JPH0325253B2 - - Google Patents

Info

Publication number
JPH0325253B2
JPH0325253B2 JP3819685A JP3819685A JPH0325253B2 JP H0325253 B2 JPH0325253 B2 JP H0325253B2 JP 3819685 A JP3819685 A JP 3819685A JP 3819685 A JP3819685 A JP 3819685A JP H0325253 B2 JPH0325253 B2 JP H0325253B2
Authority
JP
Japan
Prior art keywords
spur gear
forging
heating
upsetting
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3819685A
Other languages
Japanese (ja)
Other versions
JPS61195725A (en
Inventor
Wataru Takahashi
Takashi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3819685A priority Critical patent/JPS61195725A/en
Publication of JPS61195725A publication Critical patent/JPS61195725A/en
Publication of JPH0325253B2 publication Critical patent/JPH0325253B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、高精度な平歯車の製造方法に係
り、温間鍛造により精密型鍛造を行ない、歯切り
工程を省略し、細粒化浸炭処理により歯元曲げ強
度を向上させた高精度・高強度平歯車の製造方法
に関する。 背景技術 自動車などとして使用される歯車精度が、JIS4
級以上の高精度な平歯車は、一般に、圧延材→熱
間鍛造→焼ならし(焼なまし)→機械加工→歯切
り加工→浸炭焼入れ・焼もどし→ラツピングなる
製造工程にて製造されている。 従来の製造方法は、上記の如く、熱間鍛造後に
機械加工、歯切り加工の工程が不可欠であつた。
この機械加工、歯切り加工の工程は、熱間鍛造後
に素材にスケールが発生し、熱間鍛造で精密な寸
法に仕上げることができないため、熱間鍛造で平
歯車粗材である円板まで作製しておき、熱間鍛造
後に、機械加工、歯切り加工によつて精密寸法に
まで仕上げていた。 しかし、上記の機械加工及び歯切り加工工程
は、生産コストを引き上げる要因であり、歩留が
悪く量産には不利であるだけでなく、歯切り時に
メタルフローが切断されることになり、歯元曲げ
強度が低下するなど種々の問題があつた。 発明の目的 この発明は、高精度平歯車を歩留よく高効率で
作製できる平歯車の製造方法を目的とし、また、
従来製造法で不可欠の機械加工、歯切り加工を省
略し、歯元曲げ強度を向上させることができる高
精度・高強度平歯車の製造方法を目的としてい
る。 発明の構成と効果 この発明は、平歯車の製造における機械加工及
び歯切り加工工程の省略と平歯車の高精度・高強
度化を目的に種々検討した結果、スケール発生が
なく高精度である冷間鍛造と低荷重で高変形能が
得られる熱間加工の利点を兼備した温間鍛造を利
用して歯切り加工工程を省略し、鋼材の浸炭温度
まで加熱保持したのち、使用鋼材のAr1変態点以
下に冷却し、再び焼入温度まで加熱して焼入を行
なう細粒化浸炭処理により歯元曲げ強度を向上さ
せることができることを知見したものである。 すなわち、この発明は 丸棒鋼材を所要長さに切断後スケールを除去
し、全据込み率で20%以上の予備据込み加工を施
した鍛造用素材を、 100℃〜200℃の温度範囲に加熱して水溶性潤滑
剤溶液に浸し、該素材表面に潤滑被膜を形成し、
高周波加熱により650℃〜900℃に加熱し、精密型
鍛造により平歯車となし、 あるいは前記のスケール除去後に予備据込みを
ほどこさないときは、精密型鍛造工程前に予備据
込みして、精密型鍛造により平歯車となし、 得られた平歯車にサイジングあるいはシエービ
ングを施し、前記平歯車を浸炭処理したのち、
Ar1変態点以下まで冷却し、再び加熱して焼入焼
戻を行なうことを特徴とする高強度平歯車の製造
方法である。 この発明は、温間鍛造により、高精度な平歯車
の製造方法おいて、従来不可欠であつた歯切り工
程を省略でき、製造コストの引下げが可能とな
り、また、予備据込みによるメタルフローの強
化、及び成品横断面でのメタルフローが切断され
ないこと、さらに微細化浸炭処理により、歯元曲
げ強度を熱間鍛造、歯切り加工による従来の平歯
車より10%以上向上させることができ、高精度・
高強度平歯車を高能率で安価にかつ容易に製造で
きる。 発明の好ましい実施態様 この発明において、丸棒鋼材を所要長さに切断
後スケールを除去するが、鍛造用素材の変形や端
面のたれを防止するため、鋸又は拘束シヤー切断
が望ましく、その後シヨツトブラストあるいは酸
洗を施しスケールを除去し、必要に応じて、鍛造
用素材のかど部が型鍛造時に折込み疵となるのを
防止する面取を施すのもよい。 この発明において、鍛造用素材に、前据込み率
で20%以上の予備据込み加工を施した所要長さの
丸棒鋼材を用いるのは、製造歯部において充分に
折れ曲つたメタルフローを有する鍛造歯車とする
ためであり、歯元曲げ強度向上に有効である。こ
の全据込み率は歯車に鍛造した際の製品高さと丸
棒切断材との比率であり、20%未満では上記強度
向上効果が小さいため、20%以上の予備据込み加
工が必要である。 また、この予備据込み加工は、温間精密型鍛造
工程の歯面鍛造前に行なつても同様の効果が得ら
れる。 鍛造用素材を水溶性潤滑剤溶液に浸漬し、素材
表面に潤滑被膜を形成させる際の素材温度は、
100℃未満では表面の潤滑剤被膜の乾燥速度が悪
く好ましくなく、また200℃を超えると潤滑剤が
泡状に素材表面に付着して均一かつ十分な被膜が
形成されないため、100℃〜200℃の加熱温度とす
る。 この潤滑剤被膜は、高周波加熱時のスケール発
生防止、並びに精密型鍛造時の潤滑剤として機能
するもので、一般にコロイダルグラフアイトが使
用されるが、この発明においても水溶性カーボン
潤滑剤が好ましい。 精密型鍛造時の加熱は、スケールの生成を抑止
し、かつ経済的に加熱処理するために、例えば、
200℃/min以上の加熱速度で急速加熱する必要
があり、高周波加熱が好ましい。また、高周波加
熱時の加熱温度は、650℃未満では変形能が低く、
鍛造荷重が高くなり、また製品に加工硬化の影響
が残るため好ましくなく、逆に900℃を超えると
スケールの生成が見られ、製品の歯形精度が低下
し好ましくないため、650℃〜900℃の加熱温度と
する。 上記温度に加熱した鍛造用素材を、例えば、ク
ランププレスなどの鍛造機械に装着された金型に
装入して温間精密鍛造を行なう。成形後の製品は
金型より取り出して空冷するが、素材が焼入れ性
の高い材料の場合は、後工程での切削を容易にす
るため、除冷する必要がある。また、浸炭時の粗
粒化防止にも徐冷が有効である。 温間型鍛造後に、平歯車の歯形精度を向上させ
るため、例えば押出鍛造するなどのサイジングあ
るいは切削仕上を行なうシエービングを施すが、
要求される歯車精度やコスト等の諸条件に応じて
適宜選定すればよい。 この発明において、微細化浸炭処理法は、通常
の浸炭温度まで加熱し、所要時間これを保持した
のち、Ar1変態点以下まで冷却し、再度、所要焼
入れ温度まで加熱し焼入焼戻を行なうものであ
り、材質に応じて加熱温度、保持時間、冷却速度
などが適宜選定される。 実施例 第1図及び第1表に仕様・寸法を示す平歯車
を、第1表、第2表に示す諸条件で温間鍛造し
た。 すなわち、圧延したままの丸棒鋼材(SCr
420)を、第2表の寸法にのこ切断し、その後シ
ヨツトブラストにてスケールを除去し、第2表の
予備据込みを施し、140℃に加熱して、水溶性潤
滑剤(商品名:デルタフオージ 144、日本アチ
ソン社製)の2倍希釈液中に浸漬し、潤滑被膜を
形成したのち、高周波加熱して、第1表に示す条
件でクランクプレスによる温間型鍛造を行なつ
た。 温間鍛造後、型より取り出して空冷し、シエー
ビングを施した後、この発明による細粒化浸炭処
理並びに従来の浸炭処理を施した。 また、比較のため、第2表に示す条件で従来の
熱間鍛造と歯切り加工による同仕様の平歯車を製
造した。 得られた各種の平歯車の歯元曲げ強度と材料の
結晶粒度を測定し、結果を第2表に示す。なお、
歯元曲げ強度試験はプレス機で歯を曲げる試験を
行ない、結晶粒度はASTMのグレンサイズ番号
で示した。 また、上記の本発明方法により、7000個の平歯
車を鍛造し、歯形精度を測定したところ、第3表
の結果を得た。 第2表の結果から明らかなように、20%以上の
予備据込みを施し、温間型鍛造し、細粒化浸炭処
理する本発明方法により、従来の熱間鍛造、歯切
り加工した平歯車より、高強度歯車が得られ、53
%全据込み率のものは、従来製造法のものより、
20%の強度向上が認められた。 また、第3表に示す如く、この発明による製造
方法は、JIS総合4級精度の平歯車を、歯切り工
程なしで高効率で量産できることが分る。
Field of Application This invention relates to a method for manufacturing high-precision spur gears, in which precision die forging is performed by warm forging, the gear cutting process is omitted, and the tooth base bending strength is improved by grain refinement carburizing treatment. Concerning the manufacturing method of precision and high strength spur gears. Background technology The accuracy of gears used in automobiles etc. is JIS4
High-precision spur gears of grade or higher are generally manufactured through the following manufacturing process: rolled material → hot forging → normalizing (annealing) → machining → gear cutting → carburizing/quenching/tempering → wrapping. There is. As mentioned above, conventional manufacturing methods have required machining and gear cutting steps after hot forging.
This machining and gear cutting process generates scale on the material after hot forging, and it is not possible to finish it to precise dimensions with hot forging. Then, after hot forging, it was finished to precise dimensions by machining and gear cutting. However, the above-mentioned machining and gear cutting processes are factors that increase production costs, resulting in poor yields and disadvantages for mass production. There were various problems such as a decrease in bending strength. Purpose of the invention The object of the present invention is to provide a method for manufacturing a spur gear that can manufacture high-precision spur gears with high yield and high efficiency, and
The objective is to create a method for manufacturing high-precision, high-strength spur gears that can omit the machining and gear cutting processes that are essential in conventional manufacturing methods, and can improve the bending strength of the tooth root. Structure and Effects of the Invention As a result of various studies aimed at omitting the machining and gear cutting processes in the manufacture of spur gears and increasing the accuracy and strength of spur gears, the present invention has been developed. By using warm forging, which combines the advantages of cold forging and hot working, which provides high deformability with low loads, the gear cutting process is omitted, and after heating and holding the steel material to its carburizing temperature, the Ar 1 of the steel material used is It has been discovered that the bending strength at the root of the tooth can be improved by a grain-refining carburizing treatment in which the steel is cooled to below the transformation point and heated again to the quenching temperature for quenching. In other words, this invention involves cutting a round steel bar to the required length, removing scale, and performing a preliminary upsetting process with a total upsetting rate of 20% or more. heating and soaking in a water-soluble lubricant solution to form a lubricating film on the surface of the material,
The spur gear is heated to 650°C to 900°C by high frequency heating and made into a spur gear by precision die forging. Alternatively, if preliminary upsetting is not performed after the scale removal described above, preliminary upsetting is performed before the precision die forging process. After forming a spur gear by die forging, sizing or shaving the spur gear, and carburizing the spur gear,
This method of manufacturing a high-strength spur gear is characterized by cooling the gear to below the Ar 1 transformation point and heating it again to perform quenching and tempering. This invention uses warm forging to omit the gear cutting process that was previously indispensable in the manufacturing method of high-precision spur gears, making it possible to reduce manufacturing costs, and strengthening metal flow through preliminary upsetting. , the metal flow in the cross section of the product is not cut, and the fine carburizing treatment improves the tooth base bending strength by more than 10% compared to conventional spur gears made by hot forging and gear cutting, resulting in high precision.・
High-strength spur gears can be easily manufactured with high efficiency and at low cost. Preferred Embodiment of the Invention In this invention, scale is removed after cutting the round steel bar to the required length. In order to prevent deformation of the forging material and sagging of the end face, it is preferable to cut with a saw or restraint shear, and then cut with a shot. Blasting or pickling may be performed to remove scale, and if necessary, the edges of the forging material may be chamfered to prevent folding flaws during die forging. In this invention, the reason why a round steel bar of the required length that has been pre-upset with a pre-upsetting rate of 20% or more is used as the forging material is because the metal flow is sufficiently bent at the manufacturing teeth. This is to make the gear a forged gear, and is effective in improving the bending strength of the tooth base. This total upsetting rate is the ratio of the product height when forged into a gear and the cut round bar material, and if it is less than 20%, the above strength improvement effect will be small, so a preliminary upsetting process of 20% or more is required. Moreover, the same effect can be obtained even if this preliminary upsetting is performed before tooth flank forging in the warm precision die forging process. The material temperature when the forging material is immersed in a water-soluble lubricant solution to form a lubricant film on the material surface is:
If it is less than 100℃, the drying rate of the lubricant film on the surface is poor and is undesirable, and if it exceeds 200℃, the lubricant will adhere to the material surface in the form of bubbles and a uniform and sufficient film will not be formed. The heating temperature shall be . This lubricant film functions to prevent scale generation during high-frequency heating and as a lubricant during precision die forging, and colloidal graphite is generally used, but a water-soluble carbon lubricant is also preferred in this invention. Heating during precision die forging is performed to suppress scale formation and to perform economical heat treatment, for example,
Rapid heating is required at a heating rate of 200°C/min or higher, and high-frequency heating is preferred. In addition, when the heating temperature during high-frequency heating is less than 650℃, the deformability is low.
It is undesirable because the forging load becomes high and the effect of work hardening remains on the product.On the other hand, when the temperature exceeds 900℃, scale formation is observed and the tooth profile accuracy of the product decreases, which is undesirable. Heating temperature. The forging material heated to the above temperature is charged into a mold attached to a forging machine such as a clamp press to perform warm precision forging. The molded product is taken out of the mold and cooled in air, but if the material is a highly hardenable material, slow cooling is required to facilitate cutting in the subsequent process. Slow cooling is also effective in preventing grain coarsening during carburizing. After warm die forging, sizing such as extrusion forging or shaving is performed to improve the tooth profile accuracy of spur gears.
It may be selected as appropriate depending on various conditions such as required gear accuracy and cost. In this invention, the fine carburizing treatment method involves heating to the normal carburizing temperature, holding this temperature for the required time, cooling to below the Ar 1 transformation point, and heating again to the required quenching temperature to perform quenching and tempering. The heating temperature, holding time, cooling rate, etc. are appropriately selected depending on the material. Example Spur gears whose specifications and dimensions are shown in FIG. 1 and Table 1 were warm forged under the conditions shown in Tables 1 and 2. In other words, as-rolled round steel bars (SCr
420) to the dimensions shown in Table 2, scales were removed by shot blasting, preliminary upsetting was performed as shown in Table 2, heated to 140°C, and a water-soluble lubricant (trade name) : Deltaforge 144, manufactured by Acheson Japan Co., Ltd.) was immersed in a 2-fold diluted solution to form a lubricating film, and then subjected to high frequency heating and warm die forging using a crank press under the conditions shown in Table 1. After warm forging, it was taken out from the mold, air cooled, and shaved, and then subjected to grain refinement carburizing treatment according to the present invention and conventional carburizing treatment. For comparison, spur gears with the same specifications were manufactured using conventional hot forging and gear cutting under the conditions shown in Table 2. The root bending strength and crystal grain size of the various spur gears obtained were measured, and the results are shown in Table 2. In addition,
The tooth root bending strength test was performed by bending the tooth using a press machine, and the grain size was indicated by the ASTM grain size number. In addition, 7,000 spur gears were forged using the above method of the present invention and the tooth profile accuracy was measured, and the results shown in Table 3 were obtained. As is clear from the results in Table 2, the method of the present invention, which involves preliminary upsetting of 20% or more, warm die forging, and grain refinement carburizing treatment, produces a spur gear that has been previously hot forged and gear cut. As a result, high strength gears can be obtained, 53
% total upsetting rate is higher than that of conventional manufacturing method.
A 20% increase in strength was observed. Further, as shown in Table 3, it can be seen that the manufacturing method according to the present invention can mass-produce spur gears with JIS overall grade 4 accuracy with high efficiency without a gear cutting process.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平歯車を示す縦断説明図である。 FIG. 1 is a longitudinal cross-sectional view showing a spur gear.

Claims (1)

【特許請求の範囲】 1 丸棒鋼材を所要長さに切断後スケールを除去
し、全据込み率で20%以上の予備据込み加工を施
した鍛造用素材を、100℃〜200℃の温度範囲に加
熱して水溶性潤滑剤溶液に浸し、該素材表面に潤
滑被膜を形成し、高周波加熱により650℃〜900℃
に加熱し、精密型鍛造により平歯車となし、得ら
れた平歯車にサイジングあるいはシエービングを
施し、前記平歯車を浸炭処理したのち、Ar1変態
点以下まで冷却し、再び加熱して焼入焼戻を行な
うことを特徴とする高強度平歯車の製造方法。 2 丸棒鋼材を所要長さに切断後スケールを除去
した鍛造用素材を、100℃〜200℃の温度範囲に加
熱して水溶性潤滑剤溶液に浸し、該素材表面に潤
滑被膜を形成し、高周波加熱により650℃〜900℃
に加熱し、全据込み率で20%以上の予備据込み加
工を施した後、精密型鍛造により平歯車となし、
得られた平歯車にサイジングあるいはシエービン
グを施し、前記平歯車を浸炭処理したのち、Ar1
変態点以下まで冷却し、再び加熱して焼入焼戻を
行なうことを特徴とする高強度平歯車の製造方
法。
[Scope of Claims] 1 After cutting a round steel bar to a required length, removing scale and performing preliminary upsetting with a total upsetting rate of 20% or more, the forging material is heated at a temperature of 100°C to 200°C. A lubricant film is formed on the surface of the material by heating it to a temperature range of 650℃ to 900℃ by immersing it in a water-soluble lubricant solution.
The resulting spur gear is sized or shaved, and then the spur gear is carburized, cooled to below the Ar 1 transformation point, heated again, and quenched. A method for manufacturing a high-strength spur gear, which is characterized by performing a return process. 2. After cutting the round steel bar material to the required length and removing the scale, the forging material is heated to a temperature range of 100°C to 200°C and immersed in a water-soluble lubricant solution to form a lubricating film on the surface of the material, 650℃~900℃ by high frequency heating
After heating and pre-upsetting to a total upsetting rate of 20% or more, it is made into a spur gear by precision die forging.
After sizing or shaving the obtained spur gear and carburizing the spur gear, Ar 1
A method for manufacturing a high-strength spur gear, characterized by cooling to below a transformation point and heating again to perform quenching and tempering.
JP3819685A 1985-02-27 1985-02-27 Manufacture of high strength spur gear Granted JPS61195725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3819685A JPS61195725A (en) 1985-02-27 1985-02-27 Manufacture of high strength spur gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3819685A JPS61195725A (en) 1985-02-27 1985-02-27 Manufacture of high strength spur gear

Publications (2)

Publication Number Publication Date
JPS61195725A JPS61195725A (en) 1986-08-30
JPH0325253B2 true JPH0325253B2 (en) 1991-04-05

Family

ID=12518598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3819685A Granted JPS61195725A (en) 1985-02-27 1985-02-27 Manufacture of high strength spur gear

Country Status (1)

Country Link
JP (1) JPS61195725A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418545A (en) * 1987-07-14 1989-01-23 Honda Motor Co Ltd Method for forging gear
KR100429946B1 (en) * 2001-02-19 2004-05-03 한국기계연구원 Method for Manufacturing Double Spur Gear in One Body by Cold Forging
CN101804546B (en) * 2010-03-22 2011-05-11 重庆创精温锻成型有限公司 Method for manufacturing shifting gear of vehicle gear box
CN104826980A (en) * 2015-02-03 2015-08-12 江苏金源锻造股份有限公司 Forging process of gear ring
CN104668433A (en) * 2015-02-03 2015-06-03 江苏金源锻造股份有限公司 Big gear forging process
CN105127345B (en) * 2015-09-30 2017-01-25 江苏威鹰机械有限公司 Production method of saloon car transmission combination gear ring
CN105543465A (en) * 2015-12-23 2016-05-04 山东伊莱特重工股份有限公司 Controlled cooling quenching tempering technology of yaw gear of large wind driven generator
CN106180533A (en) * 2016-07-19 2016-12-07 苏州誉衡昌精密机械有限公司 A kind of Forging Technology of gear drive head
CN106391983B (en) * 2016-11-02 2018-12-11 贵州航飞精密制造有限公司 It is a kind of precisely to fast implement the molding processing method of tooth and mold
CN107470528B (en) * 2017-08-04 2019-02-01 钢铁研究总院 A kind of forging method that nuclear power is refined with the steel heavy forging center position SA508Gr.4N
CN115612546A (en) * 2020-06-03 2023-01-17 上海铂斯海特材料科技有限公司 Water-based metal cold extrusion lubricant and preparation process thereof
CN114483916A (en) * 2022-01-12 2022-05-13 东莞普莱特传动设备有限公司 Crowned tooth used in planetary reducer

Also Published As

Publication number Publication date
JPS61195725A (en) 1986-08-30

Similar Documents

Publication Publication Date Title
JPH0325253B2 (en)
EP0554257B1 (en) High-strength steel parts and method of making
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
CN113102546B (en) GH4202 nickel-based high-temperature alloy pipe and preparation method thereof
CN112453298B (en) Cold working method of high-temperature alloy rod and wire for fastener
JP2000015379A (en) Forging method of high carbon steel
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JPH0535203B2 (en)
JPS5967365A (en) Production of machine parts
JP2792020B2 (en) Titanium alloy cold-forged parts and their manufacturing method
JPS60121220A (en) Production of hot rolled steel wire rod and bar having excellent cold forgeability
JPH07138613A (en) Production of heat-treated ferrous sintered alloy parts
JPS59153540A (en) Production of bevel gear by warm forging
JP2007270345A (en) Method for producing member for transport equipment
US1950549A (en) Manufacturing hardened articles
JPH0551643B2 (en)
JPH0261863B2 (en)
JP2878842B2 (en) High tensile steel parts and manufacturing method
JP2830436B2 (en) Manufacturing method of steel parts
JP2827592B2 (en) Manufacturing method of steel parts
JPS6364488B2 (en)
JP3077433B2 (en) Machining of carburized gears-heat treatment method
KR100415919B1 (en) Manufacturing method of steel for cold heading having superior decarburization resistance and softening heat treatment property
JPH11254077A (en) Manufacture of die of high strength and high toughness
SU969759A1 (en) Method for heat treating high-tensile cast iron