JPS61101495A - Preparation of rutile single crystal - Google Patents

Preparation of rutile single crystal

Info

Publication number
JPS61101495A
JPS61101495A JP22221384A JP22221384A JPS61101495A JP S61101495 A JPS61101495 A JP S61101495A JP 22221384 A JP22221384 A JP 22221384A JP 22221384 A JP22221384 A JP 22221384A JP S61101495 A JPS61101495 A JP S61101495A
Authority
JP
Japan
Prior art keywords
crystal
partial pressure
oxygen partial
single crystal
rutile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22221384A
Other languages
Japanese (ja)
Other versions
JPH025720B2 (en
Inventor
Shigeyuki Kimura
木村 茂行
Kenji Kitamura
健二 北村
Nobuo Ii
伸夫 井伊
Keiichi Minegishi
峯岸 敬一
Masabumi Igarashi
五十嵐 正文
Tadatoshi Hosokawa
忠利 細川
Mikio Higuchi
幹雄 樋口
Hiroyuki Horino
堀野 浩幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Cement Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
Chichibu Cement Co Ltd
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd, National Institute for Research in Inorganic Material filed Critical Chichibu Cement Co Ltd
Priority to JP22221384A priority Critical patent/JPS61101495A/en
Publication of JPS61101495A publication Critical patent/JPS61101495A/en
Publication of JPH025720B2 publication Critical patent/JPH025720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a high-quality rutile single crystal free from sub-grain texture, by keeping the oxygen partial pressure in the growth atmosphere below a specific pressure, and growing the single crystal of TiO2 from the molten liquid, thereby developing only one kind of crystal phase. CONSTITUTION:A single crystal of TiO2 is made to grow from the molten liquid of TiO2 keeping the oxygen partial pressure in the atmosphere to <=3X10<-2>atm. There is no particular restriction in the crystal growth method, however, a floating zone process is preferable from the viewpoint of the contamination from the crucible, etc. The oxygen partial pressure in the crystal growth atmosphere can be maintained to <=3X10<-2>atm, e.g. by the high-temperature thermal equilibrium reaction or heat-decomposition reaction near the temperature of crystal growth, or by the use of gas emitting a specific amount of free oxygen, e.g. CO2, NOX, etc. Only one kind of a crystal phase can be crystallized by the above process, and a high-quality rutile crystal free from sub-grain texture can be prepared.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はルチル(TjO2)単結晶の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing rutile (TjO2) single crystal.

〔従来技術と発明が解決しようとする問題点〕複屈折が
大きく、偏光プリズムなど高精度光学機器部品に利用さ
れている方解石は、せ成技術が充分に確立されていない
丸め、天然品が使用されている。しかし、良質天然方解
石は近時品薄状態になって来ており、しかも硬度が低い
ため、取扱いに不便である等の問題がある。
[Problems to be solved by the prior art and the invention] Calcite, which has large birefringence and is used in high-precision optical equipment parts such as polarizing prisms, is rounded and natural products are used for which the forming technology has not been fully established. has been done. However, high-quality natural calcite has recently been in short supply, and its low hardness causes problems such as inconvenience in handling.

そこで、最近複屈折率が0.3と大きいルチル(TiO
2)が着目され、方解石の代替品として期待されている
。しかし現在市販されてい−るルチルは、ベルヌーイ法
でW成した製品で、熱歪による光学的歪が大きいこと、
気泡入9製品が多いなどの欠点があシ、高精度の光学機
械器具の部品としては不適当なものである。
Recently, rutile (TiO), which has a high birefringence of 0.3, has been
2) is attracting attention and is expected to be a substitute for calcite. However, the rutile currently on the market is a product made by the Bernoulli method, and has large optical distortion due to thermal distortion.
It has drawbacks such as a large number of bubble-containing products, making it unsuitable as a component for high-precision optical equipment.

また引上法などで代表さ6成長法によ る結晶育成も試みられているが、サブグレイン組織、即
ち、結晶方位が比較的そろった直径数百ミクロンから数
ミリ程度の結晶粒の集会体となっている組織が現われる
ことが多く、ベルヌーイ法結晶より劣る品質の結晶しか
得られていない。
Attempts have also been made to grow crystals using six growth methods, such as the pulling method. This method often produces crystals of inferior quality to those produced by the Bernoulli method.

そこで本発明は、高精度の光学機械器具の部品としても
使用できる光学的に無歪で気泡のないルチル単結晶を製
造する方法を提案しようとするものである。
Therefore, the present invention seeks to propose a method for producing an optically undistorted and bubble-free rutile single crystal that can also be used as a component of high-precision optical equipment.

〔従来法によって良質結晶が得られなかった理由〕酸化
チタンにおいては、 Ti’十とTi3+の共存により
Tin01n−1(nは1以上の整数)で表わされる。
[Reason why good quality crystals could not be obtained by the conventional method] In titanium oxide, Ti'0 and Ti3+ coexist, which is expressed as Tin01n-1 (n is an integer of 1 or more).

一連の類似した結晶構造を持つ、それぞれ独立した結晶
相の存在が知られている。それぞれの相は特定範囲の酸
素分圧の下でのみ安定に存在する。従って融液から結晶
が固化する時。
The existence of a series of independent crystal phases with similar crystal structures is known. Each phase exists stably only under a specific range of oxygen partial pressure. Therefore, when crystals solidify from the melt.

固化する結晶の組成、即ち結晶構造は雰囲気中の酸素分
圧に左右される。即ち、酸素分圧が高い時はnの大きな
結晶が、酸素分圧が低いiはnの小さな結晶相が得られ
る。酸素分圧の値によっては2種の隣り合った組成の結
晶相が同時に晶出する。この様な場合には、一般の融液
からの結晶成長技術を適用しても、単結晶が得られない
ことは自明である。
The composition of the solidified crystal, that is, the crystal structure, depends on the oxygen partial pressure in the atmosphere. That is, when the oxygen partial pressure is high, a crystal with a large n is obtained, and when the oxygen partial pressure is low, a crystal phase with a small n is obtained. Depending on the value of the oxygen partial pressure, two types of crystal phases having adjacent compositions may crystallize simultaneously. In such a case, it is obvious that a single crystal cannot be obtained even if ordinary crystal growth techniques from melt are applied.

Tln01n−+の組成の結晶相は、nが大きい時。The crystal phase of the composition Tln01n-+ is when n is large.

即ち組成がT凰0Hに極めて近い時、徐冷又は焼鈍によ
り単結晶のまま容易にルチル構造に変化jる。それは、
 Tin02n、Hの構造が、ルチル構造に酸素欠損型
の格子欠陥を整然と導入した形になっており、低温での
酸素拡散によシこれらが除去され易いためである。しか
も同じ酸素分圧下では低温相Ti3+の許容含育景は少
なくなる。従って、上記の2相共存状態で固化した結晶
は。
That is, when the composition is very close to T-0H, it easily changes to a rutile structure while remaining a single crystal by slow cooling or annealing. it is,
This is because the structure of Tin02n,H has oxygen-deficient lattice defects introduced into the rutile structure in an orderly manner, and these are easily removed by oxygen diffusion at low temperatures. Furthermore, under the same oxygen partial pressure, the permissible growth rate of low-temperature phase Ti3+ is reduced. Therefore, the crystal solidified in the above two-phase coexistence state.

室温まで徐冷すると、すべてルチル構造になっているに
もかかわらず、サブグレイン組織を含んだものKなる。
When slowly cooled to room temperature, K contains subgrain structure even though it has a rutile structure.

これが従来融液成長法によシ良質結晶の得られなかった
理由である。
This is the reason why good quality crystals have not been obtained by conventional melt growth methods.

従ってサブグレイン組織のない、良質のルチル結晶を得
る手段は、固化に際して、一種類だけの結晶相が晶出す
る様な酸素分圧を供給することである。
Therefore, the means to obtain high-quality rutile crystals without subgrain structure is to supply oxygen partial pressure such that only one type of crystal phase crystallizes during solidification.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の様な考え方に基づくもので雰囲気中の
酸素分圧13X10−2気圧以下の範囲に保って、融液
から酸化チタンの単結晶を成長させるようにしたもので
ある。
The present invention is based on the above-mentioned concept, and is designed to grow a single crystal of titanium oxide from a melt while maintaining the oxygen partial pressure in the atmosphere within a range of 13×10 −2 atmospheres or less.

本発明によシ初めて、晶出する酸化チタンが一種類だけ
になる酸素分圧の範囲は、該範囲であることが明らかと
なった。
According to the present invention, it has been revealed for the first time that the oxygen partial pressure range in which only one type of titanium oxide crystallizes falls within this range.

本発明において適用する融液からの結晶成長法とは引上
法、ベルヌーイ法、ブリラマン法。
The methods of growing crystals from melt applied in the present invention include the pulling method, the Bernoulli method, and the Brillaman method.

70−ティングゾーン法など何でも良いが、成長結晶の
高品質化が達成し易いので引上法や70−ティングゾー
ン法が好ましく1%に容器からの不純物汚染が無いフロ
ーティングゾーン法が好ましい。
Although any method such as the 70-Ting zone method may be used, the pulling method and the 70-Ting zone method are preferable because it is easy to achieve high quality grown crystals, and the floating zone method, which is free from 1% contamination by impurities from the container, is preferable.

本発明に用いる出発原料としてのTiO2は市販の特級
試薬で良いが、光学結晶の原料としての純度は高い程好
ましい。尚、用途に応じて物理的、化学的性質を制御す
るた仲に、 Fe、Ni、Oo。
TiO2 as a starting material used in the present invention may be a commercially available special grade reagent, but the higher the purity, the more preferable it is as a raw material for optical crystals. In addition, Fe, Ni, and Oo are used to control the physical and chemical properties depending on the application.

Mn 、 Or 、 Li 、 My 、 Ou 、 
Zn 、 Od * At、 Ga * V 、 Nb
 。
Mn, Or, Li, My, Ou,
Zn, Od*At, Ga*V, Nb
.

Ta、Si、Ge、Zr、HfoMo、Wなどの元素を
少量添加することができる。
Small amounts of elements such as Ta, Si, Ge, Zr, HfoMo, and W can be added.

本発明における結晶の成長速度は0.1〜300W/時
、好ましくは0.5〜15 m/時、*に好ましくけ3
〜8 m /時である。
The crystal growth rate in the present invention is 0.1 to 300 W/hour, preferably 0.5 to 15 m/hour, preferably *3
~8 m/h.

本発明において結晶成長雰囲気中の酸素分圧範囲3 X
 10””気圧以下を実現するためには結晶成長近傍の
高温で熱平衡反応や熱分解反応などによシ、遊離の酸素
を所定量放出するCO!やNOx等のガスが利用される
。酸素分圧範囲を正しく設定するために、これらのガス
の純度は高い程好ま しい。
In the present invention, the oxygen partial pressure range in the crystal growth atmosphere is 3
In order to achieve a pressure of 10" atm or less, a predetermined amount of free oxygen must be released through thermal equilibrium reactions and thermal decomposition reactions at high temperatures near crystal growth. Gases such as NOx and NOx are used. In order to correctly set the oxygen partial pressure range, the higher the purity of these gases, the better.

また、該酸素分圧範囲を実、現するためには酸!と不活
性ガスから盛る混合ガスを用いてもよい。前記不活性ガ
スとは、Arを初めとする希ガス元素又は窒素である。
In addition, in order to realize the oxygen partial pressure range, acid! A mixed gas consisting of an inert gas and an inert gas may be used. The inert gas is a rare gas element such as Ar or nitrogen.

これらの不活性ガ、スは酸素分圧範囲を正しく設定する
ために純反が高い程好ましい。
The higher the purity of these inert gases, the better in order to set the oxygen partial pressure range correctly.

本発明により得られる結晶は、室温へ9冷却過程では’
;Ti0z、oの組成になるが、分析による検出が困難
な程度のTi”+を含んでおシ、透明度が不充分である
ことがある。この様な場合、結晶を1000℃以下の空
気又は酸素中で焼鈍することにより透明度を増すことが
できる。焼鈍温度は600〜1000℃、好ましくは7
00〜900℃である。焼鈍時間は長ければ長い程良い
が、生産効率を上昇させ、且つ充分な透明度を確保する
ために3〜100時間、好ましくは5〜70時間である
The crystals obtained according to the present invention are
; The composition is Ti0z, o, but it may contain Ti"+ to the extent that it is difficult to detect by analysis, and the transparency may be insufficient. In such cases, the crystals may be exposed to air or Transparency can be increased by annealing in oxygen.The annealing temperature is 600-1000°C, preferably 7
00-900°C. The longer the annealing time, the better; however, in order to increase production efficiency and ensure sufficient transparency, the annealing time is 3 to 100 hours, preferably 5 to 70 hours.

〔実施例1〕 市販のTl02(99,98%〕粉末をi ton/F
Iの静水圧で棒状にラバープレス成形し、1400℃の
空気中で焼結し次。これを回転楕円面鏡を用いた集光フ
ローティングゾーン法単結晶製造装置に原料棒として装
填し、別に準備したルチル単結晶を種結晶として装填し
た。雰囲気中の酸素分圧を制御するtめに00!を結晶
放長室に導入し、2t/分の流量で結晶成長終了まで流
し続け、フローティングゾーン法の常法に従って9晶育
成操作を行い青黒色の結晶を得た。
[Example 1] Commercially available Tl02 (99,98%) powder was
Rubber press molded into a rod shape using hydrostatic pressure of I, and sintered in air at 1400°C. This was loaded as a raw material rod into a condensing floating zone method single crystal manufacturing apparatus using a spheroidal mirror, and a separately prepared rutile single crystal was loaded as a seed crystal. 00 to control the oxygen partial pressure in the atmosphere! was introduced into a crystal elongation chamber and continued to flow at a flow rate of 2 t/min until the end of crystal growth, and nine crystal growth operations were performed according to the conventional floating zone method to obtain blue-black crystals.

育成条件は、原料棒及び種結晶の回転速度が逆方向にそ
れぞれ25回/分、結晶成長速度は5舅/時であった。
The growth conditions were that the rotation speed of the raw material rod and the seed crystal were 25 times/min in opposite directions, and the crystal growth rate was 5/hour.

得られた結晶を800℃48時間空気中で焼鈍してわず
かに黄色を帯びた透明な結晶体2得た。この結晶から成
長方向及びそれに垂直な方向に平行な面を持つ試料を切
り出し、光学研磨の上、偏光顕微鏡で訓べた所。
The obtained crystals were annealed in air at 800° C. for 48 hours to obtain a slightly yellowish transparent crystal body 2. A specimen with planes parallel to the growth direction and a direction perpendicular to it was cut from this crystal, optically polished, and examined using a polarizing microscope.

歪、気泡、サブグレイン組織などが検出されない良質ル
チル単結晶であることが明らかになった。
It was found to be a high-quality rutile single crystal with no detectable distortions, bubbles, or subgrain structure.

〔実施例2〕 実施例1と全く同様の操作において、雰囲気中の酸素分
圧を制御する九めに超高純度入rと02を100対3の
割付で混せした混せガスを結晶成長室に導入し、2t/
分の流量で育成終了まで流し続けた。他の操作も実施例
1と全く同様にして、歪、気泡、サブグレイン組織等が
ほとんど検出されない良質ルチル単結晶を得た。
[Example 2] In exactly the same operation as in Example 1, a mixed gas containing ultra-high purity R and 02 mixed at a ratio of 100:3 was used for crystal growth to control the oxygen partial pressure in the atmosphere. Introduced into the room, 2t/
The flow rate continued until the end of the growth. Other operations were performed in exactly the same manner as in Example 1 to obtain a high-quality rutile single crystal in which distortion, bubbles, subgrain structure, etc. were hardly detected.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように1本発明の特長は、融
液からルチル単結晶を成長させる際に。
As is clear from the above examples, one of the features of the present invention is when growing a rutile single crystal from a melt.

雰囲気中の酸素分圧を3 x 10’″2気圧以下の範
囲に保つことにより、一種類だけの結晶相を晶出させ、
サブグレイン組織のない、良質のルチル結晶を得ること
にある。
By keeping the oxygen partial pressure in the atmosphere within the range of 3 x 10'''2 atmospheres or less, only one type of crystal phase is crystallized,
The objective is to obtain high quality rutile crystals without subgrain structure.

これに対して、酸素、空気等を供給して本発明において
限定し九範囲より高い酸素分圧とするか、あるいは超高
純度Arを供給してほとんど零の酸素分圧とすると、晶
出する結晶は多くのサブグレイン組織を含み、良質の結
晶は得られない。なお、酸素分圧の下限値を決定するこ
とは困難であるが、超高純度pLrと02を100 p
pm含む1yrf 100 : 1の割付で混せして酸
素分圧10−6気圧の雰囲気をつくり、実施例1と全く
同様にして結晶を育成したところ1局部的にサブダレイ
ンが検出されたが、はぼ良質なルチル単結晶を得九。
On the other hand, if oxygen, air, etc. are supplied to make the oxygen partial pressure higher than the 9 range limited in the present invention, or if ultra-high purity Ar is supplied to make the oxygen partial pressure almost zero, crystallization will occur. The crystals contain many subgrain structures and high quality crystals cannot be obtained. Although it is difficult to determine the lower limit of the oxygen partial pressure, ultra-high purity pLr and 02 are 100 p
1yrf containing pm was mixed at a ratio of 100:1 to create an atmosphere with an oxygen partial pressure of 10-6 atm, and crystals were grown in exactly the same manner as in Example 1. Subdalein was locally detected, but Obtain high quality rutile single crystal.

Claims (2)

【特許請求の範囲】[Claims] (1)TiO_2を高温で融解させた融液から結晶を成
長させる方法において、雰囲気中の酸素分圧を3×10
^−^2気圧以下の範囲に保つことを特徴とする、ルチ
ル(TiO_2)単結晶の製造方法。
(1) In a method of growing crystals from a melt of TiO_2 at high temperature, the oxygen partial pressure in the atmosphere is set to 3×10
^-^ A method for producing a rutile (TiO_2) single crystal, characterized by maintaining the pressure in a range of 2 atmospheres or less.
(2)結晶成長装置において、融液及び成長結晶の近傍
にCO_2、NOx等の、少量酸素を放出するガス、又
は酸素と不活性ガスの混合ガスを導入して雰囲気中の酸
素分圧3×10^−^2気圧以下の範囲に制御すること
を特徴とする、特許請求の範囲第1項記載のルチル単結
晶の製造方法。
(2) In the crystal growth apparatus, a gas that releases a small amount of oxygen, such as CO_2 or NOx, or a mixed gas of oxygen and an inert gas is introduced into the vicinity of the melt and the growing crystal to increase the oxygen partial pressure in the atmosphere. A method for producing a rutile single crystal according to claim 1, characterized in that the pressure is controlled to a range of 10^-^2 atmospheres or less.
JP22221384A 1984-10-24 1984-10-24 Preparation of rutile single crystal Granted JPS61101495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22221384A JPS61101495A (en) 1984-10-24 1984-10-24 Preparation of rutile single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22221384A JPS61101495A (en) 1984-10-24 1984-10-24 Preparation of rutile single crystal

Publications (2)

Publication Number Publication Date
JPS61101495A true JPS61101495A (en) 1986-05-20
JPH025720B2 JPH025720B2 (en) 1990-02-05

Family

ID=16778901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22221384A Granted JPS61101495A (en) 1984-10-24 1984-10-24 Preparation of rutile single crystal

Country Status (1)

Country Link
JP (1) JPS61101495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660940A1 (en) * 1990-04-16 1991-10-18 Chichibu Cement Kk PROCESS FOR PRODUCING A RUTILE MONOCRYSTAL
KR100414519B1 (en) * 2001-10-26 2004-01-13 학교법인 한양학원 method of growing rutile single crystal under high oxygen pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660940A1 (en) * 1990-04-16 1991-10-18 Chichibu Cement Kk PROCESS FOR PRODUCING A RUTILE MONOCRYSTAL
KR100414519B1 (en) * 2001-10-26 2004-01-13 학교법인 한양학원 method of growing rutile single crystal under high oxygen pressure

Also Published As

Publication number Publication date
JPH025720B2 (en) 1990-02-05

Similar Documents

Publication Publication Date Title
Itoh et al. β-barium borate single crystal grown by a direct Czochralski method
Bondar Rare-earth silicates
Nassau et al. Strontium titanate: An index to the literature on properties and the growth of single crystals
Földvári et al. Growth and properties of Bi2TeO5 single crystals
JP2011063510A (en) Method for producing artificial corundum crystal
Hurle Fundamentals: thermodynamics and kinetics
JPS61101495A (en) Preparation of rutile single crystal
JP2012001381A (en) Single crystal substrate and method for manufacturing the same
CN115504480B (en) Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof
US5998313A (en) Cesium-lithium borate crystal
Wold et al. Synthesis of oxides containing transition metals
US3567643A (en) Hydrothermal process for growing crystals having the structure of beryl in an acid halide medium
Solanki et al. Flux growth and morphology study of stoichiometric lithium niobate crystals
Taishi et al. Growth of potassium tantalate (KTaO3) crystals by directional solidification
Nassau et al. Crystal growth of ferroelastic K2Cd2 (SO4) 3 and the K2SO4-CdSO4 phase diagram
Carter et al. Growing single crystals
EP0786542A1 (en) Cesium-lithium borate crystal
CN1622409A (en) Zinc oxide bluish violet light semiconductor growth using liquid phase epitaxial method
US3567642A (en) Hydrothermal process for growing crystals having the structure of beryl in an alkaline halide medium
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JP3190038B2 (en) Garnet crystal for magneto-optical crystal film and method for producing the same
JPH0294608A (en) Oxide garnet single crystal and manufacture thereof
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
JPH04243998A (en) Production of barium beta-metaborate single crystal
Fukuda et al. Single crystal growth of superconducting oxides and related compounds by the flux, floating zone and other methods

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term