, the growth speed of the single crystal, is 0°5-4. Om
m/h, especially in the range 1.0-2.5 mm/h.

さらに、石英管(7)内の雰囲気は一般に空気でよいが
、窒素などの不活性〃ス雰囲気を用いることもできるが
、この場合は酸素欠陥により濃青色の単結晶が得られる
。しかし、このを成単結晶を空気中で1000〜130
0°Cにおいて2〜5時間時間子ニーリングすると、無
色透明な単結晶が得られる。
Furthermore, the atmosphere within the quartz tube (7) may generally be air, but an inert gas atmosphere such as nitrogen may also be used; however, in this case, a dark blue single crystal is obtained due to oxygen defects. However, this single crystal is grown in air at 1000 to 130
A colorless and transparent single crystal is obtained by child-nealing for 2 to 5 hours at 0°C.

以上の如くして製造されるBT4単結晶は、加熱炉の大
きさやライトの出力等に応じて、直径が3+am程度か
ら8aIL11程度又はそれ以上まで任意の大きさで得
られ、マイクロ波共振器の小形化、商性能化や半導体化
、光11極触媒等の用途に使用することが期待される。
The BT4 single crystal produced as described above can have any size from about 3+am in diameter to about 8aIL11 or more depending on the size of the heating furnace and the output of the light, and can be used in microwave resonators. It is expected to be used for applications such as miniaturization, commercial performance, semiconductor production, and 11-electrode photocatalysts.

次に実施例により本発明をさらに説明する。Next, the present invention will be further explained by examples.

実施例1 出発原料として純度99.9%の酸化チタン(T + 
02 >および純度99.9%の炭酸バリウム(B a
 COy )を用い、各原料を酸化物のモル比に換算し
てBaO:Ti(]z=1:4となるように秤量し、二
り7−ルで湿式混合した。これを空気中で乾燥したのち
、空気中で1000°012時間焼ノ及し原料粉末を得
た。この原料粉末をラバープレス法により1 ton/
 cm’の静水圧下で、直径60110、艮5501I
II6の丸棒状に成型した。この成型丸棒を11300
℃で2時間焼結して棒状原料を得た。
Example 1 Titanium oxide (T +
02 > and 99.9% purity barium carbonate (B a
Using COy ), each raw material was weighed so that the molar ratio of oxides was BaO:Ti(]z = 1:4, and wet mixing was carried out in two bottles. This was dried in air. After that, a raw material powder was obtained by annealing at 1000° in air for 12 hours.
cm' under hydrostatic pressure, diameter 60110, 5501I
It was molded into a round bar shape of II6. This molded round bar is 11300
A rod-shaped raw material was obtained by sintering at ℃ for 2 hours.

種子結晶としては背面ラウェ法により切り出しなa、 
b又はC軸方向のものを用いた。
Seed crystals are cut out using the backside Lawe method.
The one in the b or c axis direction was used.

用いた装置は添付第1図に示す如き単槽円型赤外線集中
加熱炉にハロゲンランプ(1,5KW)1個装着されて
いるものである。雰囲気として空気を60j!/hの速
度で流した。
The apparatus used was a single-tank circular infrared concentrated heating furnace as shown in the attached FIG. 1, which was equipped with one halogen lamp (1.5 KW). The atmosphere is 60j! It was flowed at a speed of /h.

回転軸は上、下それぞれ逆方向に30rpmで回転させ
、溶融帯を毎時1.0〜2.Ommの速さで移動させ、
直径5IIIII、長さ50ma+大の透明単結晶を得
た。
The rotating shaft is rotated at 30 rpm in the upper and lower directions in opposite directions, and the melting zone is rotated at 1.0 to 2.0 rpm per hour. Move at a speed of Omm,
A transparent single crystal with a diameter of 5III and a length of 50 ma+ was obtained.

この単結晶の形状は、種子結晶にaお上りbII11方
向のものを用いた時は0面に77セツトが現われいく分
槽円状であった。また、C軸方向の種子結晶を用いた場
合には丸棒状結晶であった。
The shape of this single crystal was somewhat cylindrical with 77 sets appearing on the 0 face when a seed crystal with an upward direction of a upward direction of bII11 was used. Moreover, when a seed crystal in the C-axis direction was used, a round rod-shaped crystal was obtained.

得られた単結晶をX#iを用いてB uergerのプ
リセツションカメラ法、背面ラウェ法および偏光顕微鏡
で調べたところ、上記結晶は単結晶であることが確認さ
れた。
The obtained single crystal was examined using Buerger's preset camera method, back surface Laue method, and polarizing microscope using X#i, and it was confirmed that the crystal was a single crystal.

下記表−1にBT4育成単結晶の諸性質を示す。Table 1 below shows various properties of the BT4 grown single crystal.

−・−1 空間群  PIIlaln 格子定数    a(^)   b(^)   e(^
)測定値    3.795(1) 14.530(1
) 6,292(1)JCPDS 8−367  3.
79  14,51  6.30Lukaszewia
z本 3.75(1)  14.53(2)  6.3
0(1)分析値     Ti0z     [laO
測定値   68,4 wt%  32.Olllt%
計算値   67.6 wt%  32.4IIIt%
密度 測定値          4.40±0.02 g/
ca+:I計算値  8aTi40*     4.5
3 g7cm’Bao、5yTi40s、st 4.4
8 g7cm3本    K  、L  ukasze
wicz*  Rocz、Chem、 + 3二り一、
  11また、BT4育成単結晶の粉末X線データは下
記表−2に示すように、K 、 L ukaszewi
cz、 Rocz。
−・−1 Space group PIIlaln Lattice constant a(^) b(^) e(^
) Measured value 3.795 (1) 14.530 (1
) 6,292(1) JCPDS 8-367 3.
79 14,51 6.30Lukaszewia
z book 3.75 (1) 14.53 (2) 6.3
0(1) Analysis value Ti0z [laO
Measured value 68.4 wt% 32. Olllt%
Calculated value 67.6 wt% 32.4IIIt%
Density measurement value 4.40±0.02 g/
ca+: I calculated value 8aTi40* 4.5
3 g7cm'Bao, 5yTi40s, st 4.4
8 g7cm 3 pieces K, Lukasze
wicz* Rocz, Chem, + 3 two one,
11 In addition, the powder X-ray data of the BT4 grown single crystal is shown in Table 2 below.
cz, Rocz.

Chewa、、 31. 1111(19S 7)に発
表さ八ている焼結体の格子定数とよく一致した。
Chewa,, 31. The lattice constant of the sintered body was in good agreement with the lattice constant of the sintered body published in 1111 (19S 7).

1、=、−一へ、、   、、         1実
施例2 雰囲気として窒素〃スを用い、且つ種子結晶として6輪
方向のものを用いること以外、実施例1と同様にして単
結晶を育成した。得られた単結晶は濃青色を呈し、この
着色結晶を空気中で1000℃、5時間アニーリングす
ると無色透明となった。
1, =, -1, , , 1 Example 2 A single crystal was grown in the same manner as in Example 1, except that nitrogen was used as the atmosphere and a seed crystal in the six-ring direction was used. The obtained single crystal exhibited a deep blue color, and when this colored crystal was annealed in air at 1000° C. for 5 hours, it became colorless and transparent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の巨大単結晶を製造するための装置の原
理を説明する図である。 第1図において、1・・・回転楕円面値、2・・・ハロ
ゲンランプ、3・・・棒状原料、4・・・上部回転軸、
5・・・種子結晶、6・・・下部回転軸、7・・・透明
石英管、8・・・溶融帯。
FIG. 1 is a diagram illustrating the principle of an apparatus for producing a giant single crystal according to the present invention. In FIG. 1, 1... spheroidal surface value, 2... halogen lamp, 3... rod-shaped raw material, 4... upper rotating shaft,
5... Seed crystal, 6... Lower rotating shaft, 7... Transparent quartz tube, 8... Molten zone.

Claims (1)

【特許請求の範囲】 1、組成式Ba_xTi_4O_y(ここで、xは0.
97〜1.04の数であり、yは8.97〜9.04の
数である)で示される四チタン酸バリウムの巨大単結晶
。 2、酸化バリウム1モル当量と酸化チタン3.8〜4.
2モル当量との焼結体よりなる棒状原料を用い、浮遊帯
溶融法により、育成速度0.5〜4.0mm/時にて種
子結晶上で結晶育成を行なうことを特徴とする組成式B
a_xTi_4O_y(ここで、xは0.97〜1.0
4の数であり、yは8.97〜9.04の数である)で
示される四チタン酸バリウムの巨大単結晶の製造方法。
[Claims] 1. Compositional formula Ba_xTi_4O_y (where x is 0.
97 to 1.04, and y is a number from 8.97 to 9.04). 2. 1 molar equivalent of barium oxide and titanium oxide 3.8-4.
Compositional formula B characterized in that crystal growth is performed on seed crystals at a growth rate of 0.5 to 4.0 mm/hour by a floating zone melting method using a rod-shaped raw material made of a sintered body with 2 molar equivalents.
a_xTi_4O_y (here, x is 0.97 to 1.0
4 and y is a number from 8.97 to 9.04).
JP11486186A 1986-05-21 1986-05-21 Macro single crystal of barium tetratitanate and its production Pending JPS62275097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11486186A JPS62275097A (en) 1986-05-21 1986-05-21 Macro single crystal of barium tetratitanate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11486186A JPS62275097A (en) 1986-05-21 1986-05-21 Macro single crystal of barium tetratitanate and its production

Publications (1)

Publication Number Publication Date
JPS62275097A true JPS62275097A (en) 1987-11-30

Family

ID=14648532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11486186A Pending JPS62275097A (en) 1986-05-21 1986-05-21 Macro single crystal of barium tetratitanate and its production

Country Status (1)

Country Link
JP (1) JPS62275097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335621A (en) * 2005-06-06 2006-12-14 Japan Science & Technology Agency Method for producing ferroelectric perovskite-type barium titanate single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335621A (en) * 2005-06-06 2006-12-14 Japan Science & Technology Agency Method for producing ferroelectric perovskite-type barium titanate single crystal
JP4644856B2 (en) * 2005-06-06 2011-03-09 独立行政法人科学技術振興機構 Method for producing ferroelectric perovskite-type barium titanate single crystal

Similar Documents

Publication Publication Date Title
JP3533648B2 (en) Reactive oxygen species inclusion calcia-alumina oxide single crystal and method for producing the same
EP1234899A2 (en) A single crystal and method of manufacturing same
JPS62275097A (en) Macro single crystal of barium tetratitanate and its production
US4218282A (en) Method of preparation of chrysoberyl and beryl single crystals
JPH05286761A (en) Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH04300296A (en) Production of barium titanate single crystal
JPS6052117B2 (en) Beryl single crystal manufacturing method
JPS63274697A (en) Production of cupric acid-lanthanum single crystal
JPH04119914A (en) Production of yttrium-aluminum gernet
JP3906359B2 (en) Method for producing P-type semiconductor SrCu2O2 single crystal
JPS6042195B2 (en) Chrysoberyl single crystal manufacturing method
JPH05235462A (en) Fabrication of polycrystalline transparent yag ceramic for solid laser
WO1985000392A1 (en) Chrysoberyl single crystal showing iridescent effect and process for its preparation
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH05294722A (en) Production of polycrystalline transparent yag ceramics for solid state laser
JPH09263496A (en) Production of barium titanate single crystal
JPH04243998A (en) Production of barium beta-metaborate single crystal
US2736659A (en) Method for preparation of highly refractive material
JPS58120597A (en) Chrysoberyl single crystal showing luster effect and its production
JPH0361635B2 (en)
JPH04338191A (en) Production of single crystal
JPH0521878B2 (en)
JP2794245B2 (en) Method for producing Bi-based oxide superconductor single crystal
JPH03115196A (en) Production of yttrium lithium fluoride single crysral
JPS6128638B2 (en)