JPH042683A - Production of rutile single crystal - Google Patents

Production of rutile single crystal

Info

Publication number
JPH042683A
JPH042683A JP2099910A JP9991090A JPH042683A JP H042683 A JPH042683 A JP H042683A JP 2099910 A JP2099910 A JP 2099910A JP 9991090 A JP9991090 A JP 9991090A JP H042683 A JPH042683 A JP H042683A
Authority
JP
Japan
Prior art keywords
crystal
axis
single crystal
production
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099910A
Other languages
Japanese (ja)
Inventor
Toshimasa Arai
利昌 新井
Hiroyuki Horino
堀野 浩幸
Hiroko Sugano
菅野 宏子
Tadatoshi Hosokawa
忠利 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP2099910A priority Critical patent/JPH042683A/en
Priority to DE4112298A priority patent/DE4112298A1/en
Priority to FR9104639A priority patent/FR2660940A1/en
Priority to KR1019910006103A priority patent/KR950001794B1/en
Publication of JPH042683A publication Critical patent/JPH042683A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/34Single-crystal growth by zone-melting; Refining by zone-melting characterised by the seed, e.g. by its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the production of a large-sized rutile single crystal using a floating zone process by specifying the growing axis of the crystal. CONSTITUTION:In the production of a rutile single crystal by floating zone process, the direction of the growing axis of the crystal (the direction of arrow shown by solid line) is set to be [001] axis. The angle between the direction of the crystal growth axis and the [001] axis of the seed crystal 2 (the direction of arrow shown by dotted line) is preferably >=15 deg. (especially <=3 deg.). In the figure, 1 is supporting rod; 3 is raw material rod; 4 is floating material; 5 is crystal heating apparatus.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明はルチル(T、02)単結晶の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a method for producing rutile (T, 02) single crystal.

(従来の技術) ルチル単結晶は高精度光学部品として注目されており、
各種の製造方法が既に提案されている。
(Prior technology) Rutile single crystal is attracting attention as a high-precision optical component.
Various manufacturing methods have already been proposed.

例えば特公平2−5720号公報では、良質のルチル結
晶を得るためには融液の固化に際して1種類だけの結晶
相を晶出することの必要性を挙げ、そのためには融液か
ら結晶を成長させるに際し、結晶成長における雰囲気中
の酸素分圧を3×10−2気圧以下の範囲とすれば良い
ことを提案している。
For example, Japanese Patent Publication No. 2-5720 states that in order to obtain high-quality rutile crystals, it is necessary to crystallize only one type of crystal phase during solidification of the melt, and to do so, it is necessary to grow crystals from the melt. When doing so, it is proposed that the oxygen partial pressure in the atmosphere during crystal growth should be in the range of 3 x 10-2 atmospheres or less.

(発明が解決しようとする課題) 上記した従来方法を適用する時、例えばフローティング
ゾーン法を用いて、ルチル単結晶の直径が15o++n
φ程度までのものを育成する場合は、従来例として記載
された方法のみで殆んど問題はない。
(Problem to be Solved by the Invention) When applying the above-mentioned conventional method, for example, using the floating zone method, the diameter of the rutile single crystal is 15o++n.
When growing plants up to about φ, there is almost no problem using only the method described as a conventional example.

しかし直径が15IIIIIφ以上のものの場合は、前
記従来方法では結晶を製造することができなかった。
However, if the diameter is 15IIIφ or more, the conventional method cannot produce crystals.

即ち、フローティングゾーン法は種子結晶と原料棒との
間を加熱して浮遊体を形成するものであるが、結晶口径
が大きくなるに伴ない、浮遊体の量か増大して重量が大
きくなる結果、表面張力では浮遊体を保持することがで
きなくなり、浮遊体が垂れ落ちてしまうためである。
That is, in the floating zone method, floating bodies are formed by heating between the seed crystal and the raw material rod, but as the crystal diameter increases, the amount of floating bodies increases and the weight increases. This is because surface tension cannot hold the floating body and the floating body will fall down.

本発明は上記問題点を解決するなめになされたものであ
り、大形の結晶を得ることの可能なルチル単結晶の製造
方法を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a rutile single crystal by which large-sized crystals can be obtained.

[発明の構成] (課題を解決するための手段と作用) 上記目的を達成するため、本発明はルチル(T102)
単結晶をフローティングゾーン法にて製造するに際し、
結晶の成長軸方向が[001]軸であるようにした。
[Structure of the invention] (Means and effects for solving the problem) In order to achieve the above object, the present invention provides rutile (T102)
When manufacturing single crystals using the floating zone method,
The growth axis direction of the crystal was set to be the [001] axis.

第1図は浮遊体付近の詳細図であり、保持棒1に種子結
晶2を取付け、原料棒3との間に浮遊体4があって、こ
れが加熱された状態を示し、一部が結晶保温装置5に覆
われている。なお点線矢印は種子の[001]軸方向を
示し、実線矢印は結晶の成長方向を示す。そして結晶成
長軸の方向と種子結晶の[001]軸とのなす角は15
°までの範囲がよく、望ましくは3°以内であれば更に
よい。一方、30°以上の場合は浮遊体を保持すること
は非常に困離である。
Figure 1 is a detailed view of the vicinity of the floating body, showing a heated state in which a seed crystal 2 is attached to a holding rod 1 and a floating body 4 is placed between it and a raw material rod 3, and a part of the crystal is kept warm. It is covered by the device 5. Note that the dotted line arrow indicates the [001] axis direction of the seed, and the solid line arrow indicates the crystal growth direction. The angle between the direction of the crystal growth axis and the [001] axis of the seed crystal is 15
The range is preferably up to 3°, preferably 3° or less. On the other hand, if the angle is 30° or more, it is very difficult to hold the floating body.

ここで種子の[001]軸を結晶の成長軸とした場合に
、浮遊体が保持し易いことは実験的な事実であって、何
故保持し易いかは明らかてはない。
Here, it is an experimental fact that when the [001] axis of the seed is used as the crystal growth axis, floating bodies are easily retained, but it is not clear why the floating bodies are easily retained.

しかしながらルチルの結晶面のうち成長し易い面が(1
10)面、即ち、成長の遅い軸方向か[110]軸方向
であることと関係しているものと考えられる。即ち、[
001]軸成長の場合は(110)面ファセットは固液
界面のどこにも出現ぜす、他の軸方向で育成すると、固
液界面内に(110)ファセットか形成され、固液界面
が浮遊体を保持しにくい形状となるためと考えられる。
However, among the crystal planes of rutile, the one that is easy to grow is (1
10) plane, that is, the axial direction where growth is slow, or the [110] axial direction. That is, [
001] In the case of axial growth, (110) facets appear anywhere on the solid-liquid interface. When grown in other axial directions, (110) facets are formed within the solid-liquid interface, and the solid-liquid interface becomes a floating body. This is thought to be because the shape is difficult to hold.

(実施例) 以下に実施例を説明する。(Example) Examples will be described below.

市販のT、02 (99,98%)粉末を11On/c
aの静水圧で棒状にラバープレス成形し、1400″C
の空気中て焼結した。これを回転楕円面鏡を用いた集光
フローティング法単結晶製造装置に原料として装填し、
種子結晶の軸方向を[001]軸方向とした。浮遊体の
近傍には結晶保温装置を取付けた。そして、雰囲気中の
酸素分圧を制御するために結晶室内にCO2を導入し、
21/分の流量て結晶成長終了まで流し続け、フローテ
ィングゾーン法の常法に従って結晶育成操作を行ない、
青黒色の結晶を得た。この場合の育成条件は原料棒及び
種子結晶の回転速度が逆方向に夫々25回/分であり、
結晶成長速度は3關/時間であった。得られた結晶を8
00℃、48時間空気中で焼鈍した結果、僅かに黄色を
帯びた透明な結晶体を得た。この結晶から成長方向及び
垂直方向に平行な面を持つ試料を切り出して光学研磨を
した後、偏光顕微鏡で調べた結果、歪、気泡及びサブグ
レイン組成などが検出されない、良質なルチル単結晶で
あることが判った。
Commercially available T,02 (99,98%) powder was heated at 11 On/c.
Rubber press molded into a rod shape with hydrostatic pressure of a, and heated to 1400″C.
Sintered in air. This is loaded as a raw material into a condensing floating method single crystal production device using a spheroidal mirror.
The axial direction of the seed crystal was set as the [001] axial direction. A crystal heat insulator was installed near the floating body. Then, CO2 was introduced into the crystallization chamber to control the oxygen partial pressure in the atmosphere.
Continue to flow at a flow rate of 21/min until the end of crystal growth, and perform crystal growth according to the conventional floating zone method.
Blue-black crystals were obtained. The growth conditions in this case are that the rotation speed of the raw material rod and the seed crystal is 25 times/min in opposite directions,
The crystal growth rate was 3 times/hour. 8 of the obtained crystals
As a result of annealing in air at 00°C for 48 hours, a slightly yellowish transparent crystal was obtained. A sample with planes parallel to the growth direction and the vertical direction was cut out from this crystal, optically polished, and then examined using a polarizing microscope. As a result, no distortion, bubbles, or subgrain composition were detected, and it was a high-quality rutile single crystal. It turned out that.

なお、種子結晶として成長方向に対し45゛となるもの
と、90°となるものを準備し、上記したのと全く同様
の操作を行なって結晶育成を試みたが、浮遊体を保持す
ることができずに垂れ落ちてしまうため、結晶を育成す
ることができなかった。
In addition, we prepared two seed crystals, one at 45° and the other at 90° with respect to the growth direction, and tried to grow the crystal by performing exactly the same operation as above, but it was not possible to hold the floating body. Crystals could not be grown because they would fall down.

[発明の効果] 以上説明したように、本発明によればフローティングゾ
ーン法によってルチル単結晶を製造するに際し、結晶の
成長軸方向が[001]軸であるようにしたので、結晶
口径が15 nmφ以上の大きなルチル単結晶が得られ
るようになった。
[Effects of the Invention] As explained above, according to the present invention, when producing a rutile single crystal by the floating zone method, the crystal growth axis direction is the [001] axis, so that the crystal diameter is 15 nmφ. Larger rutile single crystals can now be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は結晶育成に際しての浮遊体付近の詳細図である
。 1・・・保持棒      2・・・種子結晶3・・・
原料棒      4・・・浮遊体5・・・結晶保温装
置 特許出願人  秩父セメント株式会社 代理人弁理士  石 井   紀 男
FIG. 1 is a detailed view of the vicinity of the floating body during crystal growth. 1... Holding rod 2... Seed crystal 3...
Raw material rod 4...Floating body 5...Crystal heat retention device Patent applicant Norio Ishii, Patent attorney representing Chichibu Cement Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)フローティングゾーン法を用いてルチル単結晶を
製造する方法におて、結晶の成長軸方向が[001]軸
であることを特徴とするルチル単結晶の製造方法。
(1) A method for producing a rutile single crystal using a floating zone method, characterized in that the crystal growth axis direction is the [001] axis.
(2)結晶成長軸の方向と種子結晶の[001]軸との
なす角は15゜までの範囲内とすることを特徴とする請
求項1項記載のルチル単結晶の製造方法。
(2) The method for producing a rutile single crystal according to claim 1, characterized in that the angle formed between the direction of the crystal growth axis and the [001] axis of the seed crystal is within a range of up to 15°.
JP2099910A 1990-04-16 1990-04-16 Production of rutile single crystal Pending JPH042683A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2099910A JPH042683A (en) 1990-04-16 1990-04-16 Production of rutile single crystal
DE4112298A DE4112298A1 (en) 1990-04-16 1991-04-15 Rutile single crystal prodn. by floating zone process - useful for mfg. precision optical components
FR9104639A FR2660940A1 (en) 1990-04-16 1991-04-16 PROCESS FOR PRODUCING A RUTILE MONOCRYSTAL
KR1019910006103A KR950001794B1 (en) 1990-04-16 1991-04-16 Production of rutile single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099910A JPH042683A (en) 1990-04-16 1990-04-16 Production of rutile single crystal

Publications (1)

Publication Number Publication Date
JPH042683A true JPH042683A (en) 1992-01-07

Family

ID=14259937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099910A Pending JPH042683A (en) 1990-04-16 1990-04-16 Production of rutile single crystal

Country Status (4)

Country Link
JP (1) JPH042683A (en)
KR (1) KR950001794B1 (en)
DE (1) DE4112298A1 (en)
FR (1) FR2660940A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007940A1 (en) * 2003-07-23 2005-01-27 Shin-Etsu Handotai Co.,Ltd. Method of producing silicon wafer and silicon wafer
US7351920B2 (en) 2002-05-22 2008-04-01 Kabushiki Kaisha Toshiba IC card and semiconductor integrated circuit device package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111997A (en) * 1984-11-05 1986-05-30 Shinkosha:Kk Production of rutile single crystal
JPS62292699A (en) * 1986-06-11 1987-12-19 Seiko Epson Corp Method for synthesizing rutile single crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL243511A (en) * 1959-09-18
US3650703A (en) * 1967-09-08 1972-03-21 Tyco Laboratories Inc Method and apparatus for growing inorganic filaments, ribbon from the melt
US3642443A (en) * 1968-08-19 1972-02-15 Ibm Group iii{14 v semiconductor twinned crystals and their preparation by solution growth
JPS61101495A (en) * 1984-10-24 1986-05-20 Natl Inst For Res In Inorg Mater Preparation of rutile single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111997A (en) * 1984-11-05 1986-05-30 Shinkosha:Kk Production of rutile single crystal
JPS62292699A (en) * 1986-06-11 1987-12-19 Seiko Epson Corp Method for synthesizing rutile single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351920B2 (en) 2002-05-22 2008-04-01 Kabushiki Kaisha Toshiba IC card and semiconductor integrated circuit device package
US7531757B2 (en) 2002-05-22 2009-05-12 Kabushiki Kaisha Toshiba IC card and semiconductor integrated circuit device package
WO2005007940A1 (en) * 2003-07-23 2005-01-27 Shin-Etsu Handotai Co.,Ltd. Method of producing silicon wafer and silicon wafer
US7361219B2 (en) 2003-07-23 2008-04-22 Shin-Etsu Handotai Co., Ltd. Method for producing silicon wafer and silicon wafer

Also Published As

Publication number Publication date
DE4112298A1 (en) 1991-10-17
FR2660940A1 (en) 1991-10-18
KR910018586A (en) 1991-11-30
KR950001794B1 (en) 1995-03-02

Similar Documents

Publication Publication Date Title
CN106757355B (en) A kind of growing method of gemstones formed of silicon carbide
JPH03185817A (en) Method of forming semiconductor film
JPH042683A (en) Production of rutile single crystal
Nakatani et al. Crystal form of phosphoric-acid-doped triglycine sulfate
JPH01122998A (en) Production of cd zn te mixed crystal semiconductor
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
JPH0312397A (en) Production of rutile single crystal
JPH06219891A (en) Production of lithium niobate single crystal film
CN114808125B (en) Compound of nine hydroxy trichloro heptaborate and nine hydroxy trichloro heptaborate birefringent crystal, preparation method and application
CN110036143A (en) Monocrystalline silicon manufacturing method and silicon single crystal wafer
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JPS6148498A (en) Process for preparing single crystal of alkali tantalate and crucible therefor
JPH01320295A (en) Production of bi12geo20 single crystal
JP2738642B2 (en) X-axis orientation lithium niobate single crystal growing method
CN1274888C (en) Magnetic single crystal with controllable magnetic field and bidirectional shape memory effect and preparing method thereof
CN111647946A (en) Method for preparing high-quality crystal by rotating magnetic field
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH0782088A (en) Method for growing single crystal
JPH01320296A (en) Production of bi12sio20 single crystal
Feigelson Growth of single crystal fibers for optical applications
JPH0544440B2 (en)
JPH10182277A (en) Device for producing single crystal and production of single crystal, using the same
JPS61111997A (en) Production of rutile single crystal
JPH07206584A (en) Production of compound semiconductor single crystal