JPS5955719A - Fiber arrangement of composite material filled with short fibers - Google Patents

Fiber arrangement of composite material filled with short fibers

Info

Publication number
JPS5955719A
JPS5955719A JP57167279A JP16727982A JPS5955719A JP S5955719 A JPS5955719 A JP S5955719A JP 57167279 A JP57167279 A JP 57167279A JP 16727982 A JP16727982 A JP 16727982A JP S5955719 A JPS5955719 A JP S5955719A
Authority
JP
Japan
Prior art keywords
short fibers
fiber
bubbles
orientation
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57167279A
Other languages
Japanese (ja)
Other versions
JPS625784B2 (en
Inventor
Korehiro Nagatsuka
長塚 惟宏
Takeshi Kitano
武 北野
Kenji Fukuda
健二 福多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57167279A priority Critical patent/JPS5955719A/en
Publication of JPS5955719A publication Critical patent/JPS5955719A/en
Publication of JPS625784B2 publication Critical patent/JPS625784B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To make possible the orientation of short fibers in the length-wise direction by a method wherein in mixed fiber dispersing liquid containing short fibers and matrix couples are given to short fibers by generation of many bubbles or by movement of introduced solid grains larger in specific gravity than the liquid. CONSTITUTION:In a 1st and 2nd mixing tank, matrix material, short fibers, hardener, viscosity modifier, etc. are mixed uniformly and before these materials are hardened, rows of prescribed small bubbles (a) are discharged from bubble nozzles 7 into fiber dispersing liquid filled in a molding tank 10. The small bubbles are lifted by buoyancy vertically out of the fiber dispersing liquid and coincide with short fibers placed obliquely in the moving direction of the bubbles. By means of the turning moment due to coincidence with the bubbles the short fibers change their postures to the moving directions of the bubbles to lift fiber orientation. The fiber dispersing liquid with lifted orientation in the molding tank 10 undergoes air-release function in a reduction tank 11, is hardened and molded under prescribed heating conditions to obtain fiber packed composite material having high fiber orientation.

Description

【発明の詳細な説明】 短繊維を強化材として充てんした複合材料の繊維配列状
態は力学的性質や電気的性質など、多くの材料特性に影
響する。本発明は、所要の材料特性を有する複合材料を
得るために、マトリックス内に混合した短繊維を積極的
に所要の方向に配列させる手段を提案するものである。
DETAILED DESCRIPTION OF THE INVENTION The fiber arrangement state of a composite material filled with short fibers as a reinforcing material affects many material properties such as mechanical properties and electrical properties. The present invention proposes a means for actively arranging short fibers mixed within a matrix in a desired direction in order to obtain a composite material having desired material properties.

トランスファ成形、射出成形、圧縮成形など従来の成形
法によって、繊維が充てんされた複合材料を成形する場
合、その成形の過程において、繊維とマトリックス(樹
脂等)からなる繊維分散液体が複雑な形状の流路内を速
度を変えて流れるため、繊維の配列に方向性が生ずるこ
とが指摘されている。このようなマトリックス素材を媒
体とした繊維分散液体の流動を伴う成形過程での流路内
の繊維配向け、流動に伴う流体的せん断力が繊維に作用
するためである。この場合の繊維の配列化に関与する要
因は、製品の最終的賦形部であるキャビティとそれに至
るまでの流路の形吠、圧力。
When molding composite materials filled with fibers using conventional molding methods such as transfer molding, injection molding, and compression molding, during the molding process, the fiber dispersion liquid consisting of fibers and matrix (resin, etc.) is molded into complex shapes. It has been pointed out that since the fibers flow at different speeds in the flow path, the fibers are arranged in a directional manner. This is because fluid shearing force accompanying the fiber alignment and flow acts on the fibers in the molding process that involves the flow of a fiber dispersion liquid using such a matrix material as a medium. The factors involved in fiber arrangement in this case are the shape and pressure of the cavity, which is the final shaping part of the product, and the flow path leading to it.

流速などの成形上の因子、及びマトリックス素材の粘度
や繊維性状などの素材特性である。一方、これらの要因
はいずれも成杉部の形状や成形性と強く交絡しており、
繊維配列の面のみから任意に設定することはできない。
These are molding factors such as flow rate, and material properties such as the viscosity and fiber properties of the matrix material. On the other hand, all of these factors are strongly intertwined with the shape and formability of the mature cedar part.
It is not possible to set it arbitrarily only from the aspect of fiber arrangement.

従って、成形過程中の素材の流動による作用のみによっ
て、所要の繊維配列を得ることは困難であった。
Therefore, it has been difficult to obtain the desired fiber arrangement solely by the flow of the material during the molding process.

本発明は、樹脂等のマトリックスを媒体とした短繊維分
散液体中に供給した小気泡又は固体粒の移動作用によっ
て、短繊維の配向化を効果的に行い、マトリックス及び
繊維に流動を与えることなく、繊維配向度の高い短ta
維複合材料を得る方法を提案するものである。
The present invention effectively orients short fibers by the moving action of small bubbles or solid particles supplied into a short fiber dispersion liquid using a matrix such as a resin, without imparting flow to the matrix or fibers. , short ta with high fiber orientation
This paper proposes a method for obtaining fiber composite materials.

而して、本発明のvA維配列法は、短繊維を充てんした
複合材料の成形において、短繊維とマトリックスを混合
した繊維分散液体中に多数の小気泡を発生させ、気泡の
浮上によって、上記繊維に偶力を与えることにより、又
は、短繊維とマトリックスを混合した繊維分散液体中に
該液体よりも比重が大きい多数の固体粒を入れ、潔固体
粒の移動によって、上記短繊維に偶力を与えることによ
り、短繊維の長さ方向を気泡又は固体粒の移動方向に配
向させ、’El jl& fluの配向度を高めること
を特徴どするものである。
Therefore, in the vA fiber arrangement method of the present invention, when molding a composite material filled with short fibers, a large number of small bubbles are generated in a fiber dispersion liquid in which short fibers and a matrix are mixed, and the floating of the bubbles causes the above-mentioned By applying a couple force to the fibers, or by placing a large number of solid particles having a specific gravity higher than that of the liquid in a fiber dispersion liquid that is a mixture of short fibers and a matrix, and by moving the solid particles, a couple force is applied to the short fibers. It is characterized in that the length direction of the short fibers is oriented in the direction of movement of air bubbles or solid particles, thereby increasing the degree of orientation of 'El jl & flu.

クス用m脂を仮占し、これらと同程度の高粘性を−示す
ポリアクリルアミド水溶液(ゼリせん断粘度ニア、4*
イズ)を用いた。また、実験には透明なアクリル樹脂板
製の高さ25QIllJl、幅E、40zg、内法の厚
さ50龍の槽を用い、この構内に上記の繊維分散液体(
繊維光てん率01%)を満たし、気泡は槽の下部に設け
た内径05m1jのノズル7の先端から圧縮空気を注入
して発生させた。この場合の気泡の大きさは約6n〜l
0KII、ぞの浮上速度は20cm/!扛〜2δα漠で
あった。
Polyacrylamide aqueous solution (jelly shear viscosity near, 4*
Is) was used. In addition, a tank made of transparent acrylic resin plate with a height of 25QIllJl, width E, 40zg, and inner thickness of 50mm was used in the experiment, and the above fiber dispersion liquid (
The fiber optical density was 01%), and air bubbles were generated by injecting compressed air from the tip of a nozzle 7 with an inner diameter of 05 ml provided at the bottom of the tank. The size of the bubbles in this case is approximately 6n~l
0KII, the ascent speed is 20cm/! It was 扛~2δα range.

気泡を連続的に発生させ、脱泡を行った後の識定位置の
相違を示している。m維の配向角は測定の位置によって
多少異なるが、垂直方向(気泡の移動方向)に配列して
いる繊維〈θ〉90°)が観察される頻度は、気泡によ
る処理前において約5%〜30%であるが、気泡で処理
することにより、材料として成形可能な材料であれば、
有機材料。
It shows the difference in the identified position after bubbles are continuously generated and defoamed. Although the orientation angle of the m-fibers varies somewhat depending on the measurement location, the frequency at which fibers 〈θ〉90°) aligned in the vertical direction (the direction of bubble movement) are observed is approximately 5% to 5% before treatment with bubbles. 30%, but if the material can be molded by processing with bubbles,
organic material.

無機材料及び金属材料のいずれでも使用することができ
る。例えば、低温下で液体(モノマー)で、硬化剤の存
在下で加熱硬化するエポキシ樹flit等の熱硬化性樹
脂、あるいは加熱によって融液となるポリエチレン等の
熱可pl性4m脂、又は高温下で融液となる各種の金属
等が用いられる。
Both inorganic and metallic materials can be used. For example, thermosetting resins such as epoxy resin flit, which is a liquid (monomer) at low temperatures and hardens by heating in the presence of a hardening agent, thermoplastic 4M resins such as polyethylene, which become melted when heated, or Various metals and the like are used to form a melt.

また、繊維は直径より大きな長さを有する所謂ボイスカ
ー、フロック、ステープルファイバーなどの繊維状態及
び短繊維であり、その種類はセラミックスや金属等のウ
ィスカー、アスベスト、カーボン繊維、ガラス繊維など
の無機繊維をはじめとし、ナイロン、ビニロン等の有#
!A繊維等である。
In addition, fibers include so-called voice cars, flocks, staple fibers, etc., which have a length greater than their diameter, and short fibers.The types include whiskers such as ceramics and metals, and inorganic fibers such as asbestos, carbon fibers, and glass fibers. First, nylon, vinylon, etc.
! A fiber etc.

上述したマ) IJラックス素材の種類、及び短繊維の
種類と形状、並びに、特性を異にする繊維間の混合比率
やマトリックスと繊維との複合比率は複合材料として要
求される性能に応じて適当に定められる。
The type of IJ lux material mentioned above, the type and shape of short fibers, the mixing ratio between fibers with different characteristics, and the composite ratio of matrix and fibers are appropriate depending on the performance required as a composite material. stipulated in

図3に、熱硬化性樹脂であるエポキシ樹脂をマトリック
スとし、樒強効果の大きな炭素繊維を充てん材料とした
織絣配向度の大きい複合材料を本発明の方法によって成
形する装置の概要を例示する。あらかじめ、所要の長さ
に切断された炭素繊維トエボキシのモノマーは第一調合
槽1において所定の複合比率を有する均一な繊維分散液
体に調合される。この繊維分散液体はポンプ2によって
、第二調合槽3に移送され、硬化剤準備槽4から供給さ
れる硬化剤と均一に混合されたのち、バルブ5を有する
管路を介して、多数の気泡ノグル7を装着した気泡発生
槽9、及び9に連接して設けられた成形槽10に満たさ
れる。成形槽10には繊維分散液体中に発生する気泡の
除去(脱泡)を完全にするための減圧槽11が連設され
ている。
FIG. 3 shows an outline of an apparatus for molding a composite material with a high degree of texture orientation using an epoxy resin, which is a thermosetting resin, as a matrix and a carbon fiber having a large stiffening effect as a filling material, by the method of the present invention. . The carbon fiber toeboxyl monomer, which has been cut to a required length in advance, is mixed in a first mixing tank 1 into a uniform fiber dispersion liquid having a predetermined composite ratio. This fiber dispersion liquid is transferred to a second mixing tank 3 by a pump 2, where it is uniformly mixed with a curing agent supplied from a curing agent preparation tank 4, and then passed through a pipe line with a valve 5 into a large number of bubbles. A bubble generating tank 9 equipped with a noggle 7 and a forming tank 10 connected to the bubble generating tank 9 are filled with the foam. A vacuum tank 11 is connected to the molding tank 10 to completely remove air bubbles generated in the fiber dispersion liquid (defoaming).

多数の気泡ノズル7を埋設した導管8は電磁弁13を介
して、圧縮機14に連結されており、圧縮機14からの
空気は気泡ノズル7の先端から、電磁弁]3によって吐
出量、吐出時間間隔が調節されて、気泡&の列となって
吐出される。
A conduit 8 in which a large number of bubble nozzles 7 are buried is connected to a compressor 14 via a solenoid valve 13, and the air from the compressor 14 is sent from the tip of the bubble nozzle 7 to the discharge amount and the discharge amount by the solenoid valve 3. The time interval is adjusted and the bubbles are ejected in a line.

第一、第二調合槽においてマトリックス用素材。Matrix material in the first and second mixing tanks.

出させる。この小気泡は浮力によって、tlaJ分散液
体中を垂直線に沿って浮上し、気泡の移動方向に傾斜し
て位置する短繊維に衝突する。短繊維は気泡の衝突によ
る回転モーメントの作用によって、その姿勢を気泡の移
動方向に変え、988配向度が高められる。
Let it come out. Due to buoyancy, these small bubbles float along a vertical line in the tlaJ dispersion liquid and collide with short fibers located obliquely in the direction of bubble movement. The short fibers change their posture in the direction of movement of the bubbles due to the rotational moment caused by the collision of the bubbles, and the degree of 988 orientation is increased.

気泡列の間隔が比較的に大きな場合、気泡列間に位置す
るマトリックス用素材は気泡の運動に引きつられて局所
的な流れが発生し、その結果、気泡列間に旋回流が発生
し、繊維がぜん断流れ方向に配向角を変え、気泡列間に
おいても気泡の進行方向に短繊維が配向し、前述の気泡
の衝突による繊維配向効果と相まって、繊維分散液体中
の繊維配向が一層効果的に行われる。
When the distance between the cell rows is relatively large, the matrix material located between the cell rows is pulled by the movement of the bubbles and a local flow occurs, resulting in a swirling flow between the cell rows and the fiber changes the orientation angle in the direction of shear flow, and the short fibers are oriented in the direction of travel of the bubbles between the bubble rows. Combined with the fiber orientation effect caused by the collision of the bubbles mentioned above, the fiber orientation in the fiber dispersion liquid becomes even more effective. It will be done.

気泡の移動によって、繊維配向度を高められた成形槽]
0内の繊維分散液体は、減圧槽]1の減圧に伴う脱泡作
用を受け、完全に脱泡された後、所要の加熱条件下で硬
化成形され、tJAm配向度の高い繊維光てん複合材料
となる。
A molding tank that increases the degree of fiber orientation through the movement of air bubbles]
The fiber dispersion liquid in 0 is subjected to a defoaming action due to the reduced pressure in the vacuum tank] 1, and after being completely defoamed, it is cured and molded under the required heating conditions to form a fiber optic composite material with a high degree of tJAm orientation. becomes.

気泡の浮上によって、繊維分散液体中の短繊維の配向度
を高める拳法においては気泡の大きさ、種類は原理的に
は繊維分散液体中において浮上が可能なものであれば良
いが、短繊維の配向度や分ツクス用素材や硬化剤など繊
維分散液体中に含まれる各種の素材に対して化学的に安
定した気体であれば良く特に制約はない。更に、繊維分
散液体より比重が小さく、化学的に安定で、拡散等の障
害を有しない液体による液泡を用いることもできる。
In Kenpo, which increases the degree of orientation of short fibers in a fiber dispersion liquid by floating air bubbles, the size and type of air bubbles may be in principle as long as they can float in the fiber dispersion liquid. There are no particular restrictions as long as the gas is chemically stable with respect to the degree of orientation, the various materials contained in the fiber dispersion liquid, such as the thickening material and the hardening agent. Furthermore, it is also possible to use liquid bubbles that have a lower specific gravity than the fiber dispersion liquid, are chemically stable, and do not pose obstacles such as diffusion.

拳法の他の実施例を図4に示す。図4は中空状の管の円
周方向に沿って短繊維を配向させる場合の概要図であり
、所定の傾斜をもって横置された成形金型の断面図であ
る。
Another example of Kempo is shown in FIG. FIG. 4 is a schematic view of the case where short fibers are oriented along the circumferential direction of a hollow tube, and is a sectional view of a molding die placed horizontally at a predetermined inclination.

図において、40は成形管であり、外筒42と内筒43
から構成され、所要の傾斜角をもって回転可能に横置さ
れている。あらかじめ調合された前記の繊維分散液体す
を上記成形管40に満たし、成形管の下部の管端より小
気泡aを発生させ、繊維分散液体中に浮上する気泡の速
度に同調させ成加熱等の処理によって硬化され、繊維が
円周方向に配向した管状の複合材料に成形される。
In the figure, 40 is a molded tube, with an outer tube 42 and an inner tube 43.
It is rotatably placed horizontally at a required angle of inclination. The forming tube 40 is filled with the fiber dispersion liquid prepared in advance, small bubbles a are generated from the lower tube end of the forming tube, and the speed of the bubbles floating in the fiber dispersion liquid is synchronized with the rate of formation heating. The process cures and forms a tubular composite material with circumferentially oriented fibers.

以上、繊維分散液体よりも比重の小さな気泡が繊維分散
液体中を浮上することにより上記液体中の短繊維を配向
させる方法について実施例を詳述したが、本発明は繊維
分散液体よりも比重が大きい多数の固体粒を上記繊維分
散液体中で移動させることにより、前述した小気泡の場
合と同様な原理によって、繊維分散液体中の短繊維を固
体粒の移動方向に配向させることができる。以下に、繊
維分散液体よりも比重の大きな固体粒を用いる方法を実
施例によって詳述する。
In the above, examples have been described in detail regarding a method for orienting short fibers in the liquid by floating bubbles in the fiber dispersion liquid, which have a specific gravity smaller than that of the fiber dispersion liquid. By moving a large number of large solid particles in the fiber dispersion liquid, the short fibers in the fiber dispersion liquid can be oriented in the moving direction of the solid particles by the same principle as in the case of small bubbles described above. Hereinafter, a method using solid particles having a higher specific gravity than the fiber dispersion liquid will be explained in detail with reference to examples.

図5に、繊維分散液体の比重よりも大きい固体粒を用い
て繊維の配向化を行う方法の概略図を示す。図6は図5
に略記した固体粒供給部の断面主要図である。図5にお
いて、第一調合槽、第二調ベア等による適当な移送手段
によって、固体粒供給板24上に戻される。
FIG. 5 shows a schematic diagram of a method for orienting fibers using solid particles larger than the specific gravity of the fiber dispersion liquid. Figure 6 is Figure 5
FIG. 3 is a main cross-sectional view of the solid particle supply section shown in FIG. In FIG. 5, the solid particles are returned onto the solid particle supply plate 24 by a suitable transfer means such as a first mixing tank, a second mixing bear, or the like.

上記のように、固体粒が循環する回路を構成し、多数の
固体粒Cを成形槽10の繊維分散液体中で移動させるこ
とにより、繊維分散液体中の短繊維は固体粒の移動に伴
う衝突による偶力、及び固体粒の運動に引きつられて生
ずる局所的な旋回流によって生ずる偶力の作用によって
、固体粒の移動方向(鉛直方向)に繊維の長さ方向が揃
えられる。
As described above, by configuring a circuit in which solid particles circulate and moving a large number of solid particles C in the fiber dispersion liquid in the forming tank 10, the short fibers in the fiber dispersion liquid collide with each other as the solid particles move. The length direction of the fibers is aligned in the moving direction (vertical direction) of the solid particles by the action of the couple caused by the movement of the solid particles and the local swirling flow caused by the movement of the solid particles.

固体粒の移動によって繊維配向度の高められた繊維分散
液体は前記した実施例の場合と同様にして、硬化され成
形を完了する。
The fiber dispersion liquid, in which the degree of fiber orientation has been increased by the movement of the solid particles, is cured and molding is completed in the same manner as in the above embodiment.

図6は固体粒を間欠的に成形槽内に供給するための供給
部の構成例であり、固体粒供給管23から送られる固体
粒Cは先方に向って下降する斜面25の溝列26から、
矢印の方向に水平に滑動する固体粒送り出し調節板27
の動作によって、固体粒供給板24上に間欠的に落下し
、24に設けた複数列の溝に沿って、成形槽10内に供
給される。
FIG. 6 shows an example of the configuration of a supply section for intermittently supplying solid particles into the forming tank, and the solid particles C are sent from the solid particle supply pipe 23 from the groove array 26 of the slope 25 that descends toward the front. ,
Solid grain delivery adjustment plate 27 that slides horizontally in the direction of the arrow
As a result of this operation, the solid particles fall intermittently onto the solid particle supply plate 24 and are supplied into the forming tank 10 along the plurality of rows of grooves provided on the solid particle supply plate 24 .

上記の実施例では固体粒は重力の作用によって成形槽内
を鉛直方向に移動する場合について述べたが、鋼製の固
体粒を磁力によって所要の方向に移動させ、所要の方向
に繊維配向を有する複合材料を成形することができる。
In the above example, the solid particles were moved vertically in the forming bath by the action of gravity, but the solid particles made of steel were moved in the desired direction by magnetic force, and the fibers were oriented in the desired direction. Composite materials can be molded.

拳法において用いられる固体粒は金属、無機。The solid particles used in Kenpo are metal and inorganic.

有機の材料からなる小粒体であり、マトリックス用素材
の比重、化学特性等を考慮して種々のものが選択される
。また、特別な場合には、移動を制御するために固体粒
自体に磁界を与えたものも使用できる。
They are small particles made of organic material, and various particles are selected in consideration of the specific gravity, chemical properties, etc. of the matrix material. Furthermore, in special cases, it is also possible to use solid particles in which a magnetic field is applied to the solid particles themselves in order to control their movement.

更に、前述の実施例においては、気泡、固体粒は繊維を
所要の方向に配向させた後、繊維分散液体外に導かれる
が、成形される複合材料の軽量化。
Furthermore, in the embodiments described above, the air bubbles and solid particles are guided out of the fiber dispersion liquid after orienting the fibers in a desired direction, which reduces the weight of the composite material to be molded.

断熱性の向上9強化などの目的のために、繊維配向度の
向上に使用した後の気泡、液泡、固体粒が、所要の比率
で繊維分散液体内に保持されて、複合材料を構成する素
材の一部として硬化成形を行うことも可能である。
Improving insulation properties 9 Materials constituting composite materials in which air bubbles, liquid bubbles, and solid particles after being used to improve the degree of fiber orientation are retained in the fiber dispersion liquid at the required ratio for purposes such as reinforcement. It is also possible to perform curing molding as part of the process.

短繊維の配向化のための移動体が固体粒のとき、固体粒
の形状は、繊維分散液体中の移動時の回転などに際して
も、移動方向の投影形状に変化のない球形が望まれる。
When the moving body for orienting the short fibers is a solid particle, the shape of the solid particle is preferably a spherical shape that does not change its projected shape in the direction of movement even during rotation during movement in the fiber dispersion liquid.

また、その直径は、繊維分散液体中を移動する際の短繊
維への衝突の頻度と、その際に生ずる偶力の作用を考慮
し、短繊維の長さの]、/4の大きさから繊維長相当の
大きさであることが望ましい。更に、その移動速度は繊
維の配向度を高めることの効率から大きくなるほど望ま
しいが、一方、固体粒の速度の大きくなる時に固体粒の
後方に発生する後流が繊維配列の乱れを生ずるため、固
体粒の速度は制限される。このため、繊維分散液体と固
体粒との比重差Fま4から10の範囲が望まれる。
In addition, the diameter is calculated from the length of the short fiber], /4, considering the frequency of collisions with the short fibers when moving in the fiber dispersion liquid and the effect of the couple that occurs at that time. It is desirable that the size corresponds to the fiber length. Furthermore, it is desirable that the moving speed be higher in terms of the efficiency of increasing the degree of fiber orientation, but on the other hand, when the speed of the solid particles increases, the wake generated behind the solid particles causes disturbance in the fiber arrangement. Grain velocity is limited. For this reason, a specific gravity difference F between the fiber dispersion liquid and the solid particles is preferably in the range of 4 to 10.

本発明において、繊維配向化のために気泡、固体粒が移
動体として用いられるが、各移動体は次のような特質を
有するため、マトリックスとなる化処理後においても、
固体粒の場合のように洗浄等の処理が不要であるなど、
取り扱いが容易である。一方、気泡による繊維配向作用
力は主として浮力によるものであり、固体粒に比して配
向化のための作用力は小さい。また、繊維分散液体中の
深度によって、気泡の大きさが変化することや、高温下
の繊維分散液体内に気泡が混入される際に生ずる突沸に
対する配慮が必要である。
In the present invention, bubbles and solid particles are used as moving bodies for fiber orientation, but each moving body has the following characteristics, so even after processing to become a matrix,
There is no need for processing such as washing as in the case of solid particles, etc.
Easy to handle. On the other hand, the force acting on fiber orientation due to air bubbles is mainly due to buoyancy, and the acting force for orientation is smaller than that of solid particles. Further, consideration must be given to the fact that the size of the bubbles changes depending on the depth in the fiber dispersion liquid, and to the bumping that occurs when bubbles are mixed into the fiber dispersion liquid at high temperatures.

繊維の配向化に固体粒を用いる場合の特徴は、気泡に比
して大きな作用力が得られることであり、繊維の混合割
合の大きな繊維分散液体についても拳法を適応すること
ができる。また、比較的に繊維長が長<ta維が絡合し
、繊維分散の不均一な繊維分散液体中を気泡が移動する
場合、気泡の速度が不均一になる結果、複数の気泡が合
体して大きな気泡となり、均一な繊維配列化が妨げられ
ることがあるが、固体粒においてはこのような障害は生
ぜず繊維の均一な配向化が可能である。
A feature of using solid particles for fiber orientation is that a larger acting force can be obtained compared to air bubbles, and Kenpo can also be applied to fiber-dispersed liquids with a large mixing ratio of fibers. In addition, when bubbles move in a fiber dispersion liquid with relatively long fiber length<ta fibers and fiber dispersion is uneven, the speed of the bubbles becomes uneven, resulting in multiple bubbles coalescing. However, in the case of solid particles, this problem does not occur and uniform orientation of the fibers is possible.

次に、本発明の方法による成形例について説明する。素
材として、直径19  sで、長さ3鱈のガラス繊維、
及びエポキシ樹脂を用い、これらの素材に粘度調整剤と
してメチルエチルケトンを加えて(15%)、ガラス繊
゛維が均一に分散した繊維分散液を準備し、これに硬化
剤10%を加えて均一に攪拌した液を高さ250m、幅
140M。
Next, an example of molding by the method of the present invention will be explained. The material is glass fiber with a diameter of 19 seconds and a length of 3 mm.
and epoxy resin, methyl ethyl ketone was added as a viscosity modifier (15%) to these materials to prepare a fiber dispersion in which glass fibers were uniformly dispersed, and 10% of a hardening agent was added to this to uniformly disperse the fibers. The stirred liquid is 250m high and 140m wide.

内法の厚さ5■の成形型に満たし、成形型の下方に、1
5■のピッチで配列した内径α5uのノズルから大きさ
約6Mの気泡をノズル当り20個発生させて、繊維の配
向化処理を行った後、これを加熱硬化し、繊維複合板を
成形した。一方、上記と同一の調合割合で気泡による配
向化処理を行わない板を成形した。気泡による処理を行
った試料から気泡の移動方向を長手とする試験片を採取
し、気泡による処理を行わない試料から採取した試験片
の強度(曲げ)と比較した。前者の強度5.2Kl/l
dに対し、後者は 5.8隔−であり、前者には繊維の
配向化による強度の向上が見られた。
Fill a mold with an inner thickness of 5 cm, and place 1 inch at the bottom of the mold.
Twenty bubbles of about 6 M in size were generated per nozzle from nozzles with an inner diameter α5u arranged at a pitch of 5 cm, and after the fibers were oriented, they were heated and hardened to form a fiber composite board. On the other hand, a plate was molded using the same blending ratio as above and without the orientation treatment using bubbles. A test piece whose length was in the direction of bubble movement was taken from the sample treated with bubbles, and compared with the strength (bending) of a test piece taken from a sample not treated with bubbles. The strength of the former is 5.2Kl/l
d, the latter had an interval of 5.8 -, and the former showed an improvement in strength due to fiber orientation.

以上に詳述したところからも明らかなように、本発明の
方法によれば、極めて簡単な手段により、短繊維の配向
度の高い、品質の優れた繊維複合材料を得ることができ
る。
As is clear from the detailed description above, according to the method of the present invention, a fiber composite material of excellent quality and with a high degree of orientation of short fibers can be obtained by extremely simple means.

マトリックス内の短繊維の配列を制御することのできる
本発明は、例えば、強化剤として大きな複合効果が得ら
れることが期待されている各種のウィスカーについて、
従来は困難であった配向化を可能とし、その用途の拡大
に寄与できる。
The present invention, which is capable of controlling the arrangement of short fibers within the matrix, can be applied to various types of whiskers that are expected to have a large composite effect as reinforcing agents.
It enables orientation, which was difficult in the past, and contributes to the expansion of its applications.

また、カーボン繊維等を充てんした材料の繊維配向によ
る誘電率の異方性付与など、複合材料の力学的特性の向
上のみでなく、多様な複合効果の向上を図ることができ
る。
In addition, it is possible to improve not only the mechanical properties of the composite material but also various composite effects, such as imparting dielectric constant anisotropy through fiber orientation of a material filled with carbon fibers or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は発明の方法における原理に関するもので、気泡の
浮上による繊維の配向経過を示す要図、図2は本発明の
方法における短am配向効果を説明するための繊維分散
液体中の繊維配向度の変化を示すグラフ、図3は本発明
の方法によって繊維配向度の高い複合材料を成形する装
置の概要図、図4は本発明に基づいて円周方向に繊維が
配向した管を成形する方法の概略図、図5は本発明の方
法に基づいて固体粒の移動によって繊維分散液体中の繊
維の配向化を行い繊維配向度の高い複合材料を得る成形
装置の概略図、図6は図5に略記した固体粒供給部の詳
細図である。 1・・・第一調合槽  3・・・第二調合槽7・・・気
泡ノズル  lO・・・成形槽24・・・固体粒供給板
 ム・・・気泡b・・・繊維分散液体 C・・・固体粒
図  1 図    3 −124− 図       4
Figure 1 relates to the principle of the method of the invention, and is a schematic diagram showing the course of fiber orientation due to the floating of air bubbles. Figure 2 shows the degree of fiber orientation in the fiber dispersion liquid to explain the short-am orientation effect in the method of the invention. 3 is a schematic diagram of an apparatus for molding a composite material with a high degree of fiber orientation by the method of the present invention, and FIG. 4 is a method of molding a tube in which fibers are oriented in the circumferential direction based on the present invention. FIG. 5 is a schematic diagram of a molding apparatus that orients fibers in a fiber dispersion liquid by moving solid particles based on the method of the present invention to obtain a composite material with a high degree of fiber orientation. FIG. 3 is a detailed view of the solid particle supply section as abbreviated in FIG. 1...First mixing tank 3...Second mixing tank 7...Bubble nozzle lO...Forming tank 24...Solid particle supply plate Mu...Bubble b...Fiber dispersion liquid C. ...Solid particle diagram 1 Figure 3 -124- Figure 4

Claims (1)

【特許請求の範囲】 1 短繊維を充てんした複合材料の成形において、短繊
維とマトリックスを混合したm紙分散液体中に多数の小
気泡を発生させ、気泡の浮上によって、上記短繊維に偶
力を与えることにより、短繊維の長さ方向を気泡の移動
方向に配向させ、短繊維の配向度を高めることを特徴と
する短繊維光てん複合材料の繊維配列法。 2 短繊維を充てんした複合材料の成形において、短繊
維とマトリックスを混合した繊維分散液体中に該液体よ
りも比重が大きい多数の固体粒を入れ、該固体粒の移動
によって、上記短JijIi#に偶力を与えることによ
り、短繊維の長さ方向を固体粒の移動方向に配向させ、
短繊維の配向度を高めることを特徴とする短繊維光てん
複合材料の繊維配列法。
[Claims] 1. In molding a composite material filled with short fibers, a large number of small bubbles are generated in a m-paper dispersion liquid in which short fibers and a matrix are mixed, and the floating of the bubbles causes a couple to the short fibers. 1. A method for arranging fibers of a short fiber optical fiber composite material, characterized in that the length direction of the short fibers is oriented in the direction of movement of air bubbles, thereby increasing the degree of orientation of the short fibers. 2. In molding a composite material filled with short fibers, a large number of solid particles having a specific gravity larger than that of the liquid are placed in a fiber dispersion liquid in which short fibers and a matrix are mixed, and the movement of the solid particles causes the above-mentioned short JijIi# to By applying a couple, the length direction of the short fibers is oriented in the direction of movement of the solid particles,
A fiber arrangement method for short fiber optical fiber composite materials characterized by increasing the degree of orientation of short fibers.
JP57167279A 1982-09-24 1982-09-24 Fiber arrangement of composite material filled with short fibers Granted JPS5955719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167279A JPS5955719A (en) 1982-09-24 1982-09-24 Fiber arrangement of composite material filled with short fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167279A JPS5955719A (en) 1982-09-24 1982-09-24 Fiber arrangement of composite material filled with short fibers

Publications (2)

Publication Number Publication Date
JPS5955719A true JPS5955719A (en) 1984-03-30
JPS625784B2 JPS625784B2 (en) 1987-02-06

Family

ID=15846794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167279A Granted JPS5955719A (en) 1982-09-24 1982-09-24 Fiber arrangement of composite material filled with short fibers

Country Status (1)

Country Link
JP (1) JPS5955719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309933A (en) * 1988-06-07 1989-12-14 Mitsubishi Alum Co Ltd Manufacture of composite material
US5580512A (en) * 1995-04-07 1996-12-03 Northrop Grumman Corporation Method for making low cost oriented composite molding compound
JP2015027772A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Thermosetting sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309933A (en) * 1988-06-07 1989-12-14 Mitsubishi Alum Co Ltd Manufacture of composite material
US5580512A (en) * 1995-04-07 1996-12-03 Northrop Grumman Corporation Method for making low cost oriented composite molding compound
JP2015027772A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Thermosetting sheet

Also Published As

Publication number Publication date
JPS625784B2 (en) 1987-02-06

Similar Documents

Publication Publication Date Title
CN107470627A (en) The cold printing equipments of metal glass composite material ultrasonic wave added 3D and method
US5579998A (en) Method for coating a substrate with a reinforced resin matrix
US5565241A (en) Convergent end-effector
KR960007474B1 (en) Open-cell porous material, method for preparing the material and mold for pressure-cast-molding ceramic article formed from the material
EP0257088A1 (en) Method for producing fiber reinforced hollow microspheres
GB1579543A (en) Method for mixing a particulate solid material with a liquid material and a nozzle for use in said method
KR20120095511A (en) Method for manufacturing glass fiber reinforced plastic storage tank using air mixing spray and storage tank manufactured by the same
US20010006991A1 (en) Method and apparatus for producing gas occlusion-free and void-free compounds and composites
JPS5955719A (en) Fiber arrangement of composite material filled with short fibers
US5076004A (en) Fishing rod and production method thereof
JP3027607B2 (en) Vacuum forming method for large objects made of synthetic resin
US4784894A (en) Molded polymer composite
CN115161509B (en) Method for preparing nano boron carbide reinforced aluminum-based composite material by liquid phase dispersion method
CN110405903A (en) A kind of lunar soil concrete and preparation method thereof suitable for extrusion
CN107150124B (en) 3D jet printing device and printing method thereof
CN110257660B (en) Device and method for producing small-aperture foamed aluminum
EP0980886A4 (en) Filled granular polytetrafluoroethylene powder and process for the production thereof
CN103302866B (en) Glass reinforced plastic forming method and glass reinforced plastic forming system
CN110156483A (en) A method of using extruded type 3D printing technique preparation continuous fiber reinforcement ceramics
JP2003039563A (en) Stereoscopic shaping apparatus using multi-cellular shaping material
JP3671561B2 (en) Manufacturing method of fiber reinforced plastic molding
US11787094B1 (en) Apparatus and method for making molded products
CN114292063B (en) Lightweight foam concrete and preparation method thereof
CN207656893U (en) A kind of device of gunite production reactive power concrete products
JPH0399810A (en) Method for molding syntactic foam