JPH0637701B2 - Manufacturing method of β titanium alloy forged products - Google Patents

Manufacturing method of β titanium alloy forged products

Info

Publication number
JPH0637701B2
JPH0637701B2 JP6954887A JP6954887A JPH0637701B2 JP H0637701 B2 JPH0637701 B2 JP H0637701B2 JP 6954887 A JP6954887 A JP 6954887A JP 6954887 A JP6954887 A JP 6954887A JP H0637701 B2 JPH0637701 B2 JP H0637701B2
Authority
JP
Japan
Prior art keywords
titanium alloy
temperature
hardness
sec
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6954887A
Other languages
Japanese (ja)
Other versions
JPS63235460A (en
Inventor
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6954887A priority Critical patent/JPH0637701B2/en
Publication of JPS63235460A publication Critical patent/JPS63235460A/en
Publication of JPH0637701B2 publication Critical patent/JPH0637701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車鍛造品類に好適なβチタン合金製鍛造
品の製造方法に係り、軽量でかつ高強度のβチタン合金
製鍛造品を低コストで製造し得る方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a β-titanium alloy forged product suitable for automobile forgings, and produces a lightweight and high-strength β-titanium alloy forged product at low cost. About possible ways.

従来技術とその問題点 従来、冷間鍛造で製造される自動車用鍛造品類、特に自
動車エンジン用バルブリテーナーは肌焼鋼または構造用
鋼を浸炭・焼入れ・焼戻しして製造されていたが、最近
エンジンの高トルク、高回転数化の要請が強くなり、材
料のチタン化によるバルブテーナーの軽量化、高強度化
が進められつつある。
Conventional technology and its problems Conventionally, forgings for automobiles manufactured by cold forging, especially valve retainers for automobile engines, were manufactured by carburizing, quenching and tempering case-hardening steel or structural steel, but recently engine The demand for higher torque and higher rotational speed has been increasing, and the weight and strength of valve retainers are being increased by using titanium as the material.

しかしながら、冷間鍛造性の良好な純Tiは、耐摩耗性が
要求されるバルブリテーナー等の部品では鍛造後の硬度
が不足し、また(α+β)型Tiは硬度は高いが冷間鍛造
性が悪いため熱間鍛造でしか製造できず、コストが高く
つく。
However, pure Ti, which has good cold forgeability, lacks hardness after forging in parts such as valve retainers that require wear resistance, and (α + β) type Ti has high hardness but cold forgeability. Since it is bad, it can be manufactured only by hot forging, and the cost is high.

一方、β型チタン合金は冷間鍛造性が良好で、かつ鍛造
後の硬度も高く、後工程で時効処理を施すことによりさ
らに硬度のアップが可能で、リテーナー材料としては好
適である。しかし、変形抵抗が大きく、油等の使用下で
は焼付きが発生し易いという問題がある。
On the other hand, β-type titanium alloy has good cold forgeability and high hardness after forging, and can be further hardened by performing an aging treatment in a post process, and is suitable as a retainer material. However, there is a problem that the deformation resistance is large and seizure easily occurs when oil or the like is used.

そこで、一般的にチタンの潤滑処理方法として行なわれ
る酸化処理を施して素材表面に酸化皮膜を形成し、その
酸化皮膜を潤滑下地皮膜に利用して鍛造することが考え
られるが、β型チタン合金は高温の焼鈍ではガスを吸収
し、硬く脆い表面硬化層(異常層)が発達し易く、これ
が冷間鍛造時の割れの原因となる。また、低温の焼鈍で
は時効が生じ、硬度が過度に高くなって変形能が著しく
劣化する。さらに、焼鈍後の冷却速度も変形能維持のた
めに重要な条件の一つである。しかしながら、従来はそ
れらの適正な条件が判明しておらず、β型チタン合金の
リテーナー等の自動車用部品への適用はなされていない
のが現状である。
Therefore, it is conceivable to form an oxide film on the surface of the material by subjecting it to an oxidation treatment that is generally performed as a lubricating treatment method for titanium, and use the oxide film as a lubricating base film for forging. When high temperature annealing is performed, it absorbs gas and a hard and brittle surface hardened layer (abnormal layer) is easily developed, which causes cracking during cold forging. Further, low temperature annealing causes aging, resulting in excessively high hardness and markedly deteriorated deformability. Further, the cooling rate after annealing is also one of the important conditions for maintaining the deformability. However, in the past, appropriate conditions for them have not been clarified, and the present situation is that they have not been applied to automobile parts such as retainers of β-type titanium alloy.

この発明はかかる現状にかんがみてなされたものであ
り、軽量でかつ高強度のβチタン合金製鍛造品の製造を
可能とする方法を提案せんとするものである。
The present invention has been made in view of the above circumstances, and proposes a method for manufacturing a forged product made of a β titanium alloy which is lightweight and has high strength.

問題点を解決するための手段 この発明者は、β型チタン合金の適性な焼鈍条件につい
て詳細に検討した結果、表面硬化層を生じることなく酸
化皮膜を形成し、かつ十分軟化し時効しない適正焼鈍条
件を見出し、その条件で焼鈍処理した後、加工速度を遅
くして冷間鍛造することにより、Hv 320以上の高硬度
が得られ、割れ、焼付き等もなく、所要の硬度を満足す
る冷間鍛造品の製造が可能となり、さらに時効と表面硬
化を兼ねた適正な窒化処理を施すことにより、低コスト
で特性の優れた内部硬度Hv 350以上の冷間鍛造品の製
造を可能としたβチタン合金製鍛造品の製造方法を提案
したものである。
Means for Solving the Problems The present inventor has studied in detail the suitable annealing conditions for β-type titanium alloys, and as a result, forms an oxide film without forming a surface-hardened layer, and appropriately anneals it without softening and aging. By finding the conditions, annealing under these conditions, and then cold forging at a slower processing speed, a high hardness of Hv 320 or higher is obtained, and there is no cracking or seizure, etc. It became possible to manufacture cold forged products, and by performing an appropriate nitriding treatment that combines aging and surface hardening, it was possible to manufacture cold forged products with excellent internal hardness Hv 350 or higher at low cost β It proposes a method for manufacturing a titanium alloy forged product.

すなわち、この発明は切削または予備冷間鍛造を施した
後脱スケールして得たβ型チタン合金スラグを 600〜 7
50℃の温度で10〜60分間酸化処理し、続いて 1℃/sec以
上の冷却速度で急冷することにより表面に酸化被膜を形
成し、潤滑処理後、冷間鍛造により歪速度 100sec-1
下の加工速度で本成形することにより内部硬度をHv 3
20以上とするとすることを特徴とし、また、前記本成形
後、脱スケールを施し、 400〜 550℃の温度で窒化処理
することにより内部硬度をHv 350以上とすることを特
徴とするものである。
That is, the present invention is a β-type titanium alloy slag obtained by descaling after cutting or pre-cold forging 600 ~ 7
Oxidation treatment at a temperature of 50 ° C for 10 to 60 minutes, followed by rapid cooling at a cooling rate of 1 ° C / sec or more to form an oxide film on the surface, and after lubrication treatment, strain rate of 100sec -1 or less by cold forging. The internal hardness of Hv 3
The internal hardness is set to 20 or more, and the internal hardness is set to Hv 350 or more by performing descaling after the main forming and nitriding at a temperature of 400 to 550 ° C. .

この発明において、β型チタン合金スラグの酸化処理の
温度条件として、 600〜 750℃の温度範囲に限定したの
は、 600℃未満では時効により硬化し、冷間鍛造性が劣
化し本成形時に割れが生じ、他方 750℃を超えると表面
硬化層が厚くなり、本成形時に割れが生じるためであ
る。また、酸化処理での保持時間を10〜60分としたの
は、10分未満では酸化皮膜の生成が不十分で、鍛造時に
焼付きが生じたり、軟化不十分により冷間鍛造性が劣化
し、他方60分を超えると表面硬化層が発達して層厚が
0.04 mm以上となり、割れの原因となるのみならず不経
済である。また、冷却速度を 1℃/sec以上としたのは、
冷却中における時効硬化を防止するためである。
In the present invention, the temperature condition for the oxidation treatment of the β-type titanium alloy slag is limited to the temperature range of 600 to 750 ° C. The reason is that if the temperature is less than 600 ° C., it is hardened by aging, cold forgeability deteriorates, and cracking occurs during main forming. On the other hand, if the temperature exceeds 750 ° C, the surface hardened layer becomes thick and cracks occur during the main molding. In addition, the holding time in the oxidation treatment is set to 10 to 60 minutes, because if the time is less than 10 minutes, the oxide film is insufficiently formed, seizure occurs during forging, and cold forgeability deteriorates due to insufficient softening. On the other hand, if it exceeds 60 minutes, the surface hardened layer will develop and the layer thickness will increase.
It becomes 0.04 mm or more, which not only causes cracking but is uneconomical. Also, the cooling rate of 1 ° C / sec or more is
This is to prevent age hardening during cooling.

また、冷間鍛造時の歪速度を 100sec-1以下としたの
は、この値を超える加工速度では据込み限界圧縮率が50
%程度に劣化し、本成形時に割れが生じるためである。
Also, the strain rate during cold forging was set to 100 sec -1 or less because the upsetting limit compressibility was 50 at processing speeds above this value.
%, And cracks occur during the main molding.

なお、内部硬度をHv 320以上としたのは、この硬度未
満では例えばバルブリテーナーとしての硬度が不足する
とともに、磨耗が生じ易くなると考えられるためであ
る。
The internal hardness is set to Hv 320 or more because it is considered that if the hardness is less than this value, for example, the hardness as a valve retainer will be insufficient and that abrasion will easily occur.

さらに、この発明において、本成形品の窒化処理の温度
条件を 400〜 550℃と限定したのは、 400℃未満では必
要十分な層厚の窒化層が得られず、他方 550℃を超える
と母材部が過時効となり、Hv 350以上の硬度が得られ
ないためである。この場合、内部硬度をHv 350以上と
したのは、高品質、高強度のリテーナーにこの程度の硬
度が要求されるためである。
Further, in the present invention, the temperature condition of the nitriding treatment of the molded product is limited to 400 to 550 ° C, because a nitrided layer having a necessary and sufficient layer thickness cannot be obtained below 400 ° C, and when it exceeds 550 ° C. This is because the material part is over-aged and a hardness of Hv 350 or higher cannot be obtained. In this case, the reason why the internal hardness is Hv 350 or higher is that a retainer of high quality and high strength is required to have such hardness.

発明の図面に基づく開示 第1図はこの発明の製造工程を示すブロック図である。Disclosure Based on Drawings of the Invention FIG. 1 is a block diagram showing a manufacturing process of the present invention.

すなわち、第1図(a) は冷間鍛造性に優れ、本成形品の
硬度がHv 320以上となるβ型チタン合金素材、例えば
Ti -15V-3Cr-3Al-3Sn,Ti-3Al-8V-6Cr-4Mo-4Zrより切
削、または予備冷間鍛造を施して脱スケールしてスラグ
を成形する。ここで、スラグとは型鍛造用素材を意味す
る。第2図はバルブリテーナーとそのスラグを例示した
もので、図 (a)はスラグを、図 (b)はバルブリテーナー
をそれぞれ示す。冷鍛スラグは、MoS2、油等で潤滑処理
し、単純な据込み加工と打抜き加工により成形した後、
ショックブラスト、酸洗等で脱スケールする。
That is, Fig. 1 (a) shows a β-type titanium alloy material having excellent cold forgeability and having a hardness of Hv 320 or more in this molded product, for example,
Cutting from Ti -15V-3Cr-3Al-3Sn, Ti-3Al-8V-6Cr-4Mo-4Zr or pre-cold forging and descaling to form slag. Here, the slag means a material for die forging. Figure 2 shows an example of a valve retainer and its slug. Figure (a) shows the slag and Figure (b) shows the valve retainer. Cold forged slag is lubricated with MoS 2 , oil, etc., and after being formed by simple upsetting and punching,
Descale by shock blasting, pickling, etc.

次に、酸化処理工程において、例えば大気炉中にて 600
〜 750℃の温度域で10〜60分間加熱保持し、冷却速度 1
℃/sec以上で急冷する。この処理によりスラグ表面に酸
化皮膜が形成される。その後、フッ素樹脂等で潤滑処理
し、冷間鍛造工程において歪速度 100sec-1以下の加工
速度で本成形を行なうと、平均硬度がHv 320以上の冷
間鍛造品(バルブリテーナー)が製造される。なお、バ
ルブスプリングが当る面は、さらに高硬度となるように
金型設計、スラグ形状に留意する。
Next, in the oxidation treatment step, for example, in an atmospheric furnace, 600
Heating and holding in the temperature range of ~ 750 ℃ for 10 ~ 60 minutes, cooling rate 1
Cool rapidly at ℃ / sec or more. An oxide film is formed on the surface of the slag by this treatment. After that, lubrication is performed with a fluororesin, etc., and in the cold forging step, when the main forming is performed at a processing speed of 100 sec -1 or less, a cold forged product (valve retainer) with an average hardness of Hv 320 or more is manufactured. . In addition, pay attention to the mold design and slag shape so that the surface on which the valve spring contacts will have even higher hardness.

さらに、この発明ではいっそうの摩耗防止をはかるため
に、前記本成形品を脱スケールした後、 400〜 550℃の
温度域で窒化処理する。窒化処理はイオン窒化、軟窒化
等が適当である。この窒化処理により、内部硬度はHv
350以上に向上する。
Further, in the present invention, in order to further prevent abrasion, the molded article is descaled and then subjected to nitriding treatment in a temperature range of 400 to 550 ° C. Ion nitriding and soft nitriding are suitable for the nitriding treatment. Due to this nitriding treatment, the internal hardness is Hv
Improve to over 350.

なお、上記温度範囲(400〜 550℃) に保持し、内外面共
にHv 350以上とし、窒化処理を施さないで使用するこ
とも可能である。
It is also possible to maintain the temperature within the above range (400 to 550 ° C.) so that both the inner and outer surfaces have a Hv of 350 or higher, and use without nitriding.

実施例1 第1表に示す合金組成を有するβチタン合金のインゴッ
トを溶製し、これを1050℃の温度に加熱し、 940℃の温
度で圧延して20φの線材を製造し、この線材を切削工
程、または切断−フッ素樹脂潤滑−冷間鍛造−フッ硝酸
脱スケール工程を経て、それぞれ第2図 (a)に示す切削
スラグと冷鍛スラグとし、このスラグを第2表に示す温
度で酸化処理(酸化時間は20分)し、 1.5℃/secの冷却
速度で空冷後、フッ素樹脂潤滑を施し、歪速度10sec-1
の加工速度で本成形して得られた第2図 (b)に示すバル
ブリテーナーの冷間鍛造性と硬度測定結果を第2表に併
せて示す。両スラグ共、同じ鍛造後の硬度と冷間鍛造性
を示した。
Example 1 A β-titanium alloy ingot having the alloy composition shown in Table 1 was melted, heated to a temperature of 1050 ° C., and rolled at a temperature of 940 ° C. to manufacture a 20φ wire rod. Through the cutting process, or cutting-fluorine resin lubrication-cold forging-fluorine nitric acid descaling process, the cutting slag and cold forging slag shown in Fig. 2 (a) are obtained, and these slags are oxidized at the temperatures shown in Table 2. Treated (oxidization time is 20 minutes), air-cooled at a cooling rate of 1.5 ° C / sec, then lubricated with fluororesin, strain rate 10 sec -1
Table 2 also shows the cold forgeability and hardness measurement results of the valve retainer shown in Fig. 2 (b) obtained by the main forming at the processing speed of. Both slags showed the same hardness and cold forgeability after forging.

第2表から明らかなごとく、酸化処理温度がこの発明の
温度範囲( 600〜 750℃)を外れた 500℃では大きな割
れが発生し、他方 800℃では微小クラックが認められ
た。これに対し、本発明例はいずれも割れ、クラック共
に発生せず良好な冷間鍛造性を示した。また硬度はいず
れもHv 320以上となっている。
As is clear from Table 2, large cracks were generated at an oxidation treatment temperature outside the temperature range of the present invention (600 to 750 ° C) of 500 ° C, while small cracks were observed at 800 ° C. On the other hand, in all of the examples of the present invention, neither cracking nor cracking occurred and good cold forgeability was exhibited. Further, the hardness is Hv 320 or higher in all cases.

実施例2 実施例1の供試材Bより製造した切削スラグを 650℃の
酸化温度で、酸化時間を種々変え、 1.5℃/secの冷却速
度(一定)で空冷後、実施例1と同様の潤滑処理を施し
て歪速度10sec-1の加工速度で本成形して得られたリテ
ーナーの冷間鍛造性と硬度測定結果を第3表に示す。
Example 2 The cutting slag manufactured from the test material B of Example 1 was air-cooled at a cooling rate of 1.5 ° C./sec (constant) at an oxidizing temperature of 650 ° C. and various oxidation times, and then the same as in Example 1. Table 3 shows the cold forgeability and hardness measurement results of the retainer obtained by subjecting the retainer to lubrication and main forming at a strain rate of 10 sec -1 .

第3表より明らかなごとく、酸化時間が本発明の範囲
(10〜60分)を外れた 5分では焼付きが発生し、他方 1
00分では微小すじが認められた。これに対し、本発明例
はいずれも良好な冷間鍛造性を示した。
As is clear from Table 3, seizure occurs when the oxidation time is out of the range of the present invention (10 to 60 minutes), and seizure occurs.
Minute streaks were observed at 00 minutes. On the other hand, all the examples of the present invention showed good cold forgeability.

実施例3 実施例1の供試材Bより製造した切削スラグを 650℃の
酸化温度で20分間酸化処理した後、冷却速度を種々変え
て冷却し、実施例1と同じ潤滑処理および本成形を行な
って得られたバルブリテーナーの冷間鍛造性および硬度
測定結果を第4表に示す。
Example 3 The cutting slag produced from the test material B of Example 1 was subjected to an oxidation treatment at an oxidation temperature of 650 ° C. for 20 minutes, then cooled at various cooling rates, and subjected to the same lubrication treatment and main forming as those of Example 1. Table 4 shows the cold forgeability and hardness measurement results of the obtained valve retainer.

第4表より、冷却速度が 1℃/sec未満では割れが発生す
ることがわかる。
From Table 4, it can be seen that cracking occurs when the cooling rate is less than 1 ° C / sec.

実施例4 実施例1の供試材Bより製造した切削スラグを 650℃の
酸化温度で20分間酸化処理し、 1.5℃/sec の冷却速度
で冷却し、実施例1と同じ潤滑処理を施した後、歪速度
を種々変えて本成形を行なって得られたバルブリテーナ
ーの冷間鍛造性および硬度測定結果を第5表に示す。
Example 4 The cutting slag produced from the test material B of Example 1 was oxidized at an oxidation temperature of 650 ° C. for 20 minutes, cooled at a cooling rate of 1.5 ° C./sec, and subjected to the same lubricating treatment as in Example 1. Table 5 shows the cold forgeability and hardness measurement results of the valve retainer obtained by performing main forming with various strain rates thereafter.

第5表より、歪速度が 100sec-1を超える加工速度では
割れが発生することがわかる。
From Table 5, it can be seen that cracks occur at processing speeds where the strain rate exceeds 100 sec -1 .

実施例5 実施例1の供試材Bより製造した切削スラグを 650℃の
温度で20分間酸化処理した後、 1.5℃/sec で冷却し、
実施例1と同じ潤滑処理および本成形して得られたバル
ブリテーナーを脱スケールした後、第6表に示す温度で
イオン窒化処理を施した製品の窒化深さと窒化後の硬度
測定結果を第6表に示す。
Example 5 The cutting slag produced from the test material B of Example 1 was oxidized at a temperature of 650 ° C. for 20 minutes and then cooled at 1.5 ° C./sec.
After descaling the valve retainer obtained by the same lubrication treatment and main molding as in Example 1, the nitriding depth of the product subjected to ion nitriding treatment at the temperature shown in Table 6 and the hardness measurement result after nitriding are shown in Table 6. Shown in the table.

第6表より、 400℃未満の温度では十分な層厚の窒化層
が得られず、また 550℃を越える温度ではリテーナーの
内部が過時効により軟化し、Hv350 以上の内部硬度が
得られないことがわかる。
From Table 6, a nitrided layer with a sufficient layer thickness cannot be obtained at temperatures below 400 ° C, and inside the retainer softens due to overaging at temperatures above 550 ° C, and internal hardness above Hv350 cannot be obtained. I understand.

発明の効果 以上説明したごとく、この発明方法によれば、β型チタ
ン合金スラグより内部硬度がHv 320以上でかつ冷間鍛
造性の優れたβチタン合金製鍛造品を低コストで製造で
きるので、これまでβチタン合金を素材に適用できなか
ったバルブリテーナーを勿論のこと、ギア類、シャフト
類、ボルト類等の各種鍛造品にもβ型チタン合金を適用
することが可能となり、自動車用部品のみならず、航空
機等の部品にもその用途が拡大されるという大なる効果
を奏するものである。
Effects of the Invention As described above, according to the method of the present invention, since a β titanium alloy forged product having an internal hardness of Hv 320 or more and excellent cold forgeability than the β type titanium alloy slag can be manufactured at low cost, It is now possible to apply β-type titanium alloy not only to valve retainers where β-titanium alloy could not be applied as a material, but also to various forged products such as gears, shafts, bolts, etc., only automotive parts In addition, the present invention has a great effect that its application is expanded to parts such as aircraft.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の製造工程を示すブロック図、第2図
はバルブリテーナーのスラグとバルブリテーナーの形状
を示す縦断面図である。
FIG. 1 is a block diagram showing the manufacturing process of the present invention, and FIG. 2 is a longitudinal sectional view showing the shapes of the slag of the valve retainer and the valve retainer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】切削、または予備冷間鍛造を施した後脱ス
ケールして得たβ型チタン合金スラグを600〜750
℃の温度で10〜60分間酸化処理し、続いて1℃/s
ec以上の冷却速度で急冷することにより表面に酸化皮
膜を形成し、潤滑処理後、冷間鍛造により歪速度100
sec-1以下の加工速度で本成形することにより内部硬
度をHv320以上とすることを特徴とするβチタン合
金製鍛造品の製造方法。
1. A β-type titanium alloy slag obtained by cutting or pre-cold forging followed by descaling is 600 to 750.
Oxidation treatment at a temperature of ℃ for 10 to 60 minutes, followed by 1 ℃ / s
An oxide film is formed on the surface by quenching at a cooling rate of ec or more, and after the lubrication treatment, a strain rate of 100 is obtained by cold forging.
A method for producing a β-titanium alloy forged product, wherein the internal hardness is set to Hv320 or more by main forming at a processing speed of sec -1 or less.
【請求項2】切削、または予備冷間鍛造を施した後脱ス
ケールして得たβ型チタン合金スラグを600〜750
℃の温度で10〜60分間酸化処理し、続いて1℃/s
ec以上の冷却速度で急冷することにより表面に酸化皮
膜を形成し、潤滑処理後、冷間鍛造により歪速度100
sec-1以下の加工速度で本成形し、該成形品の脱スケ
ール後、400〜550℃の温度で窒化処理することに
より内部硬度をHv350以上とすることを特徴とする
βチタン合金製鍛造品の製造方法。
2. A β-type titanium alloy slag obtained by cutting or pre-cold forging and then descaling is 600 to 750.
Oxidation treatment at a temperature of ℃ for 10 to 60 minutes, followed by 1 ℃ / s
An oxide film is formed on the surface by quenching at a cooling rate of ec or more, and after the lubrication treatment, a strain rate of 100 is obtained by cold forging.
A β-titanium alloy forged product characterized by having an internal hardness of Hv350 or more by main forming at a processing speed of sec −1 or less, descaling of the formed product, and nitriding at a temperature of 400 to 550 ° C. Manufacturing method.
JP6954887A 1987-03-23 1987-03-23 Manufacturing method of β titanium alloy forged products Expired - Lifetime JPH0637701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6954887A JPH0637701B2 (en) 1987-03-23 1987-03-23 Manufacturing method of β titanium alloy forged products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6954887A JPH0637701B2 (en) 1987-03-23 1987-03-23 Manufacturing method of β titanium alloy forged products

Publications (2)

Publication Number Publication Date
JPS63235460A JPS63235460A (en) 1988-09-30
JPH0637701B2 true JPH0637701B2 (en) 1994-05-18

Family

ID=13405883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6954887A Expired - Lifetime JPH0637701B2 (en) 1987-03-23 1987-03-23 Manufacturing method of β titanium alloy forged products

Country Status (1)

Country Link
JP (1) JPH0637701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051140A (en) * 1989-03-23 1991-09-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Surface treatment method for titanium or titanium alloy
JP2584553B2 (en) * 1991-07-04 1997-02-26 日本鋼管株式会社 Cutting method of titanium material
JP5063019B2 (en) * 2006-03-29 2012-10-31 本田技研工業株式会社 Abrasion resistant titanium

Also Published As

Publication number Publication date
JPS63235460A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
JP4448208B2 (en) Stainless steel bolt manufacturing method
FR2778672A1 (en) PROCESS FOR MANUFACTURING STEEL TEMPERED PARTS
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
CN107964578A (en) A kind of automobile die steel processing technology
JPH0325253B2 (en)
JPH0637701B2 (en) Manufacturing method of β titanium alloy forged products
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JPS6127460B2 (en)
JP3022015B2 (en) Manufacturing method of titanium alloy valve
JP2792020B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JPH0535203B2 (en)
JPH0853711A (en) Surface hardening treating method
JP2792021B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JP7264117B2 (en) Steel part and its manufacturing method
JPH1150227A (en) Formation of surface oxidized coating on ti alloy or machine parts made of ti alloy
JP4078689B2 (en) Lubrication method for high strength bolt base material
JP3623313B2 (en) Carburized gear parts
JPH0551643B2 (en)
JPH02209452A (en) Steel for rolling parts and rolling parts using the steel
JP2827592B2 (en) Manufacturing method of steel parts
JPH07109005B2 (en) Method for manufacturing heat-treated steel parts
JP4203609B2 (en) Exhaust valve manufacturing method
CN102912102A (en) Manufacturing method of GCr15 coiled cold-drawn material for cold extrusion of metal structural part
JP7310723B2 (en) Steel part and its manufacturing method
JPH0130913B2 (en)