JPH01318709A - Manufacture of engine valve - Google Patents

Manufacture of engine valve

Info

Publication number
JPH01318709A
JPH01318709A JP15251088A JP15251088A JPH01318709A JP H01318709 A JPH01318709 A JP H01318709A JP 15251088 A JP15251088 A JP 15251088A JP 15251088 A JP15251088 A JP 15251088A JP H01318709 A JPH01318709 A JP H01318709A
Authority
JP
Japan
Prior art keywords
engine valve
nitriding
hardness
wear resistance
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15251088A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Yoshiaki Shida
志田 善明
Mutsuo Nakanishi
中西 睦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15251088A priority Critical patent/JPH01318709A/en
Publication of JPH01318709A publication Critical patent/JPH01318709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an engine valve excellent in wear resistance by manufacturing an engine valve by cutting as well as integrally forming by a hot forging, etc. after the treatment of hot rolling, etc. with a betaTi alloy metal as a base metal and by executing nitriding at the specified temp. thereafter. CONSTITUTION:A betaTZi alloy metal consisting of Ti-3Al-8V-6Cr-4Mo-4Zr, Ti-15 V-3Al-3Sn-3Cr, etc. is taken as a base metal, after its hot rolling or solution treatment it is integrally formed by hot forging or cold forging or these combination and an engine valve is manufactured by executing specified cutting. Thereafter, a nitriding layer is formed by executing the nitriding serving for aging as well on the front face of the engine valve at the temp. range of 350-550 deg.C. The hardness of about Hv450 of the face is thus secured and the engine valve of excellent wear resistance is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、βTi合金でエンジンバルブを製作し、35
0℃〜550℃の温度範囲で窒化処理して全面に窒化層
を形成して硬度を上げ耐摩粍性に優れたエンジンバルブ
を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an engine valve made of βTi alloy,
The present invention relates to a method for manufacturing an engine valve that is nitrided in a temperature range of 0° C. to 550° C. to form a nitrided layer on the entire surface to increase hardness and have excellent wear resistance.

〔従来の技術〕[Conventional technology]

通常のエンジンバルブは耐熱f!4製であり、材料の比
重は7.8〜8.0である。一方、チタン合金製エンジ
ンバルブでは、材料の比重は約4.5〜4.7であり 
耐熱鋼に比べ重量が60%となり、エンジンの回転数ア
ップが可能となるため馬力が向上するという長所がある
反面、硬度が低いことがら軸端面の摩耗、軸部の焼付か
じりおよび摩耗、フェース面の摩耗等の問題をかかえて
いる。軸端面の摩耗については、Cr−Mo鋼の摩擦圧
接やステライトチップのロー付等の対策がとられている
Normal engine valves are heat resistant! 4, and the specific gravity of the material is 7.8 to 8.0. On the other hand, for titanium alloy engine valves, the specific gravity of the material is approximately 4.5 to 4.7.
It weighs 60% less than heat-resistant steel, and has the advantage of increasing engine speed and increasing horsepower. However, its low hardness causes wear on the shaft end, seizing and galling of the shaft, and wear on the face. There are problems such as wear and tear. Measures have been taken to prevent wear on the shaft end surface, such as friction welding of Cr-Mo steel and brazing of Stellite tips.

又、最近になって特開昭81−291959号公惺に開
示されているような浸炭処理方法等も提案されている。
Further, recently, a carburizing treatment method such as that disclosed in Japanese Patent Application Laid-Open No. 81-291959 has been proposed.

更に軸部の焼付防止にはモリブデン溶射が効果的な表面
処理として使用されている。
Furthermore, molybdenum thermal spraying is used as an effective surface treatment to prevent seizure of the shaft.

しかしながらフェース面の摩耗については短時間使用の
レーシングカーでは問題にならないものの長期間でノン
メンテナンスの要求されるffi産車では心配される問
題であり現状はバルブシート材の材質をチタン合金にあ
わせて銅系のシート材を使用する等の対策がとられてい
るが充分ではない。
However, while face wear is not a problem in racing cars that are used for short periods of time, it is a concern in FFI cars that require no maintenance over long periods of time.Currently, the valve seat material is made to match the titanium alloy. Countermeasures have been taken, such as using copper-based sheet materials, but these are not sufficient.

又、(α+β)系のTi合金からなるエンジンバルブも
検討されたが、ビッカース硬度(以下1−1 vという
)が330程度しかな(窒化、浸炭、メツキ等の耐摩耗
用表面処理だけではフェース面の摩耗を防ぐことができ
ないのが現伏である。
Engine valves made of (α+β)-based Ti alloys have also been considered, but the Vickers hardness (hereinafter referred to as 1-1 V) is only about 330 (the face cannot be easily removed by wear-resistant surface treatments such as nitriding, carburizing, and plating). The current situation is that it is not possible to prevent surface wear.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の如〈従来技術においてはエンジンtlQ 方向上
のために、エンジンバルブをチタン化しようとしても軸
端面の摩耗、軸部の焼付かじりおよび摩耗等が発生する
。更に(α+β)系のTj合金を用いても硬度が低くフ
ェース面の摩耗を防ぐことが出来ないという問題をかか
えている。
As described above, in the prior art, since the engine valve is in the tlQ direction, even if an attempt is made to make the engine valve titanium, wear of the shaft end face, seizing and galling of the shaft portion, etc. occur. Furthermore, even if an (α+β) type Tj alloy is used, there is a problem in that the hardness is low and it is not possible to prevent wear on the face surface.

〔課題を解決するための手段〕[Means to solve the problem]

本願発明者等は、上記問題点を解決するために種々の検
討および試験を重ねた結果エンジンバルブの軸端面およ
び軸部の摩耗は硬度がHv300〜330程度の(α+
β)系チタン合金母材表面に窒化層を生成させれば充分
耐摩耗性があるのに対して、フェース面ではさらに高い
硬度が必要でHv300〜330程度の母材表面に窒化
層を生成させただけではバルブシートとの衝突によって
ミクロ的な塑性変形を起こし、むしれを生じることがあ
り、硬度があまり高すぎる(Hv650以上)と逆に現
伏Hv250程度の鉄系シート材のシート面を疵つける
ことがある。それゆえ、適正な時効処理を行なえば、硬
度がHv450〜480程度となるβTi合金の使用を
考えた。又、βTi合金はそれ自身、鉄系材料と相性が
よく耐摩耗性に優れていることが判明した。
As a result of various studies and tests to solve the above-mentioned problems, the inventors of the present application have found that the wear of the shaft end face and shaft portion of engine valves is reduced by hardness of about Hv300 to 330 (α+
β) type titanium alloy If a nitride layer is formed on the surface of the base material, sufficient wear resistance can be achieved, but the face surface requires even higher hardness, and a nitride layer is formed on the surface of the base material with Hv of about 300 to 330. If the hardness is too high (over 650 Hv), the seat surface of the iron-based sheet material with a current hardness of about 250 Hv will be damaged. It may cause scratches. Therefore, we considered using a βTi alloy which has a hardness of approximately 450 to 480 Hv if subjected to appropriate aging treatment. It has also been found that the βTi alloy itself is compatible with iron-based materials and has excellent wear resistance.

それゆえ本願発明者等は、Ti−3AuTi−3Au−
8V−6Cr−4,Ti−15V−3AI!、−33n
−3Cr 等からなるβTi合金材を母材として熱間圧
延又は溶体化処理した後、熱間鍛造又は冷間鍛造あるい
はこれらの組合せにより一体成形後切削してエンジンバ
ルブを製作し、ついで350℃〜550°Cの温度範囲
で前記エンジンバルブの全面を時効を兼ねた窒化処理を
施して窒化層を形成することによりフェース面の硬度H
v 450前後を確保して耐摩耗性を向上させたエンジ
ンバルブの製造方法を確立した。
Therefore, the inventors of the present application have determined that Ti-3AuTi-3Au-
8V-6Cr-4, Ti-15V-3AI! , -33n
After hot rolling or solution treatment using a βTi alloy material consisting of -3Cr etc. as a base material, integral molding by hot forging, cold forging, or a combination thereof, cutting is performed to manufacture an engine valve, and then the engine valve is manufactured at 350℃~ The entire surface of the engine valve is subjected to nitriding treatment that also serves as aging in a temperature range of 550°C to form a nitrided layer, thereby increasing the hardness of the face surface H.
We have established a manufacturing method for engine valves that maintains v450 and improves wear resistance.

〔作   用〕[For production]

本発明に用いる成形方法としては、βTi合金は非常に
変形態が富んでいることがら冷間鍛造するのが最もコス
トが安い。この場合は、切削等により圧延スケールを除
去したあと、650℃程度で酸化スケールを付着させた
後に、フッ素樹脂等で潤滑し、据込み加工によりバルブ
頭部を成形する。又、別の成形方法としては、熱間鍛造
、あるいは熱間および冷間鍛造の組合せ成形方法もある
As for the forming method used in the present invention, cold forging is the cheapest since the βTi alloy is highly deformable. In this case, after removing rolling scale by cutting or the like, oxidized scale is deposited at about 650° C., then lubricated with fluororesin or the like, and the valve head is formed by upsetting. Other forming methods include hot forging or a combination of hot and cold forging.

成形後は仕上げ切削を施し、ワづいて時効を兼ねた窒化
処理を行ない、全能に窒化層を形成させて硬度を上げ耐
摩耗性の向上を計るものである。
After forming, finishing cutting is performed, followed by a nitriding treatment that also serves as an aging process to fully form a nitrided layer to increase hardness and improve wear resistance.

窒化処理の方法としては、ガス窒化処理、PVD1イオ
/窒化処理等があるが、ガス窒化処理の場合は750〜
870℃程度の高温となり軸部に曲りが発生し使用不能
となり好ましくない。
Nitriding methods include gas nitriding, PVD1 io/nitriding, etc., but in the case of gas nitriding, the
The temperature reaches a high temperature of about 870° C., which causes bending in the shaft portion, making it unusable and undesirable.

一方、PVD、イオン窒化処理は、窒化を兼ねた時効が
350℃〜550℃の低温で行なえコストダウンとなり
好ましい。
On the other hand, PVD and ion nitriding treatments are preferable because the aging that also serves as nitriding can be performed at a low temperature of 350° C. to 550° C., resulting in cost reduction.

これらの条件を考慮しながら本発明における処理温度を
下記の通り限定する。
Taking these conditions into consideration, the processing temperature in the present invention is limited as follows.

処理温度が350°C未満ではβTi合金材からなるエ
ンジンバルブが時効せず550°Cを超えると過時効の
ために軟化してしまい適性硬度Hv450程度が確保出
来ずフェース面の耐摩耗性が維t!jできず好ましくな
いので窒化処理湯度を350°C〜550℃に限定した
If the treatment temperature is less than 350°C, the engine valve made of βTi alloy material will not age, but if it exceeds 550°C, it will soften due to overaging, making it impossible to maintain the appropriate hardness of around Hv450, and the wear resistance of the face surface will not be maintained. T! Since this is not preferable, the temperature of the nitriding treatment was limited to 350°C to 550°C.

〔実 施 例〕 エンジンバルブの母材として Tiニア5.00、Al1:3.48、V:8.0O1
Cr:5.77、Mo:3.80、Zr:3.82.0
:0.082、H:0.0059、N:0.015、F
e:0.13 (いずれも重量%)からなるβTi合金
の熱間圧延線材を熱間鍛造で頭部を一体成形した後、切
削し第1表に示す条件のPVD窒化処理を行なった。尚
、比較のために(α+β)系Ti合金であるTi−61
!−4V母材についても同様の処理を行なった。
[Example] As base material for engine valve, TiNia 5.00, Al1: 3.48, V: 8.0O1
Cr:5.77, Mo:3.80, Zr:3.82.0
:0.082, H:0.0059, N:0.015, F
A hot rolled wire rod of a βTi alloy having e: 0.13 (all percentages by weight) was integrally formed with a head part by hot forging, then cut and subjected to PVD nitriding treatment under the conditions shown in Table 1. For comparison, Ti-61, which is an (α+β)-based Ti alloy,
! Similar treatment was performed on the −4V base material.

(以下余白) 第1表 これら本発明例(Nal、2.3)3本と、比較例(陽
4.5.6)3本のエン9ンバルブを第1図に示すカム
(11、リフター(2)、リテーナ−(3) 、パルプ
スプリング(4)、パルプガイド(5)、シリンダーヘ
ッド(6)、およびシート(7)からなる動弁系の中に
、軸端部(8)、軸部(9)、フェース面0〔を仔する
頭部00からなるエツジ/バルブ0δをセットし、メタ
ノール燃料を使用した エンジン吸気系に組込み エン
ジン回転数1000〜5000 rpm 、  試験時
間200Hr の工/ジンデストを行なった。これらの
テスト結果を第2表に示す。
(Margins below) Table 1 The cam (11, lifter ( 2), a retainer (3), a pulp spring (4), a pulp guide (5), a cylinder head (6), and a seat (7). (9) Set the edge/valve 0δ consisting of the head 00 with the face surface 0 [0], and install it in the engine intake system using methanol fuel.The engine rotation speed is 1000-5000 rpm, and the test time is 200 hours. The results of these tests are shown in Table 2.

第2表 同表から明らかなように本発明例であるβTi合金母材
(Nll 1.2.3 )に350°C〜550°Cの
温度範囲で窒化処理を施せば形成された窒化届によりニ
アシンパルプのフェース面の硬度が上り、耐摩耗性が改
善され摩耗量が著しく向上していることがわかる。それ
に対してβTi合金母材であっても窒化処理温度の外れ
ているもの(m 4.5 )および処理温度が適正であ
ったとしても母材が(α+β)系Tj合金(康6)であ
るもの等についてはフェース面の硬度が低く摩耗量が多
くて長期間の7ンメンテナンスの要求されるffi産軍
には適さないことが明らかである。尚、βTi合金は硬
化が低くても同一硬度の(α+β)系Ti合全合材り、
鉄系シート材に対する耐摩耗性に優れている。
As is clear from Table 2, if the βTi alloy base material (Nll 1.2.3), which is an example of the present invention, is nitrided in the temperature range of 350°C to 550°C, the nitriding result obtained It can be seen that the hardness of the face surface of Niasin pulp has increased, the wear resistance has been improved, and the amount of wear has increased significantly. On the other hand, even if the base material is a βTi alloy, the nitriding temperature is out of range (m 4.5 ), and even if the treatment temperature is appropriate, the base material is an (α+β) system Tj alloy (Kan 6). It is clear that the hardness of the face surface is low and the amount of wear is large, making it unsuitable for FFI, industry, and military applications that require long-term maintenance. In addition, βTi alloy is a (α+β) system Ti composite material with the same hardness even if the hardening is low.
Excellent wear resistance against iron-based sheet materials.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明は、従来Ti合金製エフワンバルブで
問題となっていたフェース面の耐摩耗性を著しく改善し
、軸端部の摩耗および軸部の焼付かじり、摩耗等もなく
長期間でノンメンテナンスの要求される量産車のエツジ
/バルブへの適用が可能となることからエンジン能力向
上に太き(寄与する効果がある。
As described above, the present invention significantly improves the wear resistance of the face surface, which had been a problem with conventional Ti alloy F-1 valves, and eliminates wear on the shaft end, seizing and galling of the shaft, and provides a long-term non-slip valve. Since it can be applied to the edges/valves of mass-produced cars that require maintenance, it has the effect of greatly contributing to improving engine performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエツジ/バルブを積み込んだ工/−)ンテスト
用の動弁系の概略断面図である。 図中、
FIG. 1 is a schematic sectional view of a valve train for engine testing loaded with edge valves. In the figure,

Claims (1)

【特許請求の範囲】[Claims] βTi合金材を母材とし、熱間圧延又は溶体化処理した
後、熱間鍛造又は冷間鍛造あるいはこれらの組合せによ
り一体成形後切削してエンジンバルブを製作し、ついで
350℃〜550℃の温度で前記エンジンバルブを窒化
処理して全面に窒化層を形成して硬度を上げ耐摩耗性を
向上させたことを特徴とするエンジンバルブの製造方法
βTi alloy material is used as the base material, hot rolled or solution treated, then integrally formed by hot forging, cold forging, or a combination thereof, and then cut to produce an engine valve, and then heated at a temperature of 350°C to 550°C. A method for manufacturing an engine valve, characterized in that the engine valve is nitrided to form a nitrided layer over the entire surface to increase hardness and improve wear resistance.
JP15251088A 1988-06-20 1988-06-20 Manufacture of engine valve Pending JPH01318709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15251088A JPH01318709A (en) 1988-06-20 1988-06-20 Manufacture of engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15251088A JPH01318709A (en) 1988-06-20 1988-06-20 Manufacture of engine valve

Publications (1)

Publication Number Publication Date
JPH01318709A true JPH01318709A (en) 1989-12-25

Family

ID=15542030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15251088A Pending JPH01318709A (en) 1988-06-20 1988-06-20 Manufacture of engine valve

Country Status (1)

Country Link
JP (1) JPH01318709A (en)

Similar Documents

Publication Publication Date Title
US6511045B2 (en) Ti alloy poppet valve and a method of manufacturing the same
KR960004831B1 (en) Iron aluminium based engine intake valves & its manufacturing method
WO2015023002A1 (en) Pressure ring
US7086362B2 (en) Automotive engine valve mechanism system shim and lifter of these and cam shaft
JP2006046325A (en) Lever-type cam follower
JP5762843B2 (en) Pressure ring and manufacturing method thereof
JP4372712B2 (en) Titanium alloy valve lifter and manufacturing method thereof
US5944920A (en) Piston ring material excellent in workability
JPH01318709A (en) Manufacture of engine valve
JPH05279835A (en) Production of titanium alloy valve
JPH0849512A (en) Engine valve
KR100346469B1 (en) Manufacturing method of tappet shim for vehicle
JPH0861028A (en) Manufacture of valve for internal combustion engine
JPH07269316A (en) Low strength titanium alloy made intake engine valve
JPH07268516A (en) Low-strength titanim alloy rod suitable for intake engine valve
JPH0130913B2 (en)
JP2763931B2 (en) Tappet manufacturing method
JPH11117056A (en) Engine valve made of titanium alloy and its production
JPH03249313A (en) Intake/discharge valve for internal combustion engine
JP3035122B2 (en) Steel oil ring with coil expander and method of nitriding the oil ring
JP2008215157A (en) Engine valve
JP2812561B2 (en) Valve lifter and method of manufacturing the same
JPH09280013A (en) Cam piece for assembled camshaft
JP4292099B2 (en) Titanium alloy valve lifter for engine and manufacturing method thereof
JPH0637701B2 (en) Manufacturing method of β titanium alloy forged products