JP2770025B2 - Manufacturing method of composite material - Google Patents

Manufacturing method of composite material

Info

Publication number
JP2770025B2
JP2770025B2 JP63140237A JP14023788A JP2770025B2 JP 2770025 B2 JP2770025 B2 JP 2770025B2 JP 63140237 A JP63140237 A JP 63140237A JP 14023788 A JP14023788 A JP 14023788A JP 2770025 B2 JP2770025 B2 JP 2770025B2
Authority
JP
Japan
Prior art keywords
molten metal
composite material
gas
aluminum
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63140237A
Other languages
Japanese (ja)
Other versions
JPH01309933A (en
Inventor
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP63140237A priority Critical patent/JP2770025B2/en
Publication of JPH01309933A publication Critical patent/JPH01309933A/en
Application granted granted Critical
Publication of JP2770025B2 publication Critical patent/JP2770025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、金属(特に純アルミニウムまたはアルミ
ニウム合金)中に、セラミック粒子や繊維からなる強化
材を均一に分散させた分散型金属系複合材料の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a dispersion type metal composite material in which a reinforcing material composed of ceramic particles or fibers is uniformly dispersed in a metal (particularly, pure aluminum or an aluminum alloy). And a method for producing the same.

(従来の技術) 周知のように、分散型金属系複合材料は金属の特性を
保持しつつ、さらに機械的特性の飛躍的な改善が得られ
ものである。特に、純アルミニウムまたはアルミニウム
合金をマトリックスとして、炭素質や酸化物、窒化物な
どのセラミック粒子を分散強化材としたアルミニウム基
複合材料は、アルミニウムの特徴である軽さに加え、耐
摩耗性などの優れた機械的特性を有しているので、種々
の機械部材などに広く利用することが試みられている。
(Prior Art) As is well known, a dispersion-type metal-based composite material is capable of maintaining the properties of a metal and further improving the mechanical properties dramatically. In particular, aluminum-based composite materials using pure aluminum or an aluminum alloy as a matrix and carbon particles, oxides, nitrides, and other ceramic particles as a dispersion strengthening material have the characteristics of aluminum, such as lightness and wear resistance. Since it has excellent mechanical properties, attempts have been made to widely use it for various mechanical members and the like.

従来、この様な複合材料の製造方法としては、粉末冶
金法や、ボルテックス法などの溶湯法が知られている。
この中でも、ボルテックス溶湯法は製造行程がシンプル
なのでコスト的に有利であり、また鋳造が可能であるな
どの特徴を有している。この溶湯法においては、セラミ
ック粒子と純アルミニウムまたはアルミニウム合金との
間のぬれ性が、得られた複合材料の機械的特性に大きく
影響を与えるため、ぬれ性を向上させるべく、種々の方
法が採られている。
Conventionally, as a method for producing such a composite material, a powder metallurgy method and a molten metal method such as a vortex method have been known.
Among them, the vortex melt method is advantageous in terms of cost because the manufacturing process is simple, and has features such as casting. In this molten metal method, since the wettability between the ceramic particles and pure aluminum or aluminum alloy greatly affects the mechanical properties of the obtained composite material, various methods are employed to improve the wettability. Have been.

その一例としては、セラミック粒子の表面処理を行っ
たり、アルミニウム溶湯にCaを添加するなどの方法がと
られている。
As an example thereof, a method of performing surface treatment of ceramic particles or adding Ca to molten aluminum has been adopted.

(発明が解決しようとする課題) しかし、上記の溶湯法では、セラミック粒子の添加量
が多い場合や、粒径の小さなものを分散させた場合に
は、セラミック粒子が溶湯中にガスを含んだ凝集体とし
て存在するおそれがある。この様な凝集体の存在は、複
合材の強度や伸びを低下させ、また、押出鋳造・圧延な
どの塑性加工や切削加工後の表面性状を悪化させるなど
の問題点がある。
(Problems to be Solved by the Invention) However, in the above-described melt method, when the amount of added ceramic particles is large or when particles having a small particle size are dispersed, the ceramic particles contain gas in the molten metal. May exist as aggregates. The presence of such agglomerates causes problems such as lowering the strength and elongation of the composite material and deteriorating the surface properties after plastic working such as extrusion casting and rolling and cutting.

この発明は上記問題点を解決することを基本径な目的
とし、上述の凝集体を効率よく、しかも確実に除去し
て、機械的特性に優れた複合材料を得ることができる複
合材料の製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a composite material capable of efficiently and reliably removing the above-mentioned aggregates to obtain a composite material having excellent mechanical properties. Is provided.

(課題を解決する為の手段) 本発明者は、前記した粒子の凝集体の除去を目的に研
究を重ねた結果、セラミック粒子を混合・分散させたア
ルミニウム溶湯中に、ガスを吹込むことにより気泡を発
生させると、その気泡の上昇と共に凝集体が浮上し、一
方、アルミニウム溶湯と十分にぬれて均一に分散したセ
ラミック粒子は分離浮上せず、溶湯中に残存することを
見出したものである。
(Means for Solving the Problems) As a result of repeated studies for the purpose of removing the agglomerates of the above-mentioned particles, the present inventor has found that by blowing gas into a molten aluminum in which ceramic particles are mixed and dispersed, When bubbles are generated, the aggregates float with the rise of the bubbles.On the other hand, the ceramic particles sufficiently wet and uniformly dispersed with the aluminum melt do not separate and float, but remain in the melt. .

本発明は上記知見に基づいてなされたものであり、強
化材を分散させた金属溶湯を鋳造するに先だち、上記溶
湯中に気泡を発生させ、溶湯とのぬれが不十分な強化材
やその凝集体を気泡に捕捉させて気泡と共に溶湯表面に
浮上させ、これを溶湯から除去した後、溶湯を凝固させ
て複合材を得ることを特徴とするものである。
The present invention has been made on the basis of the above findings, and before casting a molten metal in which a reinforcing material is dispersed, bubbles are generated in the molten metal, and the reinforcing material having insufficient wettability with the molten metal and the solidification thereof are provided. The composite material is characterized in that the aggregate is captured by air bubbles, floated on the surface of the molten metal together with the air bubbles, and is removed from the molten metal. Then, the molten metal is solidified to obtain a composite material.

なお、本発明が応用される金属は、金属系の複合材料
のマトリックスとして用いられるものであれば、特に種
別は限定されないが、一般にはアルミニウムが多く用い
られる。このマトリックスとして使用される純アルミニ
ウムやアルミニウム合金には、工業用普通純度のアルミ
ニウムやJIS6061、2041、7075などの展伸用アルミニウ
ム合金などが一般的に使用される。また、本発明はこれ
ら純アルミニウムまたはアルミニウム合金の種類に限定
されないことも勿論である。
The type of the metal to which the present invention is applied is not particularly limited as long as it is used as a matrix of a metal-based composite material. Generally, aluminum is often used. As the pure aluminum or aluminum alloy used as the matrix, aluminum of industrial ordinary purity or an aluminum alloy for spreading such as JIS6061, 2041, 7075, etc. is generally used. In addition, it is needless to say that the present invention is not limited to these types of pure aluminum or aluminum alloy.

また分散強化材としては、SiC、Si34、Al23、SiO
2、黒鉛などのセラミック粒子が用いられるが、さらに
ウイスカーなどの短繊維を用いることもできる。なお、
本発明は、これら強化材の種類、さらにはその粒径や、
長さ、分散量などに限定されるものではない。
The dispersion strengthening materials include SiC, Si 3 N 4 , Al 2 O 3 , SiO 2
2. Ceramic particles such as graphite are used, but short fibers such as whiskers can also be used. In addition,
The present invention relates to the types of these reinforcing materials, and furthermore, their particle sizes,
It is not limited to length, dispersion amount, and the like.

次に、強化材を混合・分散させた金属溶湯中で発生さ
せる気泡は、溶湯中にガスを吹き込むことにより行うこ
とができる。このガスとしては、N2やArなどの不活性
ガスもしくは塩素やジクロルジフルオルメタン(CCl2
2)などの活性ガスまたはそれらの混合ガスなど用いる
のが良い。この様なガスは、一般にはアルミニウム溶湯
中の水素を除去するために用いらるものであり、凝集体
の除去と同時に水素脱ガスの効果もある。凝集体の除去
のみを目的とした場合は、単なる空気の吹き込みでも効
果はあるが、空気中の酸素や水蒸気などにより金属溶湯
が酸化したり、水素を多量に含み、ガスポロシティーな
どの欠陥となるため、金属溶湯に使用するのは好ましく
なく、酸素ガス、水素ガス等も同様である。
Next, bubbles generated in the molten metal in which the reinforcing material is mixed and dispersed can be formed by blowing gas into the molten metal. This gas may be an inert gas such as N 2 or Ar or chlorine or dichlorodifluoromethane (CCl 2 F
It is preferable to use an active gas such as 2 ) or a mixed gas thereof. Such a gas is generally used for removing hydrogen in the molten aluminum and has an effect of removing hydrogen at the same time as removing aggregates. If only the purpose of removing aggregates is to simply blow air, it is effective, but oxygen or water vapor in the air oxidizes the molten metal, contains a large amount of hydrogen, and causes defects such as gas porosity. Therefore, it is not preferable to use the metal melt, and the same applies to oxygen gas, hydrogen gas and the like.

さらに気泡の発生手段として、金属溶湯中にガス発生
材を配置する方法を採用することも可能である。
Further, as a means for generating bubbles, a method of arranging a gas generating material in a molten metal can be employed.

このガス発生材には、上記した不活性ガスなどを例え
ば金属に封じ込めたものや、金属溶湯中での化学的な分
解によりガスを発生するものを用いる。
As the gas generating material, a material in which the above-described inert gas or the like is sealed in a metal, for example, or a material that generates a gas by chemical decomposition in a molten metal is used.

例えば、六塩化エタンなどの有機塩素化合物系フラッ
クスを溶湯中に添加することにより塩素などの分解ガス
が発生し、凝集体除去の効果とともに水素脱ガスの効果
が得られる。
For example, when an organic chlorine compound-based flux such as ethane hexachloride is added to the molten metal, a decomposition gas such as chlorine is generated, and the effect of removing aggregates and the effect of degassing hydrogen are obtained.

(作用) すなわちこの発明によれば、強化材を混合・分散させ
た金属溶湯中に気泡を発生させることにより、金属溶湯
中に存在する強化材の凝集体や金属溶湯とのぬれが不十
分な強化材が選択的に気泡に捕捉され、気泡とともに金
属溶湯表面にまで分離浮上する。この浮上物を金属溶湯
から除去することにより、溶湯中に存在する強化材の均
一性ならびにぬれ性の特性が向上し、この溶湯を鋳造す
ることにより、機械的特性に優れた複合材料が得られ
る。
(Function) In other words, according to the present invention, bubbles are generated in the molten metal in which the reinforcing material is mixed and dispersed, whereby the aggregates of the reinforcing material present in the molten metal and the wetting with the molten metal are insufficient. The reinforcing material is selectively captured by the bubbles, and separates and floats with the bubbles to the surface of the molten metal. By removing the floating material from the molten metal, the uniformity and wettability of the reinforcing material present in the molten metal are improved, and by casting the molten metal, a composite material having excellent mechanical properties can be obtained. .

次に、この発明の実施例を以下に説明する。 Next, embodiments of the present invention will be described below.

(実施例1) マトリックスをJIS6061アルミニウム合金とし、平均
粒径が約15μmのSiCセラミック粒子を約5重量%含ん
だアルミニウム溶湯30kgをボルテックス溶湯法によって
作製した後、乾燥Arガスを、溶湯中に浸漬したパイプを
用いて圧力2kg/cm2、流量10l/minで、3分間吹き込ん
だ。その後、溶湯表面に浮上したドロスを除去し、8イ
ンチ径のビレット形状に鋳造し、さらにこれを、50mm径
の丸棒に押出を行った。
(Example 1) 30 kg of molten aluminum containing about 5% by weight of SiC ceramic particles having an average particle diameter of about 15 μm was prepared by a vortex molten metal method using a JIS6061 aluminum alloy as a matrix, and then dry Ar gas was immersed in the molten metal. Blowing was performed for 3 minutes at a pressure of 2 kg / cm 2 and a flow rate of 10 l / min using the pipe made in this manner. Thereafter, the dross floating on the surface of the molten metal was removed, cast into an 8-inch billet shape, and extruded into a 50 mm-diameter round bar.

一方、比較例として上記と同様にSiCセラミック粒子
を分散混合させたアルミニウム合金溶湯を、内部に気泡
を発生させることなく、鋳造して押出しを行った。前記
実施例で得られた鋳造品はSiC粒子が均一に分散してお
り、凝集体の存在も認められない。これに対し、比較例
の鋳造品では、SiC粒子の凝集体が存在しており、分散
は不均一であった。
On the other hand, as a comparative example, an aluminum alloy melt in which SiC ceramic particles were dispersed and mixed as described above was cast and extruded without generating bubbles inside. In the casting obtained in the above example, SiC particles were uniformly dispersed, and the presence of aggregates was not recognized. On the other hand, in the casting of the comparative example, aggregates of SiC particles were present, and the dispersion was non-uniform.

次に、上記により得られた押出材の組織を観察したと
ころ、比較例では押出材表面に現れた凝集体が押出し方
向に引き伸ばされ、表面欠陥として存在していた。一
方、実施例の押出材では、表面欠陥もなく、良好な表面
状態であった。
Next, when the structure of the extruded material obtained as described above was observed, in the comparative example, the aggregate appeared on the surface of the extruded material was stretched in the extrusion direction and was present as a surface defect. On the other hand, the extruded material of the example had no surface defects and a good surface state.

(実施例2) マトリックスをJIS AC4Dアルミニウム合金とし、平均
粒径が約15μmのSiC粒子を約5%含んだアルミニウム
溶湯を溶湯法によって作製した後、溶湯の重量に対して
0.4wt%の六塩エタンをアルミニウム溶湯中に押し込ん
だ。六塩化エタンはアルミニウム溶湯中で化学反応によ
り分解して塩素ガスを発生した。六塩化エタンが全て分
解し、塩素ガスを発生し終ってから溶湯表面に浮上した
ドロスを除去し、JIS4号試験片用舟金型にて鋳造した。
その後、鋳塊には525℃×10時間の溶体化および160℃×
10時間の時効を施した後、引張試験片を削り出し、引張
試験を行った。尚、比較材として六塩化エタンによる脱
ガス処理を行わないものについても同様の鋳塊を作製
し、引張試験を行った。表1に引張試験の結果を示す。
(Example 2) A matrix was made of JIS AC4D aluminum alloy, and an aluminum melt containing about 5% of SiC particles having an average particle size of about 15 μm was prepared by a melt method.
0.4 wt% of hexasalt ethane was pressed into the molten aluminum. Ethane hexachloride was decomposed by a chemical reaction in molten aluminum to generate chlorine gas. After the ethane hexachloride was completely decomposed and chlorine gas was generated, dross floating on the surface of the molten metal was removed, and cast using a boat mold for JIS No. 4 test piece.
After that, the ingot was solution-solutioned at 525 ° C for 10 hours and at 160 ° C for 10 hours.
After aging for 10 hours, a tensile test piece was cut out and a tensile test was performed. In addition, the same ingot was prepared as a comparative material without degassing treatment with ethane hexachloride, and a tensile test was performed. Table 1 shows the results of the tensile test.

その結果、六塩化エタン処理を行ったものでは、その
処理を行ったものに比べ、強度、伸びとも高い値が得ら
れており、機械的性質が改善されていることがわかっ
た。
As a result, it was found that those treated with ethane hexachloride had higher strength and elongation than those treated, and that the mechanical properties were improved.

(発明の効果) 以上説明したように、この発明によれば、強化材を分
散させた金属溶湯を鋳造するに先立ち、上記溶湯中に気
泡を発生させ、金属溶湯と十分にぬれていない強化材や
その凝集体を気泡上昇と共に選択分離して浮上させ、容
易に除去することができるので、金属溶湯中に十分ぬれ
た強化材のみを均一に分散させた均質の複合材料を得て
その機械的性質を改善することができると共に、複合材
料の表面性状を良好にできるなどの諸効果がある。
(Effects of the Invention) As described above, according to the present invention, prior to casting a molten metal in which a reinforcing material is dispersed, bubbles are generated in the molten metal and the reinforcing material is not sufficiently wet with the molten metal. And its aggregates are selectively separated and lifted with the rise of air bubbles, and can be easily removed.Therefore, a homogeneous composite material in which only a sufficiently wet reinforcing material is uniformly dispersed in a molten metal is obtained, and the mechanical There are various effects such as improvement in properties and improvement in surface properties of the composite material.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強化材を分散混合させた金属溶湯中に気泡
を発生させ、金属溶湯とのぬれが不十分な強化材やその
凝集体を気泡により捕捉させ、前記強化材やその凝集体
を気泡と共に溶湯表面に浮上させて、これを溶湯から除
去した後、溶湯を凝固させて複合材料を得ることを特徴
とする複合材料の製造方法
An air bubble is generated in a molten metal in which a reinforcing material is dispersed and mixed, and a reinforcing material or an aggregate thereof which is insufficiently wet with the molten metal is captured by the air bubbles, and the reinforcing material or the aggregate thereof is removed. A method of manufacturing a composite material, wherein the composite material is obtained by floating on a surface of a molten metal together with air bubbles, removing this from the molten metal, and solidifying the molten metal.
【請求項2】金属溶湯中に不活性ガスまたは活性ガスを
吹込んで気泡を発生させることを特徴とする請求項1記
載の複合材料の製造方法
2. The method for producing a composite material according to claim 1, wherein an inert gas or an active gas is blown into the molten metal to generate air bubbles.
【請求項3】金属溶湯中にガス発生材を配置して、気泡
を発生させることを特徴とする請求項1記載の複合材料
の製造方法
3. The method for producing a composite material according to claim 1, wherein a gas generating material is arranged in the molten metal to generate air bubbles.
JP63140237A 1988-06-07 1988-06-07 Manufacturing method of composite material Expired - Lifetime JP2770025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140237A JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140237A JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Publications (2)

Publication Number Publication Date
JPH01309933A JPH01309933A (en) 1989-12-14
JP2770025B2 true JP2770025B2 (en) 1998-06-25

Family

ID=15264099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140237A Expired - Lifetime JP2770025B2 (en) 1988-06-07 1988-06-07 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP2770025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG75852A1 (en) * 1998-06-23 2000-10-24 Univ Singapore Functionally gradient materials and the manufacture thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139464A (en) * 1981-02-24 1982-08-28 Akebono Brake Ind Co Ltd Casting method for al reinforced by particle dispersion
JPS5955719A (en) * 1982-09-24 1984-03-30 Agency Of Ind Science & Technol Fiber arrangement of composite material filled with short fibers
JPS62207533A (en) * 1986-03-05 1987-09-11 Showa Alum Corp Protective device for bar-shaped insertion member into molten metal

Also Published As

Publication number Publication date
JPH01309933A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
US6143371A (en) Process for producing an MG-based composite material or an MG alloy-based composite material
JP2905516B2 (en) Directional solidification of metal matrix composites
KR102329015B1 (en) Method for preparing reduced graphene oxide from quiche graphite
KR102329016B1 (en) Method for preparing graphene oxide from quiche graphite
JP2905522B2 (en) Thermoforming method of metal matrix composite
JP2905517B2 (en) Method of forming metal matrix composite
CN108998700B (en) Ultra-light high-modulus high-strength cast aluminum-lithium-based composite material and preparation method thereof
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
JP2770025B2 (en) Manufacturing method of composite material
Zulfia et al. Role of Mg and Mg+ Si as external dopants in production of pure Al–SiC metal matrix composites by pressureless infiltration
CN1059568A (en) Spray cast aluminium-lithium alloys
DE3782304T2 (en) PRODUCTION OF COMPOSITE BODIES CONTAINING CERAMIC AND METAL-CERAMIC FILLERS.
JPH02111827A (en) Improved composite material and method for its manufacture
Adnan et al. Corrosion behavior of zinc alloy based metal matrix composites reinforced with nano BN
JP3829826B2 (en) Method for producing Mg-based composite material or Mg alloy-based composite material
Jit et al. Properties of (A384. 1) 1-x [(sic) p] x composites by keeping particle size at 0.220 µm
JP4048581B2 (en) Method for producing aluminum matrix composite material
Lal A novel technique for hyper eutectic aluminium-silicon alloy melt treatment
JP4049814B2 (en) Machinable metal matrix composite and liquid metal infiltration method
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
KR102563056B1 (en) High-strength nanoporous copper and method of manufacturing the same
JP4381330B2 (en) Method for producing metal matrix composite for casting
Mikucki et al. Extruded magnesium alloys reinforced with ceramic particles
Sushma et al. Fabrication and Machining of Al MMC and Evaluation of Surface Finish and Hardness Parameters
JP4224388B2 (en) Method for producing whisker composite metal material