JP2007100666A - High strength titanium alloy engine valve for automobile - Google Patents

High strength titanium alloy engine valve for automobile Download PDF

Info

Publication number
JP2007100666A
JP2007100666A JP2005294686A JP2005294686A JP2007100666A JP 2007100666 A JP2007100666 A JP 2007100666A JP 2005294686 A JP2005294686 A JP 2005294686A JP 2005294686 A JP2005294686 A JP 2005294686A JP 2007100666 A JP2007100666 A JP 2007100666A
Authority
JP
Japan
Prior art keywords
engine valve
less
strength
titanium alloy
strength titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294686A
Other languages
Japanese (ja)
Other versions
JP4517095B2 (en
Inventor
Kenichi Mori
健一 森
Hideki Fujii
秀樹 藤井
Tadayoshi Tominaga
忠良 冨永
Norimichi Fukaya
法達 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005294686A priority Critical patent/JP4517095B2/en
Publication of JP2007100666A publication Critical patent/JP2007100666A/en
Application granted granted Critical
Publication of JP4517095B2 publication Critical patent/JP4517095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength titanium alloy engine valve for automobile excellent in strength, fatigue strength and hot workability, and having sufficient wear resistance. <P>SOLUTION: This engine valve for automobile is made of titanium alloy which contains Al of 4.4 wt.% or more and 5.5 wt.%, Fe of 1.4 wt.% or more and 2.3 wt.% and Mo of 1.5 wt.% or more and 5.3 wt.%, and satisfies conditions of impurities that Si is less than 0.1 wt.% and C is less than 0.01 wt.%, and of which remaining is titanium and unavoidable impurities. Oxidized hardened layer is formed on a part or whole of a surface of the engine valve, is coated by hard coating or is applied to peening process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高強度チタン合金からなる自動車用エンジンバルブに関する。   The present invention relates to an automotive engine valve made of a high-strength titanium alloy.

従来から、自動車用エンジンバルブに、軽量で強度の高いチタン合金を用いることで、エンジン性能の向上(高出力化、低燃費化、静音化)がはかられてきた。しかし、より高性能なエンジンへのチタン合金の適用を進めていくに従い、エンジン回転数の上昇に伴う慣性重量の増加による負荷増大、温度上昇による強度低下等の問題から、チタン合金の強度および疲労強度不足の問題が顕在化してきた。また、量産車種への適用拡大のため、安価なチタン合金の要求も強い。   Conventionally, the engine performance (higher output, lower fuel consumption, lower noise) has been achieved by using a light and strong titanium alloy for an automobile engine valve. However, as titanium alloys are applied to higher performance engines, the strength and fatigue of titanium alloys are reduced due to problems such as an increase in load due to an increase in inertia weight accompanying an increase in engine speed and a decrease in strength due to a rise in temperature. The problem of lack of strength has become apparent. In addition, there is a strong demand for inexpensive titanium alloys in order to expand application to mass-produced vehicles.

チタン合金を自動車用エンジンバルブに適用するためには、鋼に比べて劣る耐摩耗性を改善する必要がある。耐磨耗性の改善のため、表面に硬質皮膜を形成する方法(例えば、特許文献1参照。)があるが、コストが高いため特に高度の耐磨耗性が要求される部分にのみ適用するのが一般的である。より安価な方法として、酸化硬化層を形成する方法(例えば、特許文献2参照。)があるが、表面性状が劣化するため不十分な疲労強度をさらに低下させるという問題があり、エンジンバルブ素材への高疲労強度化の要求をさらに厳しくしている。   In order to apply a titanium alloy to an engine valve for an automobile, it is necessary to improve wear resistance which is inferior to steel. There is a method of forming a hard film on the surface for improving the wear resistance (see, for example, Patent Document 1). However, since the cost is high, it is applied only to a portion that requires a particularly high level of wear resistance. It is common. As a cheaper method, there is a method of forming an oxide hardened layer (see, for example, Patent Document 2), but there is a problem of further reducing the fatigue strength due to the deterioration of the surface properties. The demands for higher fatigue strength are becoming stricter.

一方、従来、強度、加工性、コストの面から主として用いられてきたTi−6Al−4V系チタン合金は、上記の課題に対して、強度および疲労強度が不足するという課題がある。また、金属材料の疲労強度を向上する方法として、金属または非金属粒子を高速で投射するピーニング処理が一般に知られている。これは、ピーニング処理によって金属材料表層部に圧縮残留応力が付与され、疲労き裂が生じにくくなるためであるが、Ti−6Al−4V製自動車用エンジンバルブは、ピーニング処理の効果が小さく、充分な疲労強度を得ることができない。   On the other hand, the Ti-6Al-4V titanium alloy, which has been used mainly from the viewpoint of strength, workability, and cost, has a problem that the strength and fatigue strength are insufficient with respect to the above-described problems. Further, as a method for improving the fatigue strength of a metal material, a peening treatment in which metal or non-metal particles are projected at a high speed is generally known. This is because compressive residual stress is applied to the surface layer of the metal material by the peening process, and fatigue cracks are less likely to occur. However, the Ti-6Al-4V automotive engine valve has a small effect of the peening process and is sufficient. Fatigue strength cannot be obtained.

他の既存のチタン合金を自動車用エンジンバルブに適用する場合では、代表的なNearα型合金のTi−6Al−2Sn−4Zr−2Mo系チタン合金やさらに0.1%のSiを添加したチタン合金があるが、これらは、高温強度に優れているものの熱間加工性が悪くTi−6Al−4V系チタン合金よりも高価である。また、α型チタン合金は、Ti−6Al−4V系チタン合金よりも強度が低い。また、β型チタン合金は、高強度で加工性にも優れているが、合金添加量が多く高価である。TiAl系金属間化合物は、非常に高い強度を有するが、特許文献3にあるように、冷間加工性が劣るのみでなく熱間加工性も劣るため、精密鋳造した後にHIP(Hot Isostatics Press;高温静水圧プレス)処理する方法で製造される。しかし、このような製造方法では生産性が著しく悪化するため高価である。   When other existing titanium alloys are applied to engine valves for automobiles, a typical Near α-type alloy Ti-6Al-2Sn-4Zr-2Mo titanium alloy or a titanium alloy further containing 0.1% Si is used. Although these are excellent in high-temperature strength, they are poor in hot workability and are more expensive than Ti-6Al-4V titanium alloys. In addition, the α-type titanium alloy has lower strength than the Ti-6Al-4V titanium alloy. In addition, β-type titanium alloys are high in strength and excellent in workability, but are expensive due to the large amount of alloy added. TiAl-based intermetallic compounds have very high strength, but as disclosed in Patent Document 3, not only is cold workability inferior, but also hot workability is inferior, so after precision casting, HIP (Hot Isostatics Press; Manufactured by a high temperature isostatic pressing process. However, such a manufacturing method is expensive because productivity is remarkably deteriorated.

一方で、Ti−6Al−4V系チタン合金をベースに、その強度および疲労強度特性を維持あるいは向上させつつ、安価なチタン合金系が検討されてきた。このチタン合金を自動車用エンジンバルブに適用した例として、例えば、非特許文献1にあるように、原料に安価なオフグレードスポンジチタンを使用した例があるが、強度は充分とはいえない。また、自動車用エンジンバルブ用途に限定したものではないが、Ti−6Al−4V系チタン合金の高価なVの代替としてFeを使用する合金系が検討されてきた。   On the other hand, an inexpensive titanium alloy system has been studied based on a Ti-6Al-4V titanium alloy while maintaining or improving its strength and fatigue strength characteristics. As an example of applying this titanium alloy to an automobile engine valve, for example, as disclosed in Non-Patent Document 1, there is an example in which inexpensive off-grade sponge titanium is used as a raw material, but the strength is not sufficient. Although not limited to automotive engine valve applications, an alloy system using Fe as an alternative to the expensive V of Ti-6Al-4V titanium alloy has been studied.

また、特許文献4では、熱間加工性および冷間加工性に優れた合金として、質量%で1.4%以上2.3%未満のFe、4%以上5.5%未満のAlで、残部チタンおよび不可避的不純物からなるα+β型チタン合金が開示されている。しかし、特許文献4に記載の発明のチタン合金は、引張強度が1000MPa未満であり、充分な強度を有していると言えず、熱間加工性および室温延性においても不十分であるという問題を抱える。   Further, in Patent Document 4, as an alloy excellent in hot workability and cold workability, Fe of 1.4% or more and less than 2.3% by mass, Al of 4% or more and less than 5.5%, An α + β type titanium alloy consisting of the balance titanium and unavoidable impurities is disclosed. However, the titanium alloy of the invention described in Patent Document 4 has a tensile strength of less than 1000 MPa, which cannot be said to have sufficient strength, and has a problem that it is insufficient in hot workability and room temperature ductility. Hold it.

また、特許文献5には、全率固溶型β安定化元素の少なくとも1種をMo当量で2.0〜4.5%、共析型β安定化元素の少なくとも1種をFe当量で0.3〜2.0%含み、Al当量が3〜6.5%で、さらに、Siを0.1〜1.5%含有することを特徴とする高強度・高延性α+β型合金が提案されている。しかし、特許文献5に記載の発明のチタン合金は、Siを0.1%以上含有すると、TiとSiの化合物がα相とβ相の界面に析出し、疲労特性や室温延性を劣化させる問題がある。   Patent Document 5 discloses that at least one of the solid solution type β stabilizing elements is 2.0 to 4.5% in terms of Mo equivalent, and at least one of the eutectoid type β stabilizing elements is 0 equivalent in terms of Fe equivalent. A high-strength, high-ductility α + β-type alloy characterized by containing 3 to 2.0%, an Al equivalent of 3 to 6.5%, and further containing 0.1 to 1.5% of Si is proposed. ing. However, when the titanium alloy of the invention described in Patent Document 5 contains 0.1% or more of Si, a compound of Ti and Si precipitates at the interface between the α phase and the β phase, and deteriorates fatigue characteristics and room temperature ductility. There is.

特開平03−249313号公報Japanese Patent Laid-Open No. 03-249313 特開平2002−097914号公報Japanese Patent Laid-Open No. 2002-097914 特開平06−002095号公報Japanese Patent Laid-Open No. 06-002095 特開平07−062474号公報Japanese Patent Laid-Open No. 07-062474 特開平2000−204425号公報Japanese Unexamined Patent Publication No. 2000-204425 「チタン」日本チタン協会,Vol.50,No.2,p.93-97“Titanium” Japan Titanium Association, Vol.50, No.2, p.93-97

本発明は、上記課題を有利に解決して、強度、疲労強度、および熱間加工性に優れ、かつ、充分な耐摩耗性を有する高強度チタン合金製自動車用エンジンバルブを提供するものである。   The present invention advantageously solves the above-described problems and provides a high-strength titanium alloy automotive engine valve having excellent strength, fatigue strength, and hot workability, and sufficient wear resistance. .

本発明者らは、上記目的を達成するために、鋭意検討した結果、まず、Ti−6Al−4Vを凌ぐ強度、疲労強度を有し、熱間加工性に優れたチタン合金を見出し、さらに、その合金を使用して表面処理やミクロ組織を規定することで充分な耐磨耗性を有し、かつ、疲労強度特性を大幅に向上したチタン合金製自動車用エンジンバルブが得られることを見出した。   As a result of intensive studies to achieve the above object, the present inventors have first found a titanium alloy having a strength superior to that of Ti-6Al-4V, fatigue strength, and excellent in hot workability. It was found that a titanium alloy automotive engine valve with sufficient wear resistance and greatly improved fatigue strength characteristics can be obtained by defining the surface treatment and microstructure using the alloy. .

本発明の要旨とするところは、以下のとおりである。
(1) 質量%で、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.5%未満のMoを含有し、不純物として、Siは0.1%未満、Cは0.01%未満を満たし、残部チタンおよび不可避的不純物からなるチタン合金製であることを特徴とする、高強度チタン合金製自動車用エンジンルブ。
(2) 前記Feの一部を、質量%で0.15%未満のNi、0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替したことを特徴とする、上記(1)に記載の高強度チタン合金製自動車用エンジンバルブ。
(3) 表面から5〜25μmの厚みでビッカース硬さHvが500以上の酸化硬化層が、前記エンジンバルブの表面の一部または表面全体に形成されていることを特徴とする、上記(1)または(2)に記載の高強度チタン合金製自動車用エンジンバルブ。
(4) 表面の一部または全体が、厚み1〜10μmの硬質皮膜により被覆されていることを特徴とする、上記(1)ないし(3)のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。
(5) 表面の一部または全体にショットピーニング処理が行われていることを特徴とする、上記(1)ないし(4)のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。
(6) 少なくとも軸部のミクロ組織のα相が、長さ50μm以下の針状α相からなることを特徴とする、上記(1)ないし(5)のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。
The gist of the present invention is as follows.
(1) By mass%, containing 4.4% or more and less than 5.5% Al, 1.4% or more and less than 2.3% Fe, 1.5% or more and less than 5.5% Mo, impurities A high-strength titanium alloy automotive engine lube characterized in that Si is less than 0.1%, C is less than 0.01%, and the balance is made of a titanium alloy consisting of titanium and inevitable impurities.
(2) A part of the Fe is replaced by one or more of Ni of less than 0.15% by mass, Cr of less than 0.25%, and Mn of less than 0.25%. A high-strength titanium alloy automobile engine valve according to (1) above.
(3) The oxide hardened layer having a thickness of 5 to 25 μm from the surface and a Vickers hardness Hv of 500 or more is formed on a part of or the entire surface of the engine valve (1) Or the engine valve for motor vehicles made from a high strength titanium alloy as described in (2).
(4) A part or the whole of the surface is covered with a hard film having a thickness of 1 to 10 μm, and is made of the high-strength titanium alloy according to any one of the above (1) to (3) Automotive engine valves.
(5) The high-strength titanium alloy automobile engine valve according to any one of the above (1) to (4), wherein a part or the whole of the surface is subjected to shot peening treatment.
(6) The high-strength titanium according to any one of (1) to (5) above, wherein at least the α phase of the microstructure of the shaft portion is composed of an acicular α phase having a length of 50 μm or less. Alloy automotive engine valve.

本発明の高強度チタン合金製自動車用エンジンバルブは、従来のチタン合金製自動車用エンジンバルブよりも充分高い強度、疲労強度を有し、熱間加工性に優れ、かつ、低コストであることから、自動車用エンジンの高出力化、低燃費化、静音化に寄与するだけでなく、量産品への適用拡大により幅広くその効果を得ることが可能になることから、産業上の効果は計り知れない。   The high-strength titanium alloy automobile engine valve of the present invention has sufficiently higher strength and fatigue strength than conventional titanium alloy automobile engine valves, and is excellent in hot workability and low cost. In addition to contributing to higher output, lower fuel consumption, and lower noise of automobile engines, it is possible to obtain a wide range of effects by expanding application to mass-produced products, so industrial effects are immeasurable .

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

本発明の機械的性質としては、室温における引張強度が、Ti−6Al−4V製自動車用エンジンバルブの室温引張強度を超える1050MPa以上であり、伸びは、実用上問題のない5%を超えることを指標とした。また、本発明の熱間加工性は、エンジンバルブ製造時の割れ発生有無を指標とした。また、本発明の疲労強度は、同等の製造方法で製造されたTi−6Al−4V製自動車用エンジンバルブの疲労強度以上、すなわち、酸化処理を行わない場合で500MPa以上、酸化処理を行う場合で330MPa以上を指標とした。また、本発明の耐磨耗性は、同等の製造方法で製造されたTi−6Al−4V製自動車用エンジンバルブの耐磨耗性以上であることを指標とした。   The mechanical properties of the present invention are that the tensile strength at room temperature is 1050 MPa or more, which exceeds the room temperature tensile strength of Ti-6Al-4V automobile engine valves, and the elongation exceeds 5%, which is not a problem in practice. It was used as an index. In addition, the hot workability of the present invention is based on the presence or absence of cracks during engine valve manufacture. Further, the fatigue strength of the present invention is equal to or higher than the fatigue strength of a Ti-6Al-4V automobile engine valve manufactured by an equivalent manufacturing method, that is, when oxidation treatment is performed at 500 MPa or more when oxidation treatment is not performed. The index was 330 MPa or more. Moreover, it was set as the parameter | index that the abrasion resistance of this invention is more than the abrasion resistance of the engine valve for vehicles made from Ti-6Al-4V manufactured by the equivalent manufacturing method.

請求項1に記載の本発明では、上記の指標を達成するための、Al、Fe、Mo、Si、Cの各成分範囲を規定している。   In the present invention described in claim 1, the component ranges of Al, Fe, Mo, Si, and C for achieving the above-described index are defined.

Alは、固溶強化能が高い元素であり、添加量を増やすと室温および高温での引張強度が増す。室温で1050MPa以上の強度を得るためには、4.4%以上の添加が必要である。しかし、Alを5.5%以上添加すると、積層欠陥エネルギーを上げ、双晶変形を抑制するため、熱間および室温延性が劣化し、また、熱間加工性が低下する。さらに、Alはα相を強化する一方で、平滑な局所すべりを誘発するため、5.5%以上添加すると局所すべりが生じた場所で疲労き裂が発生しやすくなり、疲労特性が劣化する。そこで、Alの成分範囲は4.4%以上5.5%未満とした。   Al is an element having a high solid solution strengthening ability. Increasing the amount added increases the tensile strength at room temperature and high temperature. In order to obtain a strength of 1050 MPa or more at room temperature, it is necessary to add 4.4% or more. However, if Al is added in an amount of 5.5% or more, the stacking fault energy is increased and twin deformation is suppressed, so that hot and room temperature ductility deteriorates, and hot workability deteriorates. Furthermore, Al strengthens the α phase, but induces a smooth local slip. Therefore, if added in an amount of 5.5% or more, fatigue cracks are likely to occur where the local slip occurs, and the fatigue characteristics deteriorate. Therefore, the Al component range is set to be 4.4% or more and less than 5.5%.

Feは、β安定化置換型固溶元素であり、添加量にしたがって強度が上昇する。α安定化元素のAlと同時に添加することにより、α+β型の高強度合金が得られる。室温で1050MPa以上の充分な強度を得るため、1.4%以上の添加が必要である。しかし、Feの添加量が一定量を超えると偏析が顕著になる。Feの偏析は凝固時に生じやすく、その影響は、後の加工熱処理等の製造工程では解消できない。数百Kg以上の大型鋳塊では、2.3%以上添加すると偏析が顕著となるため、Feの添加量は2.3%未満とした。   Fe is a β-stabilized substitutional solid solution element, and its strength increases with the amount of addition. By adding simultaneously with the α stabilizing element Al, an α + β type high strength alloy can be obtained. In order to obtain sufficient strength of 1050 MPa or more at room temperature, addition of 1.4% or more is necessary. However, when the amount of Fe exceeds a certain amount, segregation becomes significant. Segregation of Fe is likely to occur during solidification, and the influence cannot be eliminated in a manufacturing process such as a subsequent heat treatment. In large ingots of several hundred kilograms or more, segregation becomes prominent when 2.3% or more is added, so the amount of Fe added is less than 2.3%.

Moは、強度の上昇と加工性向上の両方の効果を有する。Moはβ安定化置換型元素であり、Feと同様に、室温強度および高温強度、室温延性、疲労強度を向上させ、かつ、熱間加工性を向上させる働きをする。室温延性および熱間加工性を向上させるには、1.5%以上の添加が必要である。一方、添加量が一定量を超えると、やはり凝固偏析の問題が生じるため、大型鋳塊で凝固偏析が顕著とならない添加量として、5.5%未満とした。   Mo has the effects of increasing strength and improving workability. Mo is a β-stabilized substitutional element and, like Fe, functions to improve room temperature strength and high temperature strength, room temperature ductility and fatigue strength, and improve hot workability. In order to improve room temperature ductility and hot workability, addition of 1.5% or more is necessary. On the other hand, if the addition amount exceeds a certain amount, a problem of solidification segregation also occurs. Therefore, the addition amount at which solidification segregation does not become noticeable in a large ingot is set to less than 5.5%.

不純物元素として、SiおよびCを規定しているが、これは、これらの元素を一定量以上含有した場合、疲労特性、室温延性、熱間加工性に悪影響を与えるからである。疲労特性、室温延性、熱間加工性に悪影響を与えない含有量を調査した結果、Siは0.1%未満、Cは0.01%未満であることを見出し、それぞれの上限とした。なお、Si、Cは不可避的不純物として含有は避けられないため、実質的含有量の下限としては、通常、Siは0.005%以上、Cは0.0005%以上となる。   Si and C are specified as impurity elements, but when these elements are contained in a certain amount or more, they adversely affect fatigue characteristics, room temperature ductility, and hot workability. As a result of investigating the content that does not adversely affect the fatigue characteristics, room temperature ductility, and hot workability, it was found that Si was less than 0.1% and C was less than 0.01%, and the upper limit was set. Since Si and C are inevitable to be contained as inevitable impurities, the lower limit of the substantial content is usually 0.005% or more for Si and 0.0005% or more for C.

請求項2に記載の本発明では、Feの一部を、0.15%未満のNi,0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替する。これは、Feの一部を、Feと同様の働きをする安価な元素で置換するものである。   In the present invention according to claim 2, a part of Fe is replaced with one or more of Ni of less than 0.15%, Cr of less than 0.25%, and Mn of less than 0.25%. This replaces a part of Fe with an inexpensive element that works in the same way as Fe.

ここで、Ni、Cr、Mnの添加量の上限をそれぞれ、0.15%未満、0.25%未満、0.25%未満としたのは、これらの元素は、上記上限値を超えて添加すると、平衡相である金属間化合物(Ti2Ni、TiCr2、TiMn)が生成し、疲労強度、および室温延性が劣化するからである。なお、Ni、Cr,Mn,Feの総量は、1.4%以上、2.3%未満とする必要がある。これは、1.4%未満であると、室温引張強度が小さくなるためであり、また、2.3%以上では、室温延性が低下するためである。 Here, the upper limit of the addition amount of Ni, Cr, and Mn is set to less than 0.15%, less than 0.25%, and less than 0.25%, respectively. Then, an intermetallic compound (Ti 2 Ni, TiCr 2 , TiMn) which is an equilibrium phase is generated, and fatigue strength and room temperature ductility deteriorate. The total amount of Ni, Cr, Mn, and Fe needs to be 1.4% or more and less than 2.3%. This is because if it is less than 1.4%, the room temperature tensile strength is reduced, and if it is 2.3% or more, the room temperature ductility is lowered.

請求項3に記載の本発明では、エンジンバルブ表面の一部または表面全体に形成される酸化硬化層の厚みについて、500Hv以上の厚みを表層から5〜25μmとしている。5μm未満では、使用中に酸化硬化層が消失する恐れがあり、25μm超では表面粗度が悪化し疲労強度が悪化するためである。さらに好ましくは、10〜20μmとするのがよい。   In this invention of Claim 3, about 500 Hv or more thickness is 5-25 micrometers from the surface layer about the thickness of the oxidation hardening layer formed in a part of engine valve surface or the whole surface. If the thickness is less than 5 μm, the oxide-cured layer may be lost during use, and if it exceeds 25 μm, the surface roughness deteriorates and the fatigue strength deteriorates. More preferably, it is 10-20 micrometers.

請求項4に記載の本発明では、エンジンバルブ表面の一部または表面全体に形成される硬質皮膜の厚みを1〜10μmとしている。これは、1μmより薄いと使用中に磨耗して消失する恐れがあり、10μmより厚いとき裂が入ったり欠けやすくなったりするためである。中でも2〜6μmが望ましい。硬質皮膜の材質は、例えば、CrN、TiN、TiAlN等がある。被覆形成の手段については、イオンプレーティング法が、他の手段に比べて母材の温度上昇を抑制できるため、好適である。   In this invention of Claim 4, the thickness of the hard film formed in a part of engine valve surface or the whole surface is 1-10 micrometers. This is because if it is thinner than 1 μm, it may be worn away during use, and if it is thicker than 10 μm, it tends to crack or chip. Among these, 2 to 6 μm is desirable. Examples of the material of the hard coating include CrN, TiN, TiAlN, and the like. As a means for forming the coating, the ion plating method is preferable because it can suppress the temperature rise of the base material as compared with other means.

請求項5に記載の本発明では、エンジンバルブ表面の一部または表面全体に施されるピーニング処理について規定している。ピーニング処理による疲労強度の改善には、粒径の小さい投射材を用いて表層近傍に大きな圧縮残留応力を付与するのがよく、粒径200μm以下のものを使用するのが良い。投射材は金属粒子でも非金属粒子でも良い。   In the present invention described in claim 5, a peening treatment to be applied to a part of or the entire surface of the engine valve is defined. In order to improve the fatigue strength by the peening treatment, it is preferable to apply a large compressive residual stress in the vicinity of the surface layer using a projection material having a small particle size, and it is preferable to use a material having a particle size of 200 μm or less. The projection material may be metal particles or non-metal particles.

請求項6に記載の本発明では、少なくとも軸部のミクロ組織を、長さ50μm以下の針状α相からなる組織であると規定している。針状α相は、粗成形後の溶体化/冷却、時効、焼鈍あるいは酸化処理の際に形成されるもののほか、粗成形前に形成された初析α相が加工により伸長したものも含まれる。針状α相以外の部分は、残留β相である。針状α相を50μm以下にするのは、格段に高い強度および疲労強度が得られるためである。   In the present invention described in claim 6, it is defined that at least the microstructure of the shaft portion is a structure composed of an acicular α phase having a length of 50 μm or less. The acicular α phase includes those formed during solution treatment / cooling, aging, annealing, or oxidation treatment after rough forming, and those in which the pro-eutectoid α phase formed before rough forming is elongated by processing. . Portions other than the acicular α phase are residual β phases. The reason why the acicular α phase is set to 50 μm or less is that remarkably high strength and fatigue strength are obtained.

ピーニング処理は、特に疲労強度を必要とする部分のみに付加することができる。同様に、酸化硬化層あるいは硬質皮膜形成は、特に耐磨耗性を必要とする部分にのみ付加することができる。例えば、図1に示すエンジンバルブ全体に酸化硬化層を形成し、軸端部1にのみ硬質皮膜を付加することや、さらに首部3にのみピーニング処理を行うことができる。   The peening treatment can be added only to a portion requiring particularly fatigue strength. Similarly, the oxidation hardened layer or the hard film formation can be added only to a portion particularly requiring abrasion resistance. For example, an oxidation hardened layer can be formed on the entire engine valve shown in FIG. 1, and a hard coating can be added only to the shaft end 1, and further, peening can be performed only on the neck 3.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

表1に示す成分のチタン合金を真空アーク溶解(VAR:Vacuum Arc Remelting)法により溶解し、鋳造して約0.5tonの鋳塊とした。これら鋳塊から鍛造、熱延により製造した直径13mmの線材を素材とした。   Titanium alloys having the components shown in Table 1 were melted by a vacuum arc melting (VAR) method and cast into an ingot of about 0.5 tonnes. A wire having a diameter of 13 mm manufactured from these ingots by forging and hot rolling was used as a raw material.

ここで試作した自動車用エンジンバルブは、図1に示すような形状を示すものであり、まずチタン合金素材から、軸部2および傘部4を熱間でエンジンバルブ形状に粗成形し、β変態温度以上の温度で溶体化処理を行って空冷以上の速度で冷却した後、切削加工、酸化処理を行い製造した。   The automotive engine valve prototyped here has a shape as shown in FIG. 1. First, the shaft portion 2 and the umbrella portion 4 are roughly formed into a shape of an engine valve hot from a titanium alloy material, and the β transformation is performed. A solution treatment was performed at a temperature higher than the temperature, and the solution was cooled at a speed higher than that of air cooling, followed by cutting and oxidation treatment.

Figure 2007100666
Figure 2007100666

Figure 2007100666
Figure 2007100666

表2に、表1に示す成分のチタン合金で製造された自動車用エンジンバルブの評価結果を示す。強度は、製造された自動車用エンジンバルブの軸部から引張試験片を採取し、大気中で、歪速度1×10-4-1で引張試験を行い評価した。いずれの場合においても、伸びは実用上問題のない5%以上であった。熱間加工性は、粗成形時の割れ発生有無で評価した。 Table 2 shows the evaluation results of automobile engine valves manufactured with titanium alloys having the components shown in Table 1. The strength was evaluated by taking a tensile test piece from the shaft portion of the manufactured automobile engine valve and performing a tensile test in the atmosphere at a strain rate of 1 × 10 −4 s −1 . In any case, the elongation was 5% or more, which is practically acceptable. Hot workability was evaluated by the presence or absence of cracks during rough forming.

比較例の試料No.8〜10の合金は、特許文献4に記載のα+βチタン合金(AlとFeのみを含む)と同等のものである。これらの合金で製造された自動車用エンジンバルブの引張強度は1050MPa未満であり、強度が不十分である。一方、Moを添加した本発明例の試料No.1〜7の合金で製造された自動車用エンジンバルブは、引張強度1050MPa以上であり、粗成形中の割れ発生無しであり、充分な強度と優れた熱間加工性を有している。   Sample No. of Comparative Example The alloys of 8 to 10 are equivalent to the α + β titanium alloy described in Patent Document 4 (including only Al and Fe). The tensile strength of automobile engine valves manufactured with these alloys is less than 1050 MPa, and the strength is insufficient. On the other hand, Sample No. of the present invention example to which Mo was added. The engine valves for automobiles manufactured with the alloys 1 to 7 have a tensile strength of 1050 MPa or more, no cracks are generated during rough forming, and have sufficient strength and excellent hot workability.

また、本発明例の試料No.11〜13の合金は、Feの一部を、適量のNi、Cr、Mnのいずれかで置き換えたものである。これらの合金で製造された自動車用エンジンバルブも、充分な強度と室温延性、および、優れた熱間加工性を有している。一方、Ni、Cr、Mnの量が適量を超えた比較例の試料No.14〜16の合金で製造された自動車用エンジンバルブは、粗成形中に割れが発生しており、熱間加工性が低いものである。   In addition, Sample No. In the alloys 11 to 13, a part of Fe is replaced with an appropriate amount of Ni, Cr, or Mn. Automotive engine valves made of these alloys also have sufficient strength and room temperature ductility and excellent hot workability. On the other hand, the sample No. of the comparative example in which the amount of Ni, Cr, Mn exceeded the appropriate amount. The engine valve for automobiles manufactured with an alloy of 14 to 16 has cracks during rough forming and has low hot workability.

また、本発明例の試料No.17と18の合金は、Feの一部を、適量のNi、Cr、Mnの複合で置き換えたものである。これらの合金で製造された自動車用エンジンバルブも、充分な強度と優れた熱間加工性を有している。一方、Fe、Ni、Cr、Mnの合計量が適量を超えた比較例の試料No.19の合金で製造された自動車用エンジンバルブは、粗成形中に割れが発生しており、熱間加工性ともに低いものである。また、Fe、Ni、Cr、Mnの合計量が適量に満たない比較例の試料No.20の合金で製造された自動車用エンジンバルブは、引張強度が1050MPaに達していない。   In addition, Sample No. Alloys 17 and 18 are obtained by replacing a part of Fe with a composite of an appropriate amount of Ni, Cr, and Mn. Automotive engine valves made of these alloys also have sufficient strength and excellent hot workability. On the other hand, sample No. of the comparative example in which the total amount of Fe, Ni, Cr, and Mn exceeded an appropriate amount. The engine valve for automobiles manufactured with the alloy of 19 has cracks during rough forming and has low hot workability. Moreover, sample No. of the comparative example whose total amount of Fe, Ni, Cr, and Mn is less than an appropriate amount. The engine valve for automobiles manufactured with the alloy of 20 does not reach the tensile strength of 1050 MPa.

また、比較例の試料No.21、22、23および24の合金は、試料No.4、5および17の合金に、Siを0.1%以上添加した合金である。これらの合金で製造された自動車用エンジンバルブは、いずれも、粗成形中に割れが発生している。   In addition, sample No. The alloys of Nos. 21, 22, 23 and 24 are sample Nos. This is an alloy obtained by adding 0.1% or more of Si to the alloys of 4, 5, and 17. All automotive engine valves manufactured with these alloys are cracked during rough forming.

表3に、本発明の自動車用エンジンバルブ(以下、本発明品)と従来のTi−6Al−4V製の自動車用エンジンバルブ(以下、従来品)の仕様および各種試験結果を示す。   Table 3 shows the specifications and various test results of the automotive engine valve of the present invention (hereinafter referred to as the present product) and the conventional Ti-6Al-4V automotive engine valve (hereinafter referred to as the conventional product).

Figure 2007100666
Figure 2007100666

ここでの自動車用エンジンバルブは、各々のチタン合金素材から、軸部および傘部を熱間でエンジンバルブ形状に粗成形し、β変態温度−100℃以上の温度で溶体化処理を行って空冷以上の速度で冷却した後、切削加工し、時効処理または焼鈍処理を行い、次いで、酸化処理、硬質皮膜処理、またはピーニング処理を行い製造した。なお、上記の工程のうち、溶体化処理を省略する場合もある。時効処理または焼鈍処理は500〜750℃の範囲で1〜4時間行った。酸化処理は、処理温度670〜820℃で、1〜16時間の範囲で行い、酸化硬化層を適正な厚みに調整した。ミクロ組織を、針状組織にする場合は溶体化処理をβ変態温度以上で行い、微細な針状α相からなる組織にする場合は、溶体化処理をβ変態温度〜β変態温度−100℃の範囲で行うか、溶体化処理を省略し焼鈍処理のみを行った。針状組織とする場合に、本発明品の溶体化温度が1010℃で、従来品が1050℃と異なるのは、β変態温度が異なるためである。   Here, the engine valve for automobiles is air-cooled by roughly forming the shaft portion and the umbrella portion into the shape of the engine valve hot from each titanium alloy material, and performing solution treatment at a temperature of β transformation temperature −100 ° C. or higher. After cooling at the above speed, cutting was performed, aging treatment or annealing treatment was performed, and then oxidation treatment, hard film treatment, or peening treatment was performed. In addition, a solution treatment may be abbreviate | omitted among said processes. The aging treatment or annealing treatment was performed in the range of 500 to 750 ° C. for 1 to 4 hours. The oxidation treatment was performed at a treatment temperature of 670 to 820 ° C. for 1 to 16 hours, and the oxidation hardened layer was adjusted to an appropriate thickness. When the microstructure is a needle-like structure, the solution treatment is performed at a β transformation temperature or higher, and when the microstructure is made of a fine needle-like α phase, the solution treatment is performed at a β transformation temperature to a β transformation temperature of −100 ° C. The solution treatment was omitted or only the annealing treatment was performed. In the case of an acicular structure, the solution temperature of the product of the present invention is 1010 ° C. and the conventional product is different from 1050 ° C. because the β transformation temperature is different.

耐磨耗性は、エンジンバルブ材の軸方向に引張荷重を加えた上で、軸部表面に、荷重98N(10kgf)、振動周波数500Hzの条件でSCM435材を衝突させ、加振回数1×107回後の、表面におけるき裂の有無で評価した。疲労特性は、エンジンバルブと同等の溶体化処理、時効処理、酸化処理、硬質皮膜処理またはピーニング処理を行った試験片を作成し、応力比R=−1、3600rpm、室温の条件で回転曲げ疲労試験を行い、繰り返し数1×107回で破断しなかった強度を疲労強度とした。 The wear resistance is determined by applying a tensile load in the axial direction of the engine valve material, causing the SCM435 material to collide with the shaft surface under the conditions of a load of 98 N (10 kgf) and a vibration frequency of 500 Hz. The evaluation was based on the presence or absence of cracks on the surface after 7 times. Fatigue characteristics are the same as those for engine valves, but specimens that have undergone solution treatment, aging treatment, oxidation treatment, hard coating treatment or peening treatment are prepared, and rotational bending fatigue is performed under conditions of stress ratio R = -1, 3600 rpm and room temperature. The test was performed, and the strength that did not break at a repetition number of 1 × 10 7 times was defined as fatigue strength.

No.1とNo.10において、従来品の疲労強度が500MPaであるのに対し、本発明品は640MPaと非常に高い疲労強度を有している。   No. 1 and No. 10, the conventional product has a fatigue strength of 500 MPa, whereas the product of the present invention has a very high fatigue strength of 640 MPa.

No.2とNo.13は、酸化硬化層を形成した場合の本発明品と従来品との疲労強度を比較したものである。酸化硬化層を形成した場合でも、本発明品は疲労強度が非常に高い。また、No.3では酸化硬化層厚みを25μmまで厚くしても、No.13の従来品における酸化硬化層厚み15μmの場合と同等の疲労強度を有しており、使用中に酸化硬化層厚みが減少しても残存厚みが確保され耐磨耗性が保持されることを示している。しかし、No.4に示すように、酸化硬化層厚みが30μm以上になると、No.3の従来品の疲労強度を下回るため、不適である。   No. 2 and No. No. 13 is a comparison of fatigue strength between the product of the present invention and the conventional product when an oxidation hardened layer is formed. Even when an oxidation hardened layer is formed, the product of the present invention has a very high fatigue strength. No. In No. 3, even when the thickness of the oxide hardened layer is increased to 25 μm, No. 3 It has the same fatigue strength as that of the conventional 13 products with an oxide hardened layer thickness of 15 μm, and even if the thickness of the oxide hardened layer decreases during use, the remaining thickness is secured and the wear resistance is maintained. Show. However, no. As shown in FIG. 4, when the thickness of the oxide hardened layer is 30 μm or more, No. 4 is obtained. This is unsuitable because it is below the fatigue strength of the conventional product No. 3.

No.5とNo.14は、硬質皮膜を形成した場合の本発明品と従来品を比較したものであり、本発明品の疲労強度が高いことを示している。   No. 5 and no. No. 14 compares the product of the present invention with a conventional product when a hard coating is formed, and shows that the fatigue strength of the product of the present invention is high.

No.6は、本発明品において、酸化硬化層と硬質皮膜をともに形成したものであり、高い疲労強度と耐磨耗性を有している。   No. 6 is a product of the present invention in which both an oxide hardened layer and a hard film are formed, and has high fatigue strength and wear resistance.

No.7とNo.15は、ピーニングを行った場合の本発明品と従来品との疲労強度を比較したものである。ピーニング処理を行った場合、従来品の疲労強度は520MPaにとどまるのに対し、本発明品では690MPaと非常に高い疲労強度を有している。   No. 7 and no. 15 is a comparison of the fatigue strength between the product of the present invention and the conventional product when peening is performed. When the peening treatment is performed, the fatigue strength of the conventional product is only 520 MPa, while the product of the present invention has a very high fatigue strength of 690 MPa.

No.8とNo.16は、酸化硬化層を形成した上でピーニング処理を行った場合である。その場合でも、従来品の疲労強度は390MPaにとどまるのに対し、本発明品では670MPaと非常に高い疲労強度を有している。   No. 8 and no. Reference numeral 16 denotes a case where the peening treatment is performed after the oxidation hardened layer is formed. Even in that case, the fatigue strength of the conventional product is only 390 MPa, whereas the product of the present invention has a very high fatigue strength of 670 MPa.

No.9、10は、本発明品のうち、溶体化処理をβ変態温度〜β変態温度−100℃の範囲で行い、長さ30μm以下の針状α相からなる組織を形成したものであるが、ピーニング処理を行わない場合で560MPa、ピーニング処理を行った場合で700MPaと非常に高い疲労強度を有している。   No. 9, 10, among the products of the present invention, the solution treatment is performed in the range of β transformation temperature to β transformation temperature −100 ° C., and a structure composed of acicular α phase having a length of 30 μm or less is formed. It has a very high fatigue strength of 560 MPa when no peening treatment is performed, and 700 MPa when a peening treatment is performed.

No.11は、本発明品のうち、溶体化処理を省略して焼鈍処理を行い、硬質皮膜処理を行ったものであるが、その場合であっても従来品と比較して、充分に高い疲労強度を有することを示している。   No. 11 is a product obtained by omitting the solution treatment and performing a hard coating treatment in the product of the present invention, but even in that case, sufficiently high fatigue strength is obtained as compared with the conventional product. It has shown that it has.

自動車用エンジンバルブを正面図で示す図である。It is a figure which shows the engine valve for motor vehicles with a front view.

符号の説明Explanation of symbols

1 軸端部
2 軸部
3 首部
4 傘部
1 Shaft end 2 Shaft 3 Neck 4 Umbrella

Claims (6)

質量%で、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.5%未満のMoを含有し、不純物として、Siは0.1%未満、Cは0.01%未満を満たし、残部チタンおよび不可避的不純物からなるチタン合金製であることを特徴とする、高強度チタン合金製自動車用エンジンバルブ。   It contains 4.4% or more and less than 5.5% Al, 1.4% or more and less than 2.3% Fe, 1.5% or more and less than 5.5% Mo in terms of mass%, and as impurities, Si A high-strength titanium alloy engine valve for automobiles, characterized in that is less than 0.1%, C is less than 0.01%, and is made of a titanium alloy consisting of the remaining titanium and inevitable impurities. 前記Feの一部を、質量%で0.15%未満のNi、0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替したことを特徴とする、請求項1に記載の高強度チタン合金製自動車用エンジンバルブ。   A part of the Fe is replaced by one or more of Ni of less than 0.15% by mass, Cr of less than 0.25%, and Mn of less than 0.25%. Item 4. A high-strength titanium alloy automobile engine valve according to Item 1. 表面から5〜25μmの厚みでビッカース硬さHvが500以上の酸化硬化層が、前記エンジンバルブの表面の一部または表面全体に形成されていることを特徴とする、請求項1または2に記載の高強度チタン合金製自動車用エンジンバルブ。   3. The oxide hardened layer having a thickness of 5 to 25 μm from the surface and a Vickers hardness Hv of 500 or more is formed on a part of or the entire surface of the engine valve. 4. High-strength titanium alloy automotive engine valve. 表面の一部または全体が、厚み1〜10μmの硬質皮膜により被覆されていることを特徴とする、請求項1ないし3のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。   4. The high-strength titanium alloy automobile engine valve according to claim 1, wherein a part or the whole of the surface is covered with a hard coating having a thickness of 1 to 10 μm. 表面の一部または全体にショットピーニング処理が行われていることを特徴とする、請求項1ないし4のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。   The engine valve for automobiles made of high-strength titanium alloy according to any one of claims 1 to 4, wherein a part or the whole of the surface is subjected to shot peening treatment. 少なくとも軸部のミクロ組織のα相が、長さ50μm以下の針状α相からなることを特徴とする、請求項1ないし5のいずれか1項に記載の高強度チタン合金製自動車用エンジンバルブ。   The engine valve for automobiles made of high-strength titanium alloy according to any one of claims 1 to 5, characterized in that at least the α phase of the microstructure of the shaft portion is composed of a needle-like α phase having a length of 50 µm or less. .
JP2005294686A 2005-10-07 2005-10-07 High strength titanium alloy automotive engine valve Active JP4517095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294686A JP4517095B2 (en) 2005-10-07 2005-10-07 High strength titanium alloy automotive engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294686A JP4517095B2 (en) 2005-10-07 2005-10-07 High strength titanium alloy automotive engine valve

Publications (2)

Publication Number Publication Date
JP2007100666A true JP2007100666A (en) 2007-04-19
JP4517095B2 JP4517095B2 (en) 2010-08-04

Family

ID=38027847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294686A Active JP4517095B2 (en) 2005-10-07 2005-10-07 High strength titanium alloy automotive engine valve

Country Status (1)

Country Link
JP (1) JP4517095B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262535A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Wear resistant titanium member
JP2010155075A (en) * 2008-12-31 2010-07-15 Taylor Made Golf Co Inc Titanium alloy for golf-club head, and clubhead comprising the same
JP2010216011A (en) * 2009-02-19 2010-09-30 Nippon Steel Corp SEMISTABLE beta TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS AND METHOD FOR PRODUCING THE SAME
WO2011105620A1 (en) 2010-02-26 2011-09-01 新日本製鐵株式会社 Automotive engine valve comprising titanium alloy and having excellent heat resistance
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2012149291A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp α+β TYPE TITANIUM ALLOY MEMBER HAVING HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND METHOD FOR PRODUCING THE SAME
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
WO2019124265A1 (en) * 2017-12-20 2019-06-27 Ntn株式会社 Machine part and method for producing machine part
JP2019108604A (en) * 2017-12-20 2019-07-04 Ntn株式会社 Method for producing machine component
JP2019108603A (en) * 2017-12-20 2019-07-04 Ntn株式会社 Machine component
US10669619B2 (en) 2014-11-28 2020-06-02 Nippon Steel Corporation Titanium alloy member and method for manufacturing the same
US12104239B2 (en) 2014-05-15 2024-10-01 General Electric Company Titanium alloys and their methods of production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249313A (en) * 1990-02-27 1991-11-07 Riken Corp Intake/discharge valve for internal combustion engine
JPH0762474A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp Alpha+beta type titanium alloy
JPH07269316A (en) * 1994-03-31 1995-10-17 Nippon Steel Corp Low strength titanium alloy made intake engine valve
JPH09195730A (en) * 1996-01-11 1997-07-29 Mitsubishi Motors Corp Valve for internal combustion engine
JP2000204425A (en) * 1998-11-12 2000-07-25 Kobe Steel Ltd High strength and high ductility alpha + beta type titanium alloy
JP2001234313A (en) * 2000-02-23 2001-08-31 Fuji Oozx Inc Method for manufacturing engine valve mede of titanium alloy
JP2002097914A (en) * 2000-07-18 2002-04-05 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacturing it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249313A (en) * 1990-02-27 1991-11-07 Riken Corp Intake/discharge valve for internal combustion engine
JPH0762474A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp Alpha+beta type titanium alloy
JPH07269316A (en) * 1994-03-31 1995-10-17 Nippon Steel Corp Low strength titanium alloy made intake engine valve
JPH09195730A (en) * 1996-01-11 1997-07-29 Mitsubishi Motors Corp Valve for internal combustion engine
JP2000204425A (en) * 1998-11-12 2000-07-25 Kobe Steel Ltd High strength and high ductility alpha + beta type titanium alloy
JP2001234313A (en) * 2000-02-23 2001-08-31 Fuji Oozx Inc Method for manufacturing engine valve mede of titanium alloy
JP2002097914A (en) * 2000-07-18 2002-04-05 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacturing it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262535A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Wear resistant titanium member
JP2010155075A (en) * 2008-12-31 2010-07-15 Taylor Made Golf Co Inc Titanium alloy for golf-club head, and clubhead comprising the same
JP2010216011A (en) * 2009-02-19 2010-09-30 Nippon Steel Corp SEMISTABLE beta TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS AND METHOD FOR PRODUCING THE SAME
WO2011105620A1 (en) 2010-02-26 2011-09-01 新日本製鐵株式会社 Automotive engine valve comprising titanium alloy and having excellent heat resistance
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2012149291A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp α+β TYPE TITANIUM ALLOY MEMBER HAVING HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND METHOD FOR PRODUCING THE SAME
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
JP5093428B2 (en) * 2011-02-10 2012-12-12 新日本製鐵株式会社 Wear-resistant titanium alloy member with excellent fatigue strength
US12104239B2 (en) 2014-05-15 2024-10-01 General Electric Company Titanium alloys and their methods of production
US10669619B2 (en) 2014-11-28 2020-06-02 Nippon Steel Corporation Titanium alloy member and method for manufacturing the same
WO2019124265A1 (en) * 2017-12-20 2019-06-27 Ntn株式会社 Machine part and method for producing machine part
JP2019108603A (en) * 2017-12-20 2019-07-04 Ntn株式会社 Machine component
US20200318684A1 (en) * 2017-12-20 2020-10-08 Ntn Corporation Mechanical component and method for manufacturing mechanical component
JP6991853B2 (en) 2017-12-20 2022-02-15 Ntn株式会社 Machine parts
JP7051419B2 (en) 2017-12-20 2022-04-11 Ntn株式会社 Manufacturing method of machine parts
JP2019108604A (en) * 2017-12-20 2019-07-04 Ntn株式会社 Method for producing machine component

Also Published As

Publication number Publication date
JP4517095B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4517095B2 (en) High strength titanium alloy automotive engine valve
RU2627312C2 (en) Titanium alloy with improved properties
JP5328694B2 (en) Automotive engine valve made of titanium alloy with excellent heat resistance
EP2674506B1 (en) Abrasion-resistant titanium alloy member having excellent fatigue strength
EP1127949B1 (en) TiAl based alloy, production process therefor, and rotor blade using same
JP6226087B2 (en) Titanium alloy member and method for producing titanium alloy member
JP5048996B2 (en) Wear-resistant aluminum alloy material excellent in workability and method for producing the same
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
RU2695852C2 (en) α-β TITANIUM ALLOY
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
EP0657558B1 (en) Fe-base superalloy
JP3580441B2 (en) Ni-base super heat-resistant alloy
WO2020179912A1 (en) Bar
JPH0762474A (en) Alpha+beta type titanium alloy
KR102062031B1 (en) Engine exhaust valve for large ship and method for manufacturing the same
JP2009041065A (en) Titanium alloy for heat resistant member having excellent high temperature fatigue strength and creep resistance
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
CN115198144A (en) Heat-resistant alloy member, material used therefor, and method for producing same
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
Kasatori et al. Development of heat resistant titanium alloy for exhaust valves applicable for motorcycles
WO2024150632A1 (en) Titanium alloy plate, method for manufacturing titanium alloy component, and method for manufacturing titanium alloy plate
JP5449754B2 (en) Forging piston for engine or compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250