JPH0521877B2 - - Google Patents

Info

Publication number
JPH0521877B2
JPH0521877B2 JP15399888A JP15399888A JPH0521877B2 JP H0521877 B2 JPH0521877 B2 JP H0521877B2 JP 15399888 A JP15399888 A JP 15399888A JP 15399888 A JP15399888 A JP 15399888A JP H0521877 B2 JPH0521877 B2 JP H0521877B2
Authority
JP
Japan
Prior art keywords
geo
melt
crystal
bgo
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15399888A
Other languages
Japanese (ja)
Other versions
JPH01320295A (en
Inventor
Kenji Kitamura
Shigeyuki Kimura
Tsutomu Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP15399888A priority Critical patent/JPH01320295A/en
Publication of JPH01320295A publication Critical patent/JPH01320295A/en
Publication of JPH0521877B2 publication Critical patent/JPH0521877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はBi12GeO20(以下BGOと記載する)単
結晶の製造方法に関する。 BGO単結晶大きな電気光学効果を有し、電圧
センサー素子や画像記憶素子用材料として有用な
ものである。 従来技術 従来、BGO単結晶は結晶組成に近いBi2O3
GeO2=6:1の組成の融液から回転引上げ法で
育成されてきた。 しかし、この方法で育成されたBGO単結晶は、
ビスマス成分が過剰に結晶中に取り込まれ、その
ために380〜500nmの波長領域で純粋な化学両論
比組成を持つたBGOの理論特性よりもはるかに
大きな光吸収を示す。しかも光吸収の度合は育成
条件を敏感に反映するので、育成条件が結晶成長
時に変動すると単結晶の特性値(光透過率など)
にバラツキが生ずる。また育成された結晶中のコ
ア(あるいはフアセツト)と呼ばれる領域とそれ
以外の領域では光吸収の場合が異なつたり、両領
域の境界で歪が生じたりする。このようなBGO
単結晶の光学特性の不均一や結晶内歪の存在は、
素子の信頼性や素子製作上の歩溜まりに厳しい制
限を課してきた。 発明の目的 本発明は従来のBGO単結晶の製造法の欠点を
解消しようとするもので、その目的は光透過率が
純粋なBGOの理想特性に近く、しかも光学特性
が均一で結晶内歪のないBGO単結晶を製造する
方法を提供しようとするものである。 発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、BGOの過剰ビスマス成分は融液のビスマ
ス成分濃度と直接関係し、融液中のビスマス成分
濃度を低くした特定範囲に保つと結晶中に取り込
まれる過剰ビスマス成分を減少させることができ
る、また結晶中の各領域による光吸収の度合の不
均一性もなくなり、素子としての信頼性、歩溜り
も優れたものとなることを知見し得た。この知見
に基づいて本発明を完成した。 本発明の要旨は、Bi12GeO20単結晶を溶融体固
化法により隔液から育成する方法において、その
融液組成をゲルマニウム成分過剰なGeO2
(Bi2O3+GeO2)モル分率=0.18〜0.28の範囲に
保つた融液から育成することを特徴とする
Bi12GeO20単結晶の製造方法にある。 前記モル分率が0.18より小さいと、ゲルマニウ
ム成分過剰にする効果が小さく、結晶中のBi成
分変動を制御しきれない。 また、0.28を超えると、ゲルマニウム成分過剰
側の共晶点に近づきすぎ、ゲルマニウムより含ん
だ多相の析出が結晶中で見られるようになる。従
つて、0.18〜0.28の範囲であることが必要であ
る。理想的には0.25〜0.28に制御した方がよい。
本発明における融液から単結晶を育成する方法と
しては、引上げ法、ブリツジマン法、帯溶融法、
フローテイングゾーン法などいずれの溶融体固化
法でもよい。しかし、育成結晶の高品質化が達成
し易い点から引上げ法、帯溶融法、フローテイン
グゾーン法が好ましい。 本発明に用いる出発純度原料としては市販の
99.99%純度のBi2O3、GeO2でも良いができるだ
け高い原料を使用するのが好ましい。フローテイ
ングゾーン法の場合には、それら出発原料粉末を
Bi2O3:GeO2=6:1(化学両論比組成)に混合
し、棒状に成形・焼結して原料棒とする。また、
溶融帯の融液組成をゲルマニウム成分過剰にする
ために、ゲルマニウム成分過剰(GeO2/(Bi2O3
+GeO2)モル分率=0.18〜0.28好ましくは0.25程
度)のペレツト状の焼結体(好ましくは溶融帯と
同程度の容積を持つ)を用意し、あらかじめ種結
晶上に置き、加熱して融解させ溶融帯を形成して
から育成を始める。 本発明における結晶の成長速度は、0.1〜15
mm/時、好ましくは0.5〜4.0mm/時である。育成
雰囲気は、酸素、窒素、空気のいずれでも可能で
ある。 フローテイングゾーン法で、アフターヒーター
などを利用して、成長した結晶の急冷による割れ
などを防ぐ事が好ましい。さらに育成した結晶は
約780〜820℃で焼鈍する事が好ましい。 実施例 市販の高純度(99.9999%)Bi2O3とGeO2(純度
99.99%)原料粉末を6:1のモル比で混合し、
1ton/cm2の静水圧で棒状にラバープレス成形し、
810℃の酸素中で焼結し原料棒を作成した。また、
溶融帯の組成をゲルマニウム成分過剰にするため
に、同様のプロセスでGeO2/(Bi2O3+GeO2
モル分率0.26の組成をもつた焼結ペレツトを用意
した。次に、原料棒を回転楕円面鏡を用いた集光
式フローテイングゾーン法単結晶製造装置に装填
し、別に準備したBGO種結晶そ装填し、その種
結晶上に焼結ペレツトを置いた。雰囲気ガスとし
て窒素ガスを毎分2リツトルの割合で流しながら
ランプ出力を上げて加熱し、焼結ペレツトを融解
したところで原料棒と接合させ、安定した溶融帯
を形成した後、フローテイングゾーン法の常法に
従つて、結晶育成操作を行つた。 育成条件は、原料棒及び種結晶の回転速度が逆
方向にそれぞれ40回/分、結晶成長速度は3mm/
時であつた。得られたBGO単結晶を20時間約800
℃で焼鈍し、わずかに黄色味を帯びた透明な結晶
体を得た。 得られたBGO単結晶を光学的に評価したころ、
従来の引上げ法で育成したものよりも、390〜
500nmの波長領域で著しく透過率が高くなつて
いる事が判明した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a Bi 12 GeO 20 (hereinafter referred to as BGO) single crystal. BGO single crystal has a large electro-optical effect and is useful as a material for voltage sensor elements and image storage elements. Conventional technology Conventionally, BGO single crystal has a crystal composition close to Bi 2 O 3 :
It has been grown by the rotary pulling method from a melt with a composition of GeO 2 =6:1. However, the BGO single crystal grown using this method is
The bismuth component is incorporated into the crystal in excess, and as a result, it exhibits much greater light absorption in the wavelength range of 380 to 500 nm than the theoretical properties of BGO, which has a pure stoichiometric composition. Moreover, the degree of light absorption sensitively reflects the growth conditions, so if the growth conditions change during crystal growth, the characteristic values of the single crystal (light transmittance, etc.)
Variations occur. In addition, light absorption may be different between a region called the core (or facet) and other regions in the grown crystal, or distortion may occur at the boundary between the two regions. BGO like this
The non-uniformity of the optical properties of a single crystal and the presence of intracrystal strain are
Strict limits have been placed on device reliability and device manufacturing yield. Purpose of the Invention The present invention aims to eliminate the drawbacks of the conventional BGO single crystal manufacturing method.The purpose of the present invention is to have light transmittance close to the ideal properties of pure BGO, uniform optical properties, and low strain within the crystal. The purpose of this study is to provide a method for producing BGO single crystals. Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have found that the excess bismuth component in BGO is directly related to the bismuth component concentration in the melt, and the bismuth component concentration in the melt is kept within a specific range. It is possible to reduce the excess bismuth component incorporated into the crystal, and also to eliminate non-uniformity in the degree of light absorption in each region of the crystal, resulting in excellent device reliability and yield. I was able to find out. The present invention was completed based on this knowledge. The gist of the present invention is a method for growing a Bi 12 GeO 20 single crystal from a separation liquid by a melt solidification method, in which the composition of the melt is changed to GeO 2 /GeO 2 with an excess of germanium.
(Bi 2 O 3 +GeO 2 ) is characterized by being grown from a melt that maintains the molar fraction in the range of 0.18 to 0.28.
In the method for producing Bi 12 GeO 20 single crystal. If the molar fraction is less than 0.18, the effect of making the germanium component excessive is small, and fluctuations in the Bi component in the crystal cannot be fully controlled. Moreover, when it exceeds 0.28, it approaches too much the eutectic point on the side where the germanium component is excessive, and precipitation of multiple phases containing germanium becomes visible in the crystal. Therefore, it needs to be in the range of 0.18 to 0.28. Ideally, it is better to control it between 0.25 and 0.28.
Methods for growing a single crystal from a melt in the present invention include a pulling method, a Bridgeman method, a zone melting method,
Any melt solidification method such as a floating zone method may be used. However, the pulling method, zone melting method, and floating zone method are preferred from the viewpoint of easily achieving high quality grown crystals. As the starting purity raw material used in the present invention, commercially available
Bi 2 O 3 or GeO 2 with a purity of 99.99% may be used, but it is preferable to use raw materials with as high a purity as possible. In the case of the floating zone method, these starting material powders
Bi 2 O 3 :GeO 2 =6:1 (stoichiometric composition) is mixed, formed into a rod shape and sintered to obtain a raw material rod. Also,
In order to make the melt composition in the melt zone excessive in germanium, the excess germanium (GeO 2 / (Bi 2 O 3
+GeO 2 ) molar fraction = 0.18 to 0.28 (preferably about 0.25), prepare a pellet-like sintered body (preferably with a volume comparable to that of the molten zone), place it on a seed crystal in advance, and heat it to melt it. Growth begins after a molten zone is formed. The crystal growth rate in the present invention is 0.1 to 15
mm/hour, preferably 0.5 to 4.0 mm/hour. The growth atmosphere can be oxygen, nitrogen, or air. In the floating zone method, it is preferable to use an after-heater or the like to prevent cracking of the grown crystals due to rapid cooling. Further, the grown crystal is preferably annealed at about 780 to 820°C. Example Commercially available high purity (99.9999%) Bi 2 O 3 and GeO 2 (purity
99.99%) raw material powders are mixed at a molar ratio of 6:1,
Rubber press molded into a rod shape using hydrostatic pressure of 1 ton/cm 2 .
A raw material rod was created by sintering in oxygen at 810°C. Also,
In order to make the composition of the melting zone excessive in germanium, GeO 2 /(Bi 2 O 3 + GeO 2 ) was added in a similar process.
Sintered pellets having a composition with a mole fraction of 0.26 were prepared. Next, the raw material rod was loaded into a condensing floating zone method single crystal production device using a spheroidal mirror, a separately prepared BGO seed crystal was loaded, and a sintered pellet was placed on top of the seed crystal. The sintered pellets are heated by increasing the lamp output while flowing nitrogen gas at a rate of 2 liters per minute as an atmospheric gas, and when the sintered pellets are melted, they are joined to the raw material rod to form a stable molten zone, and then the floating zone method is applied. Crystal growth operations were performed according to conventional methods. The growth conditions are that the rotation speed of the raw material rod and the seed crystal is 40 times/min in opposite directions, and the crystal growth rate is 3 mm/min.
It was hot at the time. The obtained BGO single crystal was heated for about 800 h for 20 hours.
C. to obtain a slightly yellowish transparent crystalline material. When the obtained BGO single crystal was optically evaluated,
390 ~ than those grown using the conventional pulling method.
It was found that the transmittance was significantly higher in the wavelength region of 500 nm.

【表】 さらにコア領域とそれ以外の領域での光学特性
の差も、従来のBGO結晶よりもはるかに減少し
ている事が認められた。 発明の効果 本発明の方法によると、高い光透過率を有し、
しかも光学特性の均質なBGO単結晶を得ること
ができる。BGO単結晶の電気光学効果を利用し
たセンサーや画像記憶素子を製作する場合に、従
来の方法で育成した単結晶では光学特性不均一や
結晶内歪の存在で、信頼性に問題があつた。しか
し、本発明により、より高品位なBGO単結晶育
成が可能で、優れた特性を有する電圧センサー素
子や画像記憶素子等が高歩留まりで得られる。
[Table] Furthermore, it was observed that the difference in optical properties between the core region and other regions was much smaller than in conventional BGO crystals. Effects of the Invention According to the method of the present invention, it has high light transmittance,
Moreover, a BGO single crystal with homogeneous optical properties can be obtained. When manufacturing sensors and image storage devices that utilize the electro-optic effect of BGO single crystals, single crystals grown using conventional methods have had reliability problems due to non-uniform optical properties and strain within the crystal. However, according to the present invention, higher quality BGO single crystals can be grown, and voltage sensor elements, image storage elements, etc. with excellent characteristics can be obtained at a high yield.

Claims (1)

【特許請求の範囲】 1 Bi12GeO20単結晶を溶融体固化法により融液
から育成する方法において、その融液組成をゲル
マニウム成分過剰なGeO2/(Bi2O3+GeO2)モ
ル分率=0.18〜0.28の範囲に保つた融液から育成
することを特徴とするBi12GeO20単結晶の製造方
法。 2 溶融体固化法が、引上げ法、ブリツジマン
法、帯溶融法、フローテイングゾーン法である請
求項1に記載の製造方法。
[Claims] 1. A method of growing a Bi 12 GeO 20 single crystal from a melt by a melt solidification method, in which the composition of the melt is changed to a molar fraction of GeO 2 /(Bi 2 O 3 +GeO 2 ) with an excess of germanium. A method for producing a Bi 12 GeO 20 single crystal, characterized in that it is grown from a melt kept in the range of = 0.18 to 0.28. 2. The manufacturing method according to claim 1, wherein the melt solidification method is a pulling method, a Bridgeman method, a zone melting method, or a floating zone method.
JP15399888A 1988-06-22 1988-06-22 Production of bi12geo20 single crystal Granted JPH01320295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15399888A JPH01320295A (en) 1988-06-22 1988-06-22 Production of bi12geo20 single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15399888A JPH01320295A (en) 1988-06-22 1988-06-22 Production of bi12geo20 single crystal

Publications (2)

Publication Number Publication Date
JPH01320295A JPH01320295A (en) 1989-12-26
JPH0521877B2 true JPH0521877B2 (en) 1993-03-25

Family

ID=15574680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15399888A Granted JPH01320295A (en) 1988-06-22 1988-06-22 Production of bi12geo20 single crystal

Country Status (1)

Country Link
JP (1) JPH01320295A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683322B1 (en) * 1991-10-30 1994-01-07 Imaje HIGH FREQUENCY ACOUSTIC RHEOMETER AND DEVICE FOR MEASURING THE VISCOSITY OF A FLUID USING THE SAME.

Also Published As

Publication number Publication date
JPH01320295A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
US4231838A (en) Method for flux growth of KTiOPO4 and its analogues
CN115504480B (en) Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof
JPH0521877B2 (en)
JPH0521878B2 (en)
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
US3939252A (en) Dilithium heptamolybdotetragadolinate
JPH01320294A (en) Production of lithium niobate single crystal
JPH06279174A (en) Production of oxide single crystal
JP4044315B2 (en) Single crystal manufacturing method
JPH06199597A (en) Production of aluminum oxide single crystal
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JP3136812B2 (en) Single crystal manufacturing method
JP2881737B2 (en) Manufacturing method of optical single crystal
US2736659A (en) Method for preparation of highly refractive material
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH0471877B2 (en)
JPS606912B2 (en) Manufacturing method of indium borate single crystal
JPS58115090A (en) Synthesis of beryl crystal by f-z process
JPH08295507A (en) Optical crystal and its production
JPH01115897A (en) Production of magnesium fluoride single crystal
JP2622165B2 (en) Method for producing bismuth germanate single crystal
JP2000233997A (en) Device for producing single crystal by pulling-up method
JPH025720B2 (en)
JPH06345580A (en) Production of single crystal
JPH0476349B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term