JPH01309933A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPH01309933A
JPH01309933A JP14023788A JP14023788A JPH01309933A JP H01309933 A JPH01309933 A JP H01309933A JP 14023788 A JP14023788 A JP 14023788A JP 14023788 A JP14023788 A JP 14023788A JP H01309933 A JPH01309933 A JP H01309933A
Authority
JP
Japan
Prior art keywords
molten metal
bubbles
reinforcing material
gas
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14023788A
Other languages
Japanese (ja)
Other versions
JP2770025B2 (en
Inventor
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP63140237A priority Critical patent/JP2770025B2/en
Publication of JPH01309933A publication Critical patent/JPH01309933A/en
Application granted granted Critical
Publication of JP2770025B2 publication Critical patent/JP2770025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To effectively manufacture the subject composite material having excellent mechanical characteristics by floating away a reinforcing material having sufficient wettability with metallic molten metal and its flocculated body in the reinforcing material dispersed and mixed into the molten metal together with bobbles generated in the molten metal. CONSTITUTION:A reinforcing material such as ceramic grains is dispersed and mixed into metallic molten metal. Bubbles are generated in the metallic molten metal, and the reinforcing material having insufficient wettability with the above molten metal or its flocculated body is seized by the bubbles and is floated on the surface of the molten metal together with the bubbles. The above bubbles can be generated by blowing an inert gas or an active gas into the metallic molten metal or disposing a gas-generating material into the metallic molten metal. Dross constituted of the above floats is then removed from the molten metal, and, after that, the molten metal is solidified. By this method, the above flocculated body or the like is certainly removed with good efficiency to obtain the composite material having excellent mechanical characteristics and contg. uniformly dispersed reinforcing material.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、金属(f?に純アルミニウムまたはアルミ
ニウム合金)中に、セラミックス粒子や繊維からなる強
化材を均一に分散さぜな分散型金属系複合材料の製造方
法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) This invention is a method of manufacturing a dispersed metal in which a reinforcing material consisting of ceramic particles or fibers is uniformly dispersed in a metal (pure aluminum or aluminum alloy). The present invention relates to a method for producing a composite material.

(従来の技術) 周知のように、分散型金属系複合材料は金属の特性を保
持しつつ、さらに機械的特性の飛躍的な改善が得られも
のである。特に、純アルミニウムまたはアルミニウム合
金をマトリックスとして、炭素質や酸化物、窒化物など
のセラミックス粒子を分散強化材としたアルミニウム基
複合材料は、アルミニウムの特徴である軽さに加え、耐
窄耗性などの優れた機械的特性を有しているので、種々
の機械部材などに広く利用することが試みられている。
(Prior Art) As is well known, dispersed metal-based composite materials retain the properties of metals while dramatically improving mechanical properties. In particular, aluminum matrix composite materials, which have pure aluminum or aluminum alloy as a matrix and dispersed reinforcement with ceramic particles such as carbonaceous, oxide, or nitride, have not only the lightness that is characteristic of aluminum, but also have excellent wear resistance. Because it has excellent mechanical properties, attempts have been made to use it widely in various mechanical parts.

従来、この様な複合材料の製造方法としては、粉末冶金
法や、ポルテックス法などの溶湯法が知られている。こ
の中でも、ポルテックス溶湯法は製造工程がシンプルな
のでコスト的に有利であり、また鋳造が可能であるなど
の′F!r徴を有している。
Conventionally, powder metallurgy methods and molten metal methods such as the portex method are known as methods for manufacturing such composite materials. Among these, the Portex molten metal method is advantageous in terms of cost because the manufacturing process is simple, and it also has advantages such as being able to be cast. It has r sign.

この溶湯法においては、セラミック粒子と純アルミニラ
ムまたはアルミニウム合金との間のぬれ性が、得られた
複合材料の据械的特性に大きく影響を与えるなめ、ぬれ
性を向上させるべく、種々の方法が採られている。
In this molten metal method, the wettability between the ceramic particles and pure aluminum or aluminum alloy greatly affects the mechanical properties of the resulting composite material, so various methods are used to improve the wettability. It is taken.

その−例としては、セラミックス粒子の表面処理を行っ
たり、アルミニウム溶湯にCaを添加するなどの方法が
とられている。
Examples of such methods include surface treatment of ceramic particles and addition of Ca to molten aluminum.

(発明が解決しようとする課題) しかし、上記の溶湯法では、セラミックス粒子の添加量
が多い場合や、粒径の小さなものを分散させた場合には
、セラミック粒子が溶湯中にガスを含んだ凝集体として
存在するおそれがある。この様な凝集体の存在は、複合
材の強度や伸びを低下させ、また、押出鋳造・圧延など
の塑性加工や切削加工後の表面性状を悪化させるなどの
問題点がある。
(Problem to be solved by the invention) However, in the above-mentioned molten metal method, when a large amount of ceramic particles are added or when particles with small diameter are dispersed, the ceramic particles may contain gas in the molten metal. There is a possibility that it exists as an aggregate. The presence of such aggregates causes problems such as lowering the strength and elongation of the composite material and deteriorating the surface quality after plastic working such as extrusion casting and rolling or cutting.

この発明は上記問題点を解決することを基本的な目的と
し、上述の凝集体を効率よく、しかも確実に除去して、
機械的特性に優れた複合材料を得ることができる複合材
料の製造方法を提供するものである。
The basic purpose of this invention is to solve the above-mentioned problems, and to efficiently and reliably remove the above-mentioned aggregates,
The present invention provides a method for manufacturing a composite material that can obtain a composite material with excellent mechanical properties.

(課題を解決する為の手段) 本発明者は、前記した粒子の凝集体の除去を【]的に研
究を重ねた結果、セラミックス粒子を混合・分散させた
アルミニウム溶湯中に、ガスを吹込むことにより気泡を
発生させると、その気泡の上昇と共に凝集体が浮上し、
一方、アルミニウム溶湯と十分にぬれて均一に分散した
セラミックス粒子は分離浮上せず、溶湯中に残存するこ
とを見出したものである。
(Means for solving the problem) As a result of repeated research on the removal of the above-mentioned particle aggregates, the inventor of the present invention has discovered that a gas is blown into molten aluminum in which ceramic particles are mixed and dispersed. When bubbles are generated by this, aggregates float up as the bubbles rise,
On the other hand, it has been found that ceramic particles that are sufficiently wetted with the molten aluminum and uniformly dispersed do not separate and float, but remain in the molten metal.

本発明は上記知見に基づいてなされたものであり、強化
材を分散さぜな金属溶湯を鋳造するに先たち、上記溶湯
中に気泡を発生させ、溶湯とのぬれが不十分な強化材や
その凝集体を気泡に捕捉させて気泡と共に溶湯表面に浮
上させ、これを溶湯から除去した後、溶湯を凝固させて
複合材を得ることを特徴とするものである。
The present invention has been made based on the above knowledge, and prior to casting a molten metal in which a reinforcing material is dispersed, bubbles are generated in the molten metal, and the reinforcing material or the reinforcing material is not sufficiently wetted with the molten metal. The method is characterized in that the aggregates are captured by air bubbles, floated to the surface of the molten metal together with the air bubbles, are removed from the molten metal, and then the molten metal is solidified to obtain a composite material.

なお、本発明が応用される金属は、金属系の複合材料の
マトリックスとして用いられるものであれば、特にfI
別は限定されないが、一般にはアルミニウムが多く用い
られる。このマトリックスとして使用される純アルミニ
ウムやアルミニウム合金には、工業用普通純度のアルミ
ニウムや月56061.2014.7075などの展伸
用アルミニウム合金などが一般的に使用される。また、
本発明はこれら純アルミニウムまたはアルミニウム合金
の秤類に限定されないことも勿論である。
Note that the metal to which the present invention is applied is particularly fI, if it is used as a matrix of a metal-based composite material.
Aluminum is generally used, although there is no particular limitation. As the pure aluminum or aluminum alloy used as this matrix, industrial ordinary purity aluminum or wrought aluminum alloy such as 56061.2014.7075 is generally used. Also,
Of course, the present invention is not limited to these pure aluminum or aluminum alloy scales.

また分散強化材としては、SiC,5L3N4、Al 
203、SiO2,黒鉛などのセラミックス粒子が用い
られるが、さらにウィスカーなどの短繊維を用いること
もできる。なお、本発明は、これら強化材の粁類、さら
にはその粒径や、長さ、分散量などに限定されるもので
はない。
In addition, as dispersion reinforcement materials, SiC, 5L3N4, Al
Ceramic particles such as No. 203, SiO2, and graphite are used, but short fibers such as whiskers can also be used. It should be noted that the present invention is not limited to these reinforcing materials, such as the grain size, length, amount of dispersion, etc.

次に、強化材を混合・分散させた金rf!!J溶湯中で
発生させる気泡は、溶湯中にガスを吹き込むことにより
行うことができる。このガスとしては、N2やArなど
の不活性ガスもしくは塩素やジクロルジフルオルメタン
(CC12F2)などの活性ガスまたはそれらの混合ガ
スなど用いるのが良い。
Next, gold rf with reinforcing material mixed and dispersed! ! Bubbles can be generated in the J molten metal by blowing gas into the molten metal. As this gas, it is preferable to use an inert gas such as N2 or Ar, an active gas such as chlorine or dichlorodifluoromethane (CC12F2), or a mixed gas thereof.

この様なガスは、−aにはアルミニウム溶湯中の水素を
除去するために用いらるものであり、凝集体の除去と同
時に水素脱ガスの効果もある。凝集体の除去のみを目的
としな場合は、単なる空気の吹き込みでも効果はあるが
、空気中の酸素や水蒸気などにより金属溶湯が酸化した
り、水素を多星に含み、ガスポロシティ−などの欠陥と
なるため、金属溶湯に使用するのは好ましくなく、酸素
ガス、水素ガス等も同様である。
Such a gas is used in -a to remove hydrogen from the molten aluminum, and has the effect of degassing hydrogen at the same time as removing aggregates. If the purpose is not to remove aggregates, simply blowing air is effective, but the molten metal may be oxidized by oxygen or water vapor in the air, or contain hydrogen, causing defects such as gas porosity. Therefore, it is not preferable to use it for molten metal, and the same applies to oxygen gas, hydrogen gas, etc.

さらに気泡の発生手段として、金属溶湯中にガス発生材
を配置する方法を採用することも可能である。
Furthermore, as a means for generating bubbles, it is also possible to employ a method in which a gas generating material is placed in the molten metal.

このガス発生材には、上記した不活性ガスなどを例えば
金属に封じ込めたものや、金属溶湯中での化学的な分解
によりガスを発生ずるものを用いる。
This gas generating material may be one in which the above-mentioned inert gas is sealed in metal, or one that generates gas by chemical decomposition in molten metal.

例えば、六塩化エタンなどのITja塩素化合物系フラ
ックスを溶湯中に添加することにより塩素などの分解ガ
スが発生し、凝集体除去の効果とともに水素脱ガスの効
果が得られる。
For example, by adding ITja chlorine compound flux such as hexachloroethane to the molten metal, decomposed gas such as chlorine is generated, and the effect of removing aggregates and degassing hydrogen can be obtained.

(作 用) すなわちこの発明によれば、強化材を混合・分散させた
金属溶湯中に気泡を発生させることにより、金属溶湯中
に存在する強化材の凝集体や金属溶湯とのぬれが不十分
な強化材が選択的に気泡に捕捉され、気泡とともに金属
溶湯表面にまで分離浮上する。この浮上物を金属溶湯か
ら除去することにより、溶湯中に存在する強化材の均一
性ならびにぬれ性の特性が向上し、この溶湯をli!J
造することにより、機械的特性に優れた複合材料が得ら
れる。
(Function) That is, according to the present invention, by generating bubbles in the molten metal in which the reinforcing material is mixed and dispersed, the reinforcing material present in the molten metal is insufficiently wetted with aggregates and the molten metal. The reinforcing material is selectively captured by the bubbles, and together with the bubbles, it separates and floats to the surface of the molten metal. By removing these floating objects from the molten metal, the uniformity and wettability properties of the reinforcing material present in the molten metal are improved, and this molten metal can be made into li! J
By manufacturing, a composite material with excellent mechanical properties can be obtained.

次に、この発明の実施例を以下に説明する。Next, embodiments of this invention will be described below.

(実施例1) マトリックスをJISGO61アルミニウム合金とし、
平均粒径が約15+unのSiCセラミック粒子を約5
重量%含んだアルミニウム溶湯30kgをポルテックス
溶湯法によって作製した後、乾燥Arガスを、溶湯中に
浸漬したパイプを用いて圧力2kg/d、流i10fJ
/n1inで、3分間吹き込んだ、その後、溶湯表面に
浮上したドロスを除去し、8インチ径のビレッ1−形状
に鋳造し、さらにこれを、5Otam径の丸棒に押出を
行った。
(Example 1) The matrix is JISGO61 aluminum alloy,
About 5 SiC ceramic particles with an average particle size of about 15+un
After preparing 30 kg of molten aluminum containing % by weight by the portex molten metal method, dry Ar gas was heated at a pressure of 2 kg/d and a flow rate of 10 fJ using a pipe immersed in the molten metal.
/n1 inch for 3 minutes. After that, the dross floating on the surface of the molten metal was removed, and the molten metal was cast into a billet shape with a diameter of 8 inches, which was further extruded into a round bar with a diameter of 5 Otam.

一方、比較例として上記と同様にSiCセラミック粒子
を分散混合させたアルミニウム合金溶湯を、内部に気泡
を発生させることなく、鋳造して押出しを行った。前記
実施例で得られた鋳造品はSiC粒子が均一に分散して
おり、′a集体の存在も認められない。これに対し、比
較例の鋳造品では、SiC粒子の凝集体が存在しており
、分散は不均一であった。
On the other hand, as a comparative example, a molten aluminum alloy in which SiC ceramic particles were dispersed and mixed in the same manner as above was cast and extruded without generating bubbles inside. In the cast product obtained in the above example, SiC particles were uniformly dispersed, and no presence of 'a aggregates was observed. On the other hand, in the cast product of the comparative example, aggregates of SiC particles were present, and the dispersion was non-uniform.

次に、上記により得られた押出材の組織を観察したとこ
ろ、比較例では押出材表面に現れた凝集体が押出し方向
に引き伸ばされ、表面欠陥として存在していた。一方、
実施例の押出材では、表面欠陥もなく、良好な表面状態
であった。
Next, when the structure of the extruded material obtained above was observed, it was found that in the comparative example, the aggregates appearing on the surface of the extruded material were stretched in the extrusion direction and existed as surface defects. on the other hand,
The extruded material of the example had no surface defects and had a good surface condition.

(実施例2) マトリックスをJIS ACADアルミニウム合金とし
、平均粒径が約15−のSiC粒子を約5%含んだアル
ミニウム溶湯を溶湯法によって作製した後、溶湯の重量
に対して0.4wt%の六塩化エタンをアルミニウム溶
湯中に押し込んだ。六塩化エタンはアルミニウム溶湯中
で化学反応により分解して塩素ガスを発生した。六塩化
エタンが全て分解し、塩素ガスを発生し終ってから溶湯
表面に浮上したドロスを除去し、JISA号試験片川舟
金型にて鋳造した。その後、鋳塊には525℃×10時
間の溶体化および160°CX 10時間の時効を施し
た後、引張試験片を削り出し、引張試験を行った。尚、
比教材として六塩化エタンによる脱ガス処理を行わない
ものについても同様の鋳塊を作製し、引張試験を行った
。表1に引張試験の結果を示す。
(Example 2) A molten aluminum containing JIS ACAD aluminum alloy as a matrix and about 5% of SiC particles with an average particle size of about 15 mm was prepared by a molten metal method. Ethane hexachloride was forced into molten aluminum. Ethane hexachloride decomposed in molten aluminum through a chemical reaction, generating chlorine gas. After all the hexachloroethane had decomposed and chlorine gas had been generated, the dross that had floated to the surface of the molten metal was removed, and the JISA test piece was cast using a river boat mold. Thereafter, the ingot was subjected to solution treatment at 525° C. for 10 hours and aging at 160° C. for 10 hours, and then a tensile test piece was cut out and subjected to a tensile test. still,
As a comparison material, similar ingots were prepared without degassing with hexachloroethane, and a tensile test was conducted. Table 1 shows the results of the tensile test.

その結果、六塩化エタン処理を行ったものでは、その処
理を行ったものに比べ、強度、伸びとも高い値が得られ
ており、機械的性質が改善されていることがわかった。
As a result, it was found that the specimens treated with hexachloroethane had higher values of both strength and elongation than those treated with the same treatment, and had improved mechanical properties.

(発明の効果) 以上説明したように、この発明によれば、強化材を分散
させた金属溶湯を鋳造するに先立ち、上記溶湯中に気泡
を発生させ、金属溶湯と十分にぬれていない強化材やそ
の凝集体を気泡上昇と共に分離浮上させ除去することが
できるので、得られた複合材料の機械的性質を改善する
ことができ、また材料の表面性状を良好にするという効
果がある。
(Effects of the Invention) As explained above, according to the present invention, before casting the molten metal in which the reinforcing material is dispersed, air bubbles are generated in the molten metal, and the reinforcing material that is not sufficiently wetted with the molten metal is Since the particles and their aggregates can be separated and floated and removed as the bubbles rise, the mechanical properties of the resulting composite material can be improved, and the surface properties of the material can also be improved.

Claims (1)

【特許請求の範囲】 1 強化材を分散混合させた金属溶湯中に気泡を発生さ
せ、金属溶湯とのぬれが不十分な強化材やその凝集体を
気泡に捕捉させて気泡と共に溶湯表面に浮上させ、これ
を溶湯から除去した後、溶湯を凝固させて複合材料を得
ることを特徴とする複合材料の製造方法 2 金属溶湯中に不活性ガスまたは活性ガスを吹込んで
気泡を発生させることを特徴とする請求項1記載の複合
材料の製造方法 3 金属溶湯中にガス発生材を配置して、気泡を発生さ
せることを特徴とする請求項1記載の複合材料の製造方
[Claims] 1. Bubbles are generated in the molten metal in which the reinforcing material is dispersed and mixed, and the reinforcing material and its aggregates that are insufficiently wetted with the molten metal are captured by the bubbles and float to the surface of the molten metal together with the bubbles. A method for manufacturing a composite material 2, characterized in that a composite material is obtained by solidifying the molten metal after removing the molten metal from the molten metal. 3. Method for manufacturing a composite material according to claim 1, wherein the method comprises: arranging a gas generating material in the molten metal to generate air bubbles.
JP63140237A 1988-06-07 1988-06-07 Manufacturing method of composite material Expired - Lifetime JP2770025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140237A JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140237A JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Publications (2)

Publication Number Publication Date
JPH01309933A true JPH01309933A (en) 1989-12-14
JP2770025B2 JP2770025B2 (en) 1998-06-25

Family

ID=15264099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140237A Expired - Lifetime JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP2770025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067075A3 (en) * 1998-06-23 2000-06-22 Univ Singapore Functionally gradient materials and the manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139464A (en) * 1981-02-24 1982-08-28 Akebono Brake Ind Co Ltd Casting method for al reinforced by particle dispersion
JPS5955719A (en) * 1982-09-24 1984-03-30 Agency Of Ind Science & Technol Fiber arrangement of composite material filled with short fibers
JPS62207533A (en) * 1986-03-05 1987-09-11 Showa Alum Corp Protective device for bar-shaped insertion member into molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139464A (en) * 1981-02-24 1982-08-28 Akebono Brake Ind Co Ltd Casting method for al reinforced by particle dispersion
JPS5955719A (en) * 1982-09-24 1984-03-30 Agency Of Ind Science & Technol Fiber arrangement of composite material filled with short fibers
JPS62207533A (en) * 1986-03-05 1987-09-11 Showa Alum Corp Protective device for bar-shaped insertion member into molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067075A3 (en) * 1998-06-23 2000-06-22 Univ Singapore Functionally gradient materials and the manufacture thereof

Also Published As

Publication number Publication date
JP2770025B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US4597792A (en) Aluminum-based composite product of high strength and toughness
KR102329015B1 (en) Method for preparing reduced graphene oxide from quiche graphite
JPS6283402A (en) Dispersed reinforced composite alloy powder and its production
US6143371A (en) Process for producing an MG-based composite material or an MG alloy-based composite material
Ohari et al. Silicon carbide whisker reinforced aluminium composites–fabrication and properties
LAVERNIA et al. Structures and properties of a modified 7075 aluminum alloy produced by liquid dynamic compaction
WO2003095689A1 (en) Grain refining agent for cast magnesium products
JPH01309933A (en) Manufacture of composite material
JP3721393B2 (en) Porous preform, metal matrix composite and production method thereof
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
Zulfia et al. Role of Mg and Mg+ Si as external dopants in production of pure Al–SiC metal matrix composites by pressureless infiltration
CN115044806B (en) Aluminum alloy additive and preparation method and application thereof
EP1466038B1 (en) Magnesium-zirconium alloying
JPH07507840A (en) metal matrix composite
JP3284232B2 (en) Purification method of flame-retardant magnesium alloy
Lal A novel technique for hyper eutectic aluminium-silicon alloy melt treatment
JP2004190090A (en) High purity aluminum alloy material
JPH01212730A (en) Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH0368941B2 (en)
Sushma et al. Fabrication and Machining of Al MMC and Evaluation of Surface Finish and Hardness Parameters
JP3829826B2 (en) Method for producing Mg-based composite material or Mg alloy-based composite material
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JP3318606B2 (en) Method for producing calcium-containing magnesium alloy casting
JPH079113A (en) Production of composite material
JPH079114A (en) Production of composite material