JPH03249313A - Intake/discharge valve for internal combustion engine - Google Patents

Intake/discharge valve for internal combustion engine

Info

Publication number
JPH03249313A
JPH03249313A JP4438390A JP4438390A JPH03249313A JP H03249313 A JPH03249313 A JP H03249313A JP 4438390 A JP4438390 A JP 4438390A JP 4438390 A JP4438390 A JP 4438390A JP H03249313 A JPH03249313 A JP H03249313A
Authority
JP
Japan
Prior art keywords
intake
valve
internal combustion
combustion engine
ion plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4438390A
Other languages
Japanese (ja)
Inventor
Takehiro Sugawara
菅原 丈弘
Toshiaki Komuro
小室 寿朗
Fumio Kiyota
清田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP4438390A priority Critical patent/JPH03249313A/en
Publication of JPH03249313A publication Critical patent/JPH03249313A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Abstract

PURPOSE:To make equal the seizure resistance and wear resistance of an intake/ discharge valve made of light titanium with those of steel by generation a hard ion plating coat on the main body of the valve formed of titanium alloy. CONSTITUTION:In an intake/discharge valve for an internal combustion engine, a valve main body is formed of titanium alloy. A hard ion plating coat with the thickness of 1 to 10mum is generated on either of valve face, valve stem or valve end part, or all. It is thus possible to make the seizure and wear resistance is made equal with steel as well as make the weight lighter than steel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン合金にて形成された軽量なる内燃機関
用吸排気弁に関するものであり、さらに詳しく述べるな
らば、摺動面の耐摩耗性及び耐焼付性を向上させた内燃
機関用吸排気弁に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a lightweight intake and exhaust valve for internal combustion engines made of titanium alloy. The present invention relates to intake and exhaust valves for internal combustion engines with improved durability and seizure resistance.

(従来の技術) 内燃機関用吸排気弁は、一般に第2図に示すように、エ
ンジンヘッド1に配置されたステムガイド2によって位
置決めされた、リテーナ3とコツタ4を介してスプリン
グ5が元に戻ろうとする力を吸排気弁6に伝える。吸排
気弁6に与えられたスプリング50元に戻ろうとする力
により、バルブシート7と弁傘6−1が密着し、図示し
ない燃焼室の密閉を行う、また、図示しない動力伝達機
構によりカムシャフト8に機関の回転数と同調した回転
運動が与えられ、その回転運動はバルブリフタ9を介し
て吸排気弁6に伝えられ、吸排気弁6の上下運動に変換
される。この際、スプリング5は吸排気弁6をバルブリ
フタ9を介してカム駒8−1に押し付ける働きをするた
め、吸排気弁6はカム駒8−1のプロフィールに応じた
上下運動を行う。
(Prior Art) Generally, as shown in FIG. 2, an intake and exhaust valve for an internal combustion engine is operated by a spring 5, which is positioned by a stem guide 2 disposed in an engine head 1, and is operated by a spring 5 via a retainer 3 and a stopper 4. The force trying to return is transmitted to the intake and exhaust valves 6. Due to the force of the spring 50 applied to the intake/exhaust valve 6 to return to its original position, the valve seat 7 and the valve head 6-1 come into close contact with each other, sealing the combustion chamber (not shown). 8 is given a rotational motion synchronized with the engine speed, and this rotational motion is transmitted to the intake and exhaust valves 6 via the valve lifter 9 and converted into vertical motion of the intake and exhaust valves 6. At this time, since the spring 5 acts to press the intake and exhaust valves 6 against the cam piece 8-1 via the valve lifter 9, the intake and exhaust valves 6 move up and down according to the profile of the cam piece 8-1.

近年、内燃機関は高出力高回転化及び低燃費化が進めら
れており、吸排気弁のマルチバルブ化による高出力化や
、動弁系の軽量化による高回転化ならびに馬力損の低減
による燃費の向上が検討されている。
In recent years, internal combustion engines have become more powerful, faster at higher speeds, and more fuel efficient.Increasing output through multi-valve intake and exhaust valves, increasing speed through lighter valve train systems, and reducing horsepower loss to improve fuel efficiency. Improvements are being considered.

しかしながら、出力を上げるために回転数を上げて行(
と動弁系の慣性力が大きくなって行き、ついにはスプリ
ング5の反発力より大きくなり、カム駒8−1と吸排気
弁6は別々の運動をするようになる。したがってさらに
回転数を上げたい場合には動弁系の慣性重量を小さくす
るため、動弁系の軽量化を図る必要が生じる。また、動
弁系の駆動は内燃機関のクランク軸から直接得ているた
め、燃費を向上させるには動弁系に費やされる馬力損を
極力小さくすることが必要となり、動弁系の重量低減は
燃費低減にも貢献することになる。
However, in order to increase the output, the rotation speed is increased (
The inertial force of the valve train increases until it becomes greater than the repulsive force of the spring 5, and the cam piece 8-1 and the intake and exhaust valves 6 begin to move independently. Therefore, if it is desired to further increase the rotational speed, it is necessary to reduce the weight of the valve train in order to reduce the inertial weight of the valve train. In addition, since the drive for the valve train is obtained directly from the crankshaft of the internal combustion engine, improving fuel efficiency requires minimizing the horsepower loss spent on the valve train, and reducing the weight of the valve train is essential. This will also contribute to reducing fuel consumption.

従来内燃機関用吸排気弁は、耐熱鋼によって形成されて
きたが、鉄系材料による軽量化は限界にきており、上記
のような理由から吸排気弁を比強度の高い軽合金で製作
する検討が進められている。そこで、比較的軽量で強度
の高いチタン合金が吸排気弁として注目されている。
Conventionally, intake and exhaust valves for internal combustion engines have been made of heat-resistant steel, but weight reduction using iron-based materials has reached its limit, and for the reasons mentioned above, intake and exhaust valves are made of light alloys with high specific strength. Discussions are underway. Therefore, titanium alloys, which are relatively lightweight and have high strength, are attracting attention for use in intake and exhaust valves.

(発明が解決しようとする課題) しかしながら、チタン合金は耐摩耗性及び特に排気弁と
して必要な耐焼付性は不十分であり、チタン合金を吸排
気弁に使用するにあたってはその摺動面になんらかの表
面処理が必要となる。従来より検討されている処理法と
しては摺動面を窒化し、その表面にTiN層を形成させ
る方法やM。
(Problem to be solved by the invention) However, titanium alloys do not have sufficient wear resistance and especially seizure resistance required for exhaust valves, and when titanium alloys are used for intake and exhaust valves, some Surface treatment is required. Treatment methods that have been considered include methods of nitriding the sliding surface and forming a TiN layer on the surface;

溶射により表面に硬化皮膜を設ける方法などが検討され
ているが、窒化法は処理温度が高いため、処理後に材料
の歪が生じ、これを研削などにより除去するため歩留ま
りが非常に悪くなり、量産には向かない。一方、Mo溶
射はレース用の耐熱合金の溶射としては実績があるが、
チタン合金に適用したときは密着性に問題があり信頼性
に欠けるけるといった問題があった。
Methods such as thermal spraying to form a hardened film on the surface are being considered, but due to the high processing temperature of the nitriding method, material distortion occurs after processing, which must be removed by grinding, etc., resulting in very low yields, making mass production difficult. Not suitable for On the other hand, Mo spraying has a proven track record for spraying heat-resistant alloys for racing, but
When applied to titanium alloys, there were problems with adhesion and a lack of reliability.

本発明は、上記問題に鑑みチタン合金を用いた内燃機関
用吸排気弁の摺動上の問題を解決し、信頼性の高い軽量
なるチタン合金製内燃機関用吸排気弁を提供することを
目的としてなされたものである。
In view of the above-mentioned problems, an object of the present invention is to solve the sliding problems of intake and exhaust valves for internal combustion engines made of titanium alloys, and to provide highly reliable and lightweight intake and exhaust valves for internal combustion engines made of titanium alloys. This was done as a.

(課題を解決するための手段) 本発明は、内燃機関用吸排気弁の摺動する部分に、信頼
性の高い硬質イオンプレーティング皮膜を設けることに
よって、上記問題点を解決しようとするものである。
(Means for Solving the Problems) The present invention attempts to solve the above problems by providing a highly reliable hard ion plating film on the sliding parts of intake and exhaust valves for internal combustion engines. be.

すなわち、本発明は、弁本体がチタン合金により形成さ
れ、バルブフェース、バルブステム及びバルブエンド部
のいずれかまたは全部に1−10μmの厚さの硬質イオ
ンプレーティング皮膜を生成させたことを特徴とする内
燃機関用吸排気弁にある。
That is, the present invention is characterized in that the valve body is formed of a titanium alloy, and a hard ion plating film with a thickness of 1 to 10 μm is formed on any or all of the valve face, valve stem, and valve end portion. It is found in intake and exhaust valves for internal combustion engines.

硬質イオンプレーティングを形成する面は、第1図に示
すように、ステム面(同図(A))、バルブフェース面
(同図(B))、バルブエンド(同図(C))、全面(
同図(D))、バルブステムトバルブフェース(同図(
E))、バブルフェースとバルブエンド(同図(F))
、バルブステムとバルブエンド(同図(G))のように
変化させることができ、焼付の発生しやすい場所に硬質
イオンプレーティングの皮膜を形成する。
As shown in Figure 1, the surfaces on which hard ion plating is formed include the stem surface ((A) in the same figure), the valve face surface ((B) in the same figure), the valve end ((C) in the same figure), and the entire surface. (
Figure (D)), valve stem and valve face (Figure (D)), valve stem and valve face (Figure (D)), valve stem and valve face (Figure (D))
E)), bubble face and valve end ((F) in the same figure)
, the valve stem and the valve end ((G) in the same figure), and a hard ion plating film is formed in areas where seizure is likely to occur.

硬質イオンプレーティングの膜厚は、初期なじみにおけ
る摩耗で表面層が消失し耐摩耗性が失なわれることを考
慮し、1μm以上の膜厚が必要であり、また表面に欠け
や亀裂が生じない良好な密着力を維持するため10μm
以下とすることが必要である。より好ましい膜厚は2μ
m〜7μmの範囲である。
The film thickness of hard ion plating must be at least 1 μm, taking into consideration that the surface layer will disappear due to wear during the initial break-in and wear resistance will be lost, and the film thickness must be at least 1 μm, and the surface will not be chipped or cracked. 10μm to maintain good adhesion
It is necessary to do the following. More preferable film thickness is 2μ
The range is from m to 7 μm.

硬質イオンプレーティング皮膜の構成物質は1200H
mv以上の硬度が得られる窒化物、炭窒化物、ホウ化物
などの化合物である。しかし、「密着性」の面からイオ
ンプレーティング皮膜はクロム窒素、チタンと窒素、ま
たはチタンとアルミニウムと窒素からなることが望まし
い。これらの窒化物における金属の量は30〜]、 O
O原子%の範囲であることが好ましい、 さらに、皮膜形成直前にスパッタクリーニングにより処
理面を十分活性化させる、加熱により吸着ガス成分を低
減させるなどの予備処理を行い、密着力の良好な皮膜と
するのが望ましい。
The constituent material of the hard ion plating film is 1200H.
These are compounds such as nitrides, carbonitrides, borides, etc. that can provide hardness of mv or higher. However, from the viewpoint of "adhesion", it is desirable that the ion plating film consists of chromium nitrogen, titanium and nitrogen, or titanium, aluminum and nitrogen. The amount of metal in these nitrides is 30~], O
Preferably, the content is in the O atomic % range.Furthermore, just before film formation, preliminary treatments such as sufficiently activating the treated surface by sputter cleaning and reducing adsorbed gas components by heating are performed to form a film with good adhesion. It is desirable to do so.

本発明の処理対象となるチタン合金は公知のもので有り
、特に限定されないが、弁に要求される特性の面から引
張強度100 kg/mが以上、150℃における引張
強度80 kg/mm2以上の特性を有する合金が好ま
しい。
The titanium alloy to be treated in the present invention is a known one, and is not particularly limited, but from the viewpoint of the properties required for the valve, the titanium alloy must have a tensile strength of 100 kg/m or more, and a tensile strength of 80 kg/mm2 or more at 150°C. Alloys with properties are preferred.

(作用) イオンプレーティング皮膜は母材であるチタン合金を高
温にさらさずに形成されるので、母材の歪みが少ない。
(Function) Since the ion plating film is formed without exposing the titanium alloy base material to high temperatures, there is little distortion of the base material.

窒化による窒化層は、その製法上最表面が最も硬く材料
内部にゆ(に従って母材硬度に近くなる。よって、窒化
後に再仕上げを行った場合、歪量によって加工量が異な
れば表面の硬度にばらつきが生じ表面の均質性が失われ
てしまう。それに対しイオンプレーティングを用いて窒
化皮膜を形成させた場合、皮膜はほとんど均質な組成で
あるため場所による硬度差は発生せず、均質な表面層を
得る事ができる。
Due to the manufacturing method, the nitrided layer produced by nitriding is the hardest on the outermost surface, and the hardness is close to that of the base material. This results in variations and loss of surface homogeneity.On the other hand, when a nitride film is formed using ion plating, the film has an almost homogeneous composition, so there is no difference in hardness depending on location, and the surface is uniform. You can get layers.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例) 本実施例に使用した吸気弁は弁傘径φ6.6mm、全長
104.5mmの吸気弁をTi−6Al−4Vの組成を
もつチタン合金の丸棒より削り出し、熱処理後フロン液
中で超音波洗浄を行った後に吸気弁のステムガイドと摺
動するステム部に硬質イオンプレーティング皮膜を5μ
mの厚さで設けた。
(Example) The intake valve used in this example has a valve umbrella diameter of φ6.6 mm and a total length of 104.5 mm, which is machined from a round rod of titanium alloy with a composition of Ti-6Al-4V. After performing ultrasonic cleaning inside, a 5μ hard ion plating film is applied to the stem part that slides on the stem guide of the intake valve.
It was provided with a thickness of m.

イオンプレーティングは吸気弁を治具にセットしその状
態で表面を超音波洗浄後、脱脂処理し、アーク加熱によ
る蒸発源を備えたイオンプレーティング装置の真空容器
内に取り付けた。容器内の圧力が1.3X10−”Pa
 (パスカル)以下となった時点で内蔵するヒーターで
300〜600℃に加熱して吸気弁に付着しているガス
成分を除去し、200℃以下まで冷却後容器内の圧力が
4×10−”Pa以下となった時点でCr、Tiまたは
Ti−Alからなるターゲットの表面から金属イオンを
飛び出させる。この時吸気弁と治具にはバイアス電圧を
−700〜−900■印加しておき、ターゲットから飛
び出した金属イオンを吸気弁と治具に引き付ける、いわ
ゆるボンバード処理により表面の活性化を行った。その
後窒素ガスを真空容器内に導入してCr−N系のコーテ
ィングのときは1.3X10−’Pa、TiN及びTi
−AI−N系のコーティングのときは1.3Pa程度の
圧力とし、バイアス電圧を−20〜−200V印加して
吸気弁のステム部にイオンプレーティング皮膜を形成さ
せた。直ちにイオンプレーティングを中止し容器内で冷
却後吸気弁を容器外へ取り出した。
For ion plating, the intake valve was set in a jig, and in that state, the surface was ultrasonically cleaned, degreased, and installed in a vacuum container of an ion plating device equipped with an evaporation source using arc heating. The pressure inside the container is 1.3X10-”Pa
(pascal) or less, the internal heater is used to heat the container to 300-600℃ to remove gas components adhering to the intake valve, and after cooling to 200℃ or less, the pressure inside the container is 4×10-” When the temperature is below Pa, metal ions are ejected from the surface of the target made of Cr, Ti or Ti-Al. At this time, a bias voltage of -700 to -900 ■ is applied to the intake valve and the jig, and the target The surface was activated by so-called bombardment treatment, which attracts the metal ions ejected from the metal ions to the intake valve and jig.After that, nitrogen gas was introduced into the vacuum chamber to create a 1.3X10- 'Pa, TiN and Ti
When applying the -AI-N coating, the pressure was set to about 1.3 Pa, and a bias voltage of -20 to -200 V was applied to form an ion plating film on the stem portion of the intake valve. Immediately, ion plating was stopped, and after cooling inside the container, the intake valve was taken out of the container.

このようにして得られた吸気弁を排気量1600cc、
水冷4気筒の4サイクルガソリンエンジンに組み込み、
回転数6000rpm、油温120℃、冷却水温度90
℃、全負荷の条件で200時間のベンチテストを行い、
試験後の結果を未処理のチタン製吸気弁と比較し第1表
に示す。
The intake valve obtained in this way has a displacement of 1600cc,
Built into a water-cooled 4-cylinder 4-cycle gasoline engine,
Rotation speed 6000rpm, oil temperature 120℃, cooling water temperature 90℃
℃, 200 hours bench test under full load conditions,
The results after the test are compared with those of an untreated titanium intake valve and are shown in Table 1.

(以下余白) 上記のように、Cr−Ni系、Ti−Al−N軽皮膜を
イオンプレーティングした吸気弁は、いずれも未処理の
チタン製吸気弁と比較して、耐熱摩耗性、及び耐熱焼付
性に優れており、また耐熱鋼と同等の耐摩耗性及び耐焼
付性を有していた。
(Left below) As mentioned above, intake valves ion-plated with Cr-Ni and Ti-Al-N light coatings have better thermal abrasion resistance and heat resistance than untreated titanium intake valves. It had excellent seizure resistance, and had wear resistance and seizure resistance equivalent to heat-resistant steel.

(発明の効果) 以上説明したように、従来の表面処理法では、変形、密
着力等の問題があったため、チタン材を内燃機関の吸排
気弁に採用することができなかったが、本発明によれば
内燃機関用吸排気弁において摺動部に特にクロムと窒素
、チタンと窒素、またはチタンとアルミニウムと窒素か
らなる硬質イオンプレーティング皮膜を設けることによ
って、鋼材より軽量でかつ耐焼付性、耐摩耗性は鋼材と
同等のチタン製吸排気弁が提供され、内燃機関の高回転
化、高出力化、低燃費化が可能となった。
(Effects of the Invention) As explained above, with conventional surface treatment methods, titanium materials could not be used for intake and exhaust valves of internal combustion engines due to problems such as deformation and adhesion. According to the study, by providing a hard ion plating film made of chromium and nitrogen, titanium and nitrogen, or titanium and aluminum and nitrogen on the sliding parts of intake and exhaust valves for internal combustion engines, it is lighter than steel materials and has seizure resistance. Titanium intake and exhaust valves with wear resistance comparable to that of steel are now available, making it possible for internal combustion engines to run at higher speeds, have higher output, and achieve lower fuel consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(G)は本発明の吸排気弁の実施例を示
す図、 第2図は一般的な内燃機関の動弁系の概略を示す図であ
る。
FIGS. 1A to 1G are diagrams showing embodiments of the intake and exhaust valves of the present invention, and FIG. 2 is a diagram schematically showing a valve train of a general internal combustion engine.

Claims (1)

【特許請求の範囲】 1、内燃機関用吸排気弁において、弁本体がチタン合金
により形成され、バルブフェース、バルブステム及びバ
ルブエンド部のいずれかまたは全部に1〜10μmの厚
さの硬質イオンプレーティング皮膜を生成させたことを
特徴とする内燃機関用吸排気弁。 2、前記吸排気弁の硬質イオンプレーティング皮膜がク
ロムと窒素からなることを特徴とする請求項1記載の内
燃機関用吸排気弁。 3、前記吸排気弁の硬質イオンプレーティング皮膜がチ
タンと窒素からなることを特徴とする請求項1記載の内
燃機関用吸排気弁。 4、前記吸排気弁の硬質イオンプレーティング皮膜がチ
タンとアルミニウムと窒素からなり、皮膜中のTiとA
lの比が原子%にてTi:Al=80:20〜30:7
0であることを特徴とする請求項1記載の内燃機関用吸
排気弁。
[Claims] 1. In an intake and exhaust valve for an internal combustion engine, the valve body is formed of a titanium alloy, and any or all of the valve face, valve stem, and valve end portion is coated with a hard ion plate with a thickness of 1 to 10 μm. An intake and exhaust valve for an internal combustion engine, characterized in that it has a coating film formed thereon. 2. The intake and exhaust valve for an internal combustion engine according to claim 1, wherein the hard ion plating film of the intake and exhaust valve is made of chromium and nitrogen. 3. The intake and exhaust valve for an internal combustion engine according to claim 1, wherein the hard ion plating film of the intake and exhaust valve is made of titanium and nitrogen. 4. The hard ion plating film of the intake/exhaust valve is made of titanium, aluminum, and nitrogen, and the Ti and A in the film are
Ti:Al=80:20 to 30:7 in atomic % ratio of l
2. The intake and exhaust valve for an internal combustion engine according to claim 1, wherein the intake and exhaust valve for an internal combustion engine is 0.
JP4438390A 1990-02-27 1990-02-27 Intake/discharge valve for internal combustion engine Pending JPH03249313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4438390A JPH03249313A (en) 1990-02-27 1990-02-27 Intake/discharge valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4438390A JPH03249313A (en) 1990-02-27 1990-02-27 Intake/discharge valve for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03249313A true JPH03249313A (en) 1991-11-07

Family

ID=12689984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4438390A Pending JPH03249313A (en) 1990-02-27 1990-02-27 Intake/discharge valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03249313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100666A (en) * 2005-10-07 2007-04-19 Nippon Steel Corp High strength titanium alloy engine valve for automobile
US7794846B2 (en) 2005-06-22 2010-09-14 Yamaha Hatsudoki Kabushiki Kaisha Titanium part for internal combustion engine
US8394469B2 (en) 2004-07-14 2013-03-12 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe for internal combustion engine
US8470418B2 (en) 2005-09-06 2013-06-25 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe for internal combustion engine, and internal combustion engine and transportation apparatus incorporating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394469B2 (en) 2004-07-14 2013-03-12 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe for internal combustion engine
US7794846B2 (en) 2005-06-22 2010-09-14 Yamaha Hatsudoki Kabushiki Kaisha Titanium part for internal combustion engine
US8470418B2 (en) 2005-09-06 2013-06-25 Yamaha Hatsudoki Kabushiki Kaisha Exhaust pipe for internal combustion engine, and internal combustion engine and transportation apparatus incorporating the same
JP2007100666A (en) * 2005-10-07 2007-04-19 Nippon Steel Corp High strength titanium alloy engine valve for automobile
JP4517095B2 (en) * 2005-10-07 2010-08-04 新日本製鐵株式会社 High strength titanium alloy automotive engine valve

Similar Documents

Publication Publication Date Title
KR101282483B1 (en) Wear-resistant coating and method of producing the same
US20060046060A1 (en) Wear-resistant coating and process for producing it
JP2001090835A (en) Hard coating and sliding member coated therewith and its manufacturing method
JP3051404B1 (en) Tappet
WO2016057481A1 (en) Nitrided engine valve with hvof coating
JPH05141213A (en) Suction/exhaust valve for internal combustion engine
JPH03249313A (en) Intake/discharge valve for internal combustion engine
JPH10238320A (en) Valve for internal combustion engine
JPH04171206A (en) Valve retainer for internal combustion engine
JPH03172504A (en) Valve lifter for valve system mechanism of internal combustion engine
JPS6314175B2 (en)
JP3939431B2 (en) Valve mechanism of internal combustion engine
JPH09125916A (en) Transmission gear
JPH05340213A (en) Cam contact part structure for valve system
JP3239610B2 (en) Piston / piston ring assembly
JP4037143B2 (en) Sliding member and manufacturing method thereof
EP0721997A1 (en) Method of treating the surface of TI or TI alloy valve element
JPH051769A (en) Abrasion-resistant sliding member of internal combustion engine
JPH0727228A (en) Sliding member and crn film coating method
JP2819946B2 (en) Cam contact structure of valve train of internal combustion engine
JPH0573203U (en) Valve rocker shaft
JP3123258B2 (en) Adjusting shim and manufacturing method thereof
JPH05195729A (en) Intake/exhaust valve for internal-combustion engine
JPH04365908A (en) Valve rocker arm
JP2812563B2 (en) Valve lifter and method of manufacturing the same