JP2004190090A - High purity aluminum alloy material - Google Patents
High purity aluminum alloy material Download PDFInfo
- Publication number
- JP2004190090A JP2004190090A JP2002359108A JP2002359108A JP2004190090A JP 2004190090 A JP2004190090 A JP 2004190090A JP 2002359108 A JP2002359108 A JP 2002359108A JP 2002359108 A JP2002359108 A JP 2002359108A JP 2004190090 A JP2004190090 A JP 2004190090A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mass
- purity aluminum
- alloy material
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高純度アルミニウム合金材に関する。
【0002】
【従来の技術】
高純度アルミニウム合金材は、プラズマ反応装置などを構成する材料として有用であり、表面に陽極酸化皮膜が形成された陽極酸化高純度アルミニウム合金材としても用いられる。かかる高純度アルミニウム合金材としては強度の高いものが求められており、特許文献1(特開平10−88271号公報第3頁)には、0.35〜2.5質量%のマグネシウムおよび0.2〜1質量%のシリコンを含み、マグネシウム含有量(CMg、単位は重量%))がシリコン含有量(CSi、単位は質量%)の1.73倍を超え、不純物の含有量が0.1質量%以下である高純度アルミニウム合金材が開示されている。
【0003】
しかし、かかる従来の高純度アルミニウム合金材では、必ずしも十分な強度ではないという問題があった。
【0004】
【発明が解決しようとする課題】
そこで本発明者は、プラズマ反応装置を構成する材料として使用でき、十分な強度を有する高純度アルミニウム合金材を開発するべく鋭意検討した結果、マグネシウムの含有量を0.4〜2.1質量%とし、シリコンの含有量を0.4〜1.2質量%とし、マグネシウム含有量が式(1)
1.70×CSi−1質量% ≦ CMg ≦ 1.70×CSi (1)
〔式中、CMgはマグネシウムの含有量(単位は質量%)を、CSiはシリコンの含有量(単位は質量%)をそれぞれ示す。〕
を満足することで、プラズマ反応装置に使用でき、十分な強度を有する高純度アルミニウム合金材となし得ることを見出し、本発明に至った。
【0005】
【課題を解決するための手段】
すなわち本発明は、0.4質量%以上2.1質量%以下のマグネシウムおよび0.4質量%以上1.2質量%以下のシリコンを含み、マグネシウム含有量(CMg)が前記式(1)を満足し、不純物の含有量が0.1質量%以下であることを特徴とする高純度アルミニウム合金材を提供するものである。
【0006】
【発明の実施の形態】
本発明の高純度アルミニウム合金材は、0.4質量%以上2.1質量%以下のマグネシウムおよび0.4質量%以上1.2質量%以下、好ましくは0.8質量%以上のシリコンを含む。マグネシウムの含有量(CMg)が2.1質量%を超えたり、シリコンの含有量(CSi)が1.2質量%を超えると、高純度アルミニウム合金材の表面に形成される陽極酸化皮膜にマグネシウムやシリコンが混入し易くなる傾向にある。また、マグネシウムの含有量(CMg)が0.4質量%未満であったり、シリコンの含有量(CSi)が0.4質量%未満であると、強度が十分とはならない傾向にある。
【0007】
本発明の高純度アルミニウム合金材は、マグネシウムの含有量(CMg)が式(1)を満足し、好ましくは式(2)
1.70×CSi−1質量% ≦ CMg ≦ 1.70×CSi−0.5質量% (2)〔式中、CMgおよびCSiはそれぞれ前記と同じ意味を示す。〕
を満足する。マグネシウムの含有量(CMg)が式(1)で規定する範囲を超えたり、この範囲未満であると、強度が不十分となる傾向にある。
【0008】
本発明の高純度アルミニウム合金材は、不純物の含有量が0.1質量%以下である。不純物としては、例えば鉄、マンガン、銅、クロム、亜鉛、チタン、ニッケル、バナジウムなどの遷移金属、リチウム、ナトリウムなどのアルカリ金属、カルシウム、ストロンチウムなどのアルカリ土類金属などの金属不純物、ホウ素などの非金属不純物が挙げられる。
【0009】
本発明の高純度アルミニウム合金材は、例えば鋳型内で溶湯を冷却し、固化して得られる鋳塊材であってもよいし、高純度アルミニウム合金鋳塊材を塑性加工して得られる塑性加工材であってもよい。
【0010】
高純度アルミニウム合金鋳塊材は、例えば高純度アルミニウムにマグネシウムおよびシリコンを添加し鋳造する方法によって製造することができる。具体的には、高純度アルミニウムを加熱して溶融し、これにマグネシウムおよびシリコンを添加して溶湯を得、この溶湯を鋳型内で冷却し固化すればよい。高純度アルミニウムとしては、純度99.9質量%以上のものを用いればよい。かかる純度の高純度アルミニウムを用いることで、得られる高純度アルミニウム合金材の不純物含有量を容易に0.1質量%以下とすることができる。高純度アルミニウムを溶融するには、例えば黒鉛製の坩堝、アルミナ製の坩堝を用い、かかる坩堝の中で加熱すればよい。
【0011】
マグネシウムおよびシリコンは通常、金属状態で添加される。マグネシウムおよびシリコンとしては、それぞれ純度が99.9%以上のものを用いることが好ましい。マグネシウムおよびシリコンが添加された溶湯は、0.4質量%以上2.1質量%以下のマグネシウムおよび0.4質量%以上、好ましくは0.8質量%以上で、1.2質量%以下のシリコンを含み、マグネシウム含有量が前記式(1)を満足し、不純物の含有量が0.1質量%以下のアルミニウム溶湯である。かかる溶湯の温度は通常700℃以上800℃以下である。
【0012】
かかるアルミニウム溶湯を鋳型内に流し込み、鋳型内で冷却することで、鋳塊材として、本発明の高純度アルミニウム合金材を得ることができる。冷却速度は通常4℃/秒以上30℃/秒以下程度である。
【0013】
高純度アルミニウム合金塑性加工材は、例えば鋳型内で冷却固化して得た高純度アルミニウム合金鋳塊材を塑性加工することで得ることができる。塑性加工としては、例えば圧延、鍛造などが挙げられる。鋳塊材を塑性加工するには、例えば鋳塊材を板状に切り出し、圧延、鍛造などの方法により塑性加工すればよい。塑性加工温度は通常200℃以上500℃以下程度である。
【0014】
かくして得られた本発明の高純度アルミニウム合金材は通常、加熱処理されて加熱処理材として用いられる。加熱処理は、例えば高純度アルミニウム合金材を加熱して520℃以上580℃以下程度の温度に通常1時間以上25時間以下程度保持した後、冷却速度10℃/分以上、好ましくは300℃/分以下程度で50℃以下程度の温度に冷却し、次いで50℃以下、好ましくは−50℃以上、更に好ましくは10℃以上程度の温度に通常0.5時間以上72時間以下程度保持したのち、加熱して150℃以上200℃以下程度の温度で通常2時間以上50時間以下程度保持して行なわれる。かかる加熱処理を施された高純度アルミニウム合金材は、強度がより向上している。
【0015】
本発明の高純度アルミニウム合金材において、マグネシウムおよびシリコンはMg2Siで示される組成の珪素化マグネシウム粒状物相を形成して合金在中に分散して存在する。合金材の断面を顕微鏡観察して計測される粒状物相のうち、粒子径1μm以上20μm以下の粒状物相の個数は、1mm2あたり概ね2000個以下である。
【0016】
かかる本発明の高純度アルミニウム合金材は、例えば表面に陽極酸化皮膜を形成して陽極酸化高純度アルミニウム合金材として用いることができる。陽極酸化皮膜は、通常の陽極酸化処理によって形成することができる。具体的には、例えば希硫酸に高純度アルミニウム合金材を浸漬しながら、合金材を陽極として直流電流を流せばよい。形成される陽極酸化皮膜の厚みは、直流電流の電荷量によって定まる。高純度アルミニウム合金材の表面には自然酸化により形成された自然酸化皮膜が形成されているが、かかる自然酸化皮膜を除去するために、高純度アルミニウム合金材を予めアルカリ水溶液、酸などで洗浄しておくことが好ましい。
【0017】
【発明の効果】
本発明の高純度アルミニウム合金材は、十分な強度を有しており、例えばプラズマ反応装置を構成する材料として有用である。
【0018】
【実施例】
以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例によって限定されるものではない。
なお、以下の各実施例で得た高純度アルミニウム合金材の引張り強さおよび耐力は、合金材を直径10mm、長さ40mmの丸棒(鋳塊材)または厚み2.4mm、長さ50mmの平板状(圧延材)に切出し試験片として引張り試験を行い、長さが0.2%伸びたときの単位断面積あたりの引張力を耐力とし、破断するまでの最大の引張力を引張り強さとして、それぞれ求めた。
【0019】
実施例1
〔鋳塊材の製造〕
黒鉛製坩堝内で、高純度アルミニウム(純度99.99%)98質量部を750℃に加熱して溶融させ、同温度で金属シリコン(純度99.999%)1.0質量部および金属マグネシウム(純度99.9%)1.0質量部を加えてアルミニウム溶湯を得た。予め120℃に加熱した鉄製鋳型〔内寸縦20mm×横100mm×高さ150mm〕に上記で得たアルミニウム溶湯(720℃)を流し込み、冷却速度10℃/秒で冷却して、高純度アルミニウム合金鋳塊材を得た。得られた鋳塊材を縦100mm×横120mm×厚み20mmの板状に切出した。
【0020】
得られた鋳塊材の表面を鏡面研磨し、光学顕微鏡により観察倍率400倍で目視観察したところ、表面に粒状物相が観察された。この粒状物相の大きさは概ね25μmであり、1mm2あたりの個数は800個であった。
【0021】
〔530℃での加熱処理〕
上記と同様にして得た板状の鋳塊材〔縦100mm×横120mm×厚み20mm〕を530℃に加熱し同温度を5時間保持した後、水中に浸漬して10℃/分を超える冷却速度で冷却し、次いで室温(約20℃〜25℃)で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね10μmであり、1mm2あたりの個数は700個であった。この鋳塊材の引張り強さは310MPaであり、耐力は260MPaであった。
【0022】
〔550℃での加熱処理〕
上記と同様にして得た板状の鋳塊材〔縦100mm×横120mm×厚み20mm〕を550℃に加熱し同温度を5時間保持した後、水中に浸漬して冷却して、次いで室温で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね5μmであり、1mm2あたりの個数は700個であった。この鋳塊材の引張り強さは320MPaであり、耐力は270MPaであった。
【0023】
〔575℃での加熱処理〕
上記と同様にして得た板状の鋳塊材〔縦100mm×横120mm×厚み20mm〕を575℃に加熱し同温度を5時間保持した後、水中に浸漬して冷却して、次いで室温で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね5μmであり、1mm2あたりの個数は300個であった。この鋳塊材の引張り強さは350MPaであり、耐力は310MPaであった。
【0024】
結果を表1に示す。
【0025】
〔陽極酸化処理〕
上記で530℃、550℃および575℃で加熱処理した後の鋳塊材を10%水酸化ナトリウム水溶液〔水酸化ナトリウム濃度が質量分率で10%の水溶液〕に50℃で3分間浸漬し、その後水洗し、さらに10%硝酸水溶液〔硝酸濃度が質量分率で10%の水溶液〕に1分間浸漬し、水洗して、表面に自然酸化により形成された酸化皮膜を除去した。次いで0℃±2℃の温度を維持しながら15%硫酸水溶液〔硫酸濃度が質量分率で15%の水溶液〕に浸漬し、鋳塊材を陽極として0.03A/cm2の電流密度で50分間直流電流を流して、陽極酸化した。
陽極酸化後の鋳塊材を水洗し、乾燥して、陽極酸化高純度アルミニウム合金材を得た。この陽極酸化高純度アルミニウム合金材は、表面に均一にムラのない陽極酸化皮膜が形成されていた。
【0026】
【表1】
【0027】
比較例1
金属シリコン(純度99.999%)の添加量を0.5質量部とし、金属マグネシウム(純度99.9%)の添加量を1.5質量部とした以外は実施例1と同様に操作して、板状の高純度アルミニウム合金鋳塊材を得、加熱処理した。結果を表2に示す。
【0028】
【表2】
【0029】
比較例2
高純度アルミニウム(純度99.99%)の使用量を96質量部とし、金属シリコン(純度99.999%)の添加量を1.0質量部とし、金属マグネシウム(純度99.9%)の添加量を3.0質量部とした以外は実施例1と同様に操作して、板状の高純度アルミニウム合金鋳塊材を得、実施例1と同様に加熱処理した。結果を表3に示す。
【0030】
【表3】
【0031】
実施例2
〔高純度アルミニウム合金塑性加工材の製造〕
実施例1と同様に操作して高純度アルミニウム合金鋳塊材を得、得られた鋳塊材を縦30mm×横100mm×厚み20mmに切出して板状とした。得られた板状の鋳塊材を500℃〜250℃の温度で厚みが8mmになるまで12回均等に圧延したのち、厚みが3mmになるまで10回均等に圧延し、さらに厚みが2.4mmになるように1回で圧延して、縦35mm×横700mm×厚み2.4mmの板状の高純度アルミニウム合金塑性加工材(圧延材)を得た。
【0032】
〔530℃での加熱処理〕
上記で得た板状の圧延材を530℃に加熱し同温度を5時間保持した後、水中に浸漬して冷却して、次いで室温で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね6μmであり、1mm2あたりの個数は1600個であった。この鋳塊材の引張り強さは300MPaであり、耐力は250MPaであった。
【0033】
上記と同様にして得た圧延材を530℃に加熱し、同温度を10時間保持した。
その後上記と同様に操作したところ、粒状物相の大きさは概ね4μmであり、1mm2あたりの個数は1300個であった。この鋳塊材の引張り強さは300MPaであり、耐力は250MPaであった。
【0034】
〔550℃での加熱処理〕
上記と同様に操作して得た圧延材〔縦35mm×横700mm×厚み2.4mm〕を550℃に加熱し、同温度を5時間保持した後、水中に浸漬して冷却して、次いで室温で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね5μmであり、1mm2あたりの個数は1100個であった。この鋳塊材の引張り強さは330MPaであり、耐力は280MPaであった。
【0035】
上記と同様にして得た圧延材を550℃に加熱し、同温度を10時間保持した。その後上記と同様に操作したところ、粒状物相の大きさは概ね6μmであり、1mm2あたりの個数は1100個であった。この鋳塊材の引張り強さは330MPaであり、耐力は280MPaであった。
【0036】
〔575℃での加熱処理〕
上記と同様に操作して得た圧延材〔縦35mm×横700mm×厚み2.4mm〕を575℃に加熱し、同温度を5時間保持した後、水中に浸漬して冷却して、次いで室温で2時間保持したのち、180℃に加熱して同温度を8時間保持して加熱処理をした。加熱処理後の鋳塊材の表面を鏡面研磨し、上記と同様にして光学顕微鏡により目視観察したところ、粒状物相の大きさは概ね4μmであり、1mm2あたりの個数は700個であった。この鋳塊材の引張り強さは350MPaであり、耐力は300MPaであった。
【0037】
上記と同様にして得た圧延材を575℃に加熱し、同温度を10時間保持した。その後上記と同様に操作したところ、粒状物相の大きさは概ね4μmであり、1mm2あたりの個数は500個であった。この鋳塊材の引張り強さは350MPaであり、耐力は300MPaであった。
【0038】
結果を表4および表5に示す。
【0039】
〔陽極酸化皮膜の形成〕
実施例1で得た鋳塊材に代えて、上記で530℃、550℃および575℃で加熱処理した後の圧延材を用いる以外は実施例1と同様に操作して、陽極酸化した。陽極酸化後の圧延材を水洗し、乾燥して、陽極酸化高純度アルミニウム合金材を得た。この陽極酸化高純度アルミニウム合金材は、表面に均一にムラのない陽極酸化皮膜が形成されていた。
【0040】
【表4】
【0041】
【表5】
【0042】
比較例3
比較例1と同様に操作して高純度アルミニウム合金鋳塊材を得、得られた鋳塊材を縦30mm×横100mm×厚み20mmに切出して板状とした。得られた板状の鋳塊材を用いて、実施例2と同様に操作して、高純度アルミニウム合金塑性加工材(圧延材)を得た。得られた圧延材を実施例2と同様に加熱処理した。結果を表6および表7に示す。
【0043】
【表6】
【0044】
【表7】
【0045】
比較例4
比較例2と同様に操作して高純度アルミニウム合金鋳塊材を得、得られた鋳塊材を縦30mm×横100mm×厚み20mmに切出して板状とした。得られた板状の鋳塊材を用いて、実施例2と同様に操作して、高純度アルミニウム合金塑性加工材(圧延材)を得た。得られた圧延材を実施例2と同様に加熱処理した。結果を表8および表9に示す。
【0046】
【表8】
【0047】
【表9】
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-purity aluminum alloy material.
[0002]
[Prior art]
The high-purity aluminum alloy material is useful as a material constituting a plasma reactor or the like, and is also used as an anodized high-purity aluminum alloy material having an anodic oxide film formed on the surface. As such a high-purity aluminum alloy material, a material having high strength is required, and Patent Document 1 (Japanese Unexamined Patent Application Publication No. 10-88271, page 3) discloses that 0.35 to 2.5% by mass of magnesium and 0. 2 to 1% by mass of silicon, the magnesium content (C Mg , unit is% by mass)) exceeds 1.73 times the silicon content (C Si , unit is% by mass), and the impurity content is 0%. A high-purity aluminum alloy material having a content of 0.1 mass% or less is disclosed.
[0003]
However, the conventional high-purity aluminum alloy material has a problem that the strength is not always sufficient.
[0004]
[Problems to be solved by the invention]
Accordingly, the present inventors have conducted intensive studies to develop a high-purity aluminum alloy material that can be used as a material constituting a plasma reactor and has sufficient strength. As a result, the magnesium content was reduced to 0.4 to 2.1% by mass. And the content of silicon is set to 0.4 to 1.2% by mass, and the magnesium content is calculated by the formula (1)
1.70 × C Si -1 mass% ≦ C Mg ≦ 1.70 × C Si (1)
[In the formula, C Mg indicates the content of magnesium (unit is% by mass), and C Si indicates the content of silicon (unit is% by mass). ]
By satisfying the above, it was found that a high-purity aluminum alloy material that can be used in a plasma reactor and has sufficient strength can be obtained, and the present invention has been accomplished.
[0005]
[Means for Solving the Problems]
That is, the present invention includes 0.4% by mass or more and 2.1% by mass or less of magnesium and 0.4% by mass or more and 1.2% by mass or less of silicon, and the magnesium content (C Mg ) is represented by the formula (1). And a high-purity aluminum alloy material characterized by having an impurity content of 0.1% by mass or less.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The high-purity aluminum alloy material of the present invention contains 0.4% by mass to 2.1% by mass of magnesium and 0.4% by mass to 1.2% by mass, preferably 0.8% by mass or more of silicon. . When the magnesium content (C Mg ) exceeds 2.1% by mass or the silicon content (C Si ) exceeds 1.2% by mass, the anodic oxide film formed on the surface of the high-purity aluminum alloy material Tends to be easily mixed with magnesium and silicon. If the magnesium content (C Mg ) is less than 0.4% by mass or the silicon content (C Si ) is less than 0.4% by mass, the strength tends to be insufficient.
[0007]
In the high-purity aluminum alloy material of the present invention, the magnesium content (C Mg ) satisfies the formula (1), preferably the formula (2)
1.70 × C Si -1 mass% ≦ C Mg ≦ 1.70 × C Si −0.5 mass% (2) [In the formula, C Mg and C Si each have the same meaning as described above. ]
To be satisfied. If the magnesium content (C Mg ) exceeds or falls below the range defined by the formula (1), the strength tends to be insufficient.
[0008]
The high-purity aluminum alloy material of the present invention has an impurity content of 0.1% by mass or less. Examples of the impurities include transition metals such as iron, manganese, copper, chromium, zinc, titanium, nickel, and vanadium; alkali metals such as lithium and sodium; calcium and alkaline earth metals such as strontium; and metal impurities such as boron. Non-metallic impurities.
[0009]
The high-purity aluminum alloy material of the present invention may be, for example, an ingot obtained by cooling and solidifying a molten metal in a mold, or a plastic working obtained by plastically processing a high-purity aluminum alloy ingot. It may be a material.
[0010]
The high-purity aluminum alloy ingot material can be produced, for example, by a method of adding magnesium and silicon to high-purity aluminum and casting. Specifically, high-purity aluminum is heated and melted, magnesium and silicon are added thereto to obtain a molten metal, and the molten metal may be cooled and solidified in a mold. As high-purity aluminum, aluminum having a purity of 99.9% by mass or more may be used. By using high-purity aluminum having such a purity, the impurity content of the obtained high-purity aluminum alloy material can be easily reduced to 0.1% by mass or less. In order to melt high-purity aluminum, for example, a graphite crucible or an alumina crucible may be used and heated in such a crucible.
[0011]
Magnesium and silicon are usually added in a metallic state. It is preferable to use magnesium and silicon each having a purity of 99.9% or more. The molten metal to which magnesium and silicon are added is 0.4 mass% or more and 2.1 mass% or less of magnesium and 0.4 mass% or more, preferably 0.8 mass% or more and 1.2 mass% or less of silicon. And the magnesium content satisfies the formula (1) and the content of impurities is 0.1% by mass or less. The temperature of the molten metal is usually 700 ° C. or more and 800 ° C. or less.
[0012]
The high-purity aluminum alloy material of the present invention can be obtained as an ingot material by pouring such molten aluminum into a mold and cooling it in the mold. The cooling rate is usually about 4 ° C./sec to 30 ° C./sec.
[0013]
The high-purity aluminum alloy plastically processed material can be obtained, for example, by plastically processing a high-purity aluminum alloy ingot obtained by cooling and solidifying in a mold. Examples of the plastic working include rolling and forging. In order to plastically process the ingot material, for example, the ingot material may be cut out into a plate shape and plastically processed by a method such as rolling or forging. The plastic working temperature is usually about 200 ° C. or more and 500 ° C. or less.
[0014]
The high-purity aluminum alloy material of the present invention thus obtained is usually heat-treated and used as a heat-treated material. The heat treatment is performed, for example, by heating a high-purity aluminum alloy material and keeping it at a temperature of about 520 ° C. to 580 ° C. for about 1 hour to 25 hours, and then a cooling rate of 10 ° C./min or more, preferably 300 ° C./min. After cooling to a temperature of about 50 ° C. or less at a temperature of about 50 ° C. or less, and preferably at a temperature of about 50 ° C. or less, preferably about −50 ° C. or more, more preferably about 10 ° C. or more, for about 0.5 to 72 hours, Then, it is carried out at a temperature of about 150 ° C. or more and 200 ° C. or less, usually for about 2 hours or more and 50 hours or less. The high-purity aluminum alloy material subjected to such a heat treatment has further improved strength.
[0015]
In the high-purity aluminum alloy material of the present invention, magnesium and silicon form a magnesium silicide particulate phase having a composition represented by Mg 2 Si and are dispersed in the alloy. Among the particulate phases measured by observing the cross section of the alloy material with a microscope, the number of the particulate phases having a particle diameter of 1 μm or more and 20 μm or less is approximately 2000 or less per 1 mm 2 .
[0016]
Such a high-purity aluminum alloy material of the present invention can be used as an anodized high-purity aluminum alloy material, for example, by forming an anodic oxide film on the surface. The anodic oxide film can be formed by ordinary anodic oxidation treatment. Specifically, for example, a high-purity aluminum alloy material may be immersed in dilute sulfuric acid, and a direct current may be applied using the alloy material as an anode. The thickness of the formed anodic oxide film is determined by the amount of charge of the direct current. A natural oxide film formed by natural oxidation is formed on the surface of the high-purity aluminum alloy material.In order to remove such a natural oxide film, the high-purity aluminum alloy material is washed in advance with an alkaline aqueous solution, an acid, or the like. It is preferable to keep it.
[0017]
【The invention's effect】
The high-purity aluminum alloy material of the present invention has a sufficient strength and is useful, for example, as a material constituting a plasma reactor.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, the tensile strength and proof stress of the high-purity aluminum alloy material obtained in each of the following examples are as follows: a 10 mm diameter, 40 mm long round bar (ingot material) or a 2.4 mm thick, 50 mm long A tensile test is performed as a cut-out test piece on a flat plate (rolled material). The tensile force per unit cross-sectional area when the length is extended by 0.2% is defined as the proof stress, and the maximum tensile force before breaking is defined as the tensile strength. As each sought.
[0019]
Example 1
[Manufacture of ingot material]
In a graphite crucible, 98 parts by mass of high-purity aluminum (purity 99.99%) is heated and melted at 750 ° C., and at the same temperature, 1.0 part by mass of metallic silicon (purity 99.999%) and metallic magnesium ( (Purity: 99.9%) 1.0 part by mass was added to obtain a molten aluminum. The molten aluminum (720 ° C.) obtained above is poured into an iron mold (inner dimension 20 mm × width 100 mm × height 150 mm) previously heated to 120 ° C., and cooled at a cooling rate of 10 ° C./sec. An ingot material was obtained. The obtained ingot was cut into a plate having a length of 100 mm, a width of 120 mm and a thickness of 20 mm.
[0020]
The surface of the obtained ingot material was mirror-polished and visually observed with an optical microscope at an observation magnification of 400 times. As a result, a granular phase was observed on the surface. The size of the particulate phase was approximately 25 μm, and the number per 1 mm 2 was 800.
[0021]
[Heat treatment at 530 ° C]
A plate-like ingot obtained in the same manner as described above (length 100 mm × width 120 mm × thickness 20 mm) is heated to 530 ° C., kept at the same temperature for 5 hours, immersed in water and cooled at a rate exceeding 10 ° C./min. After cooling at a speed, and then keeping at room temperature (about 20 ° C. to 25 ° C.) for 2 hours, the mixture was heated to 180 ° C. and kept at the same temperature for 8 hours to carry out heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 10 μm, and the number per 1 mm 2 was 700. . The tensile strength of this ingot material was 310 MPa, and the yield strength was 260 MPa.
[0022]
[Heat treatment at 550 ° C]
A plate-shaped ingot obtained in the same manner as described above (length 100 mm × width 120 mm × thickness 20 mm) is heated to 550 ° C., kept at the same temperature for 5 hours, immersed in water, cooled, and then at room temperature. After holding for 2 hours, the mixture was heated to 180 ° C. and kept at the same temperature for 8 hours to perform a heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 5 μm, and the number per 1 mm 2 was 700. . The tensile strength of this ingot material was 320 MPa, and the proof stress was 270 MPa.
[0023]
[Heat treatment at 575 ° C]
A plate-shaped ingot obtained in the same manner as above (100 mm long × 120 mm wide × 20 mm thick) was heated to 575 ° C., kept at the same temperature for 5 hours, immersed in water, cooled, and then cooled to room temperature. After holding for 2 hours, the mixture was heated to 180 ° C. and kept at the same temperature for 8 hours to perform a heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 5 μm, and the number per 1 mm 2 was 300. . The tensile strength of this ingot material was 350 MPa, and the proof stress was 310 MPa.
[0024]
Table 1 shows the results.
[0025]
(Anodic oxidation treatment)
The ingot material after the heat treatment at 530 ° C., 550 ° C. and 575 ° C. is immersed in a 10% aqueous sodium hydroxide solution [aqueous solution having a sodium hydroxide concentration of 10% by mass] at 50 ° C. for 3 minutes, Thereafter, the substrate was washed with water, further immersed in a 10% aqueous nitric acid solution (an aqueous solution having a nitric acid concentration of 10% by mass) for 1 minute, and washed with water to remove an oxide film formed on the surface by natural oxidation. Then, while maintaining the temperature of 0 ° C. ± 2 ° C., it is immersed in a 15% aqueous sulfuric acid solution (an aqueous solution having a sulfuric acid concentration of 15% by mass), and the ingot is used as an anode at a current density of 0.03 A / cm 2 at a current density of 50%. Anodizing was performed by applying a direct current for minutes.
The anodized ingot material was washed with water and dried to obtain an anodized high-purity aluminum alloy material. This anodized high-purity aluminum alloy material had an evenly uniform anodic oxide film formed on the surface.
[0026]
[Table 1]
[0027]
Comparative Example 1
The same operation as in Example 1 was performed except that the addition amount of metallic silicon (purity 99.999%) was 0.5 parts by mass and the addition amount of metallic magnesium (purity 99.9%) was 1.5 parts by mass. Thus, a plate-like high-purity aluminum alloy ingot material was obtained and heat-treated. Table 2 shows the results.
[0028]
[Table 2]
[0029]
Comparative Example 2
96 parts by mass of high-purity aluminum (99.99% purity), 1.0 parts by mass of metallic silicon (99.999% purity), and addition of metallic magnesium (99.9% purity) A plate-like high-purity aluminum alloy ingot was obtained in the same manner as in Example 1 except that the amount was changed to 3.0 parts by mass, and heat-treated as in Example 1. Table 3 shows the results.
[0030]
[Table 3]
[0031]
Example 2
[Manufacture of high-purity aluminum alloy plastic processed materials]
A high-purity aluminum alloy ingot was obtained in the same manner as in Example 1, and the obtained ingot was cut into a plate having a length of 30 mm, a width of 100 mm and a thickness of 20 mm. The plate-like ingot obtained is uniformly rolled 12 times at a temperature of 500 ° C. to 250 ° C. until the thickness becomes 8 mm, and then uniformly rolled 10 times until the thickness becomes 3 mm. It was rolled once to 4 mm to obtain a plate-shaped high-purity aluminum alloy plastically processed material (rolled material) having a length of 35 mm, a width of 700 mm and a thickness of 2.4 mm.
[0032]
[Heat treatment at 530 ° C]
The plate-shaped rolled material obtained above is heated to 530 ° C. and kept at the same temperature for 5 hours, immersed in water and cooled, then kept at room temperature for 2 hours, and then heated to 180 ° C. and heated to the same temperature. Was maintained for 8 hours to perform a heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 6 μm, and the number per 1 mm 2 was 1600. . The tensile strength of this ingot material was 300 MPa, and the proof stress was 250 MPa.
[0033]
The rolled material obtained in the same manner as above was heated to 530 ° C. and kept at the same temperature for 10 hours.
After that, the same operation as described above revealed that the size of the particulate phase was approximately 4 μm, and the number per 1 mm 2 was 1,300. The tensile strength of this ingot material was 300 MPa, and the proof stress was 250 MPa.
[0034]
[Heat treatment at 550 ° C]
A rolled material (35 mm long × 700 mm wide × 2.4 mm thick) obtained by the same operation as above was heated to 550 ° C., kept at the same temperature for 5 hours, immersed in water, cooled, and then cooled to room temperature. , And then heated to 180 ° C. and maintained at the same temperature for 8 hours to perform a heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 5 μm, and the number per 1 mm 2 was 1100. . The tensile strength of this ingot material was 330 MPa, and the proof stress was 280 MPa.
[0035]
The rolled material obtained in the same manner as above was heated to 550 ° C. and kept at the same temperature for 10 hours. Thereafter, when the same operation as above was performed, the size of the particulate phase was approximately 6 μm, and the number per 1 mm 2 was 1,100. The tensile strength of this ingot material was 330 MPa, and the proof stress was 280 MPa.
[0036]
[Heat treatment at 575 ° C]
A rolled material (35 mm long × 700 mm wide × 2.4 mm thick) obtained by the same operation as above was heated to 575 ° C., kept at the same temperature for 5 hours, immersed in water, cooled, and then cooled to room temperature. , And then heated to 180 ° C. and maintained at the same temperature for 8 hours to perform a heat treatment. The surface of the ingot material after the heat treatment was mirror-polished and visually observed with an optical microscope in the same manner as described above. As a result, the size of the granular phase was approximately 4 μm, and the number per 1 mm 2 was 700. . The tensile strength of this ingot material was 350 MPa, and the proof stress was 300 MPa.
[0037]
The rolled material obtained in the same manner as above was heated to 575 ° C. and kept at the same temperature for 10 hours. Thereafter, when the same operation was performed as described above, the size of the particulate phase was approximately 4 μm, and the number per 1 mm 2 was 500. The tensile strength of this ingot material was 350 MPa, and the proof stress was 300 MPa.
[0038]
The results are shown in Tables 4 and 5.
[0039]
(Formation of anodized film)
Anodizing was performed in the same manner as in Example 1 except that the ingot obtained in Example 1 was replaced with the rolled material after the heat treatment at 530 ° C., 550 ° C., and 575 ° C. The rolled material after the anodization was washed with water and dried to obtain an anodized high-purity aluminum alloy material. This anodized high-purity aluminum alloy material had a uniform anodic oxide film formed on the surface.
[0040]
[Table 4]
[0041]
[Table 5]
[0042]
Comparative Example 3
A high-purity aluminum alloy ingot was obtained in the same manner as in Comparative Example 1, and the obtained ingot was cut into a plate having a length of 30 mm, a width of 100 mm and a thickness of 20 mm. Using the obtained plate-like ingot material, the same operation as in Example 2 was performed to obtain a high-purity aluminum alloy plastically processed material (rolled material). The obtained rolled material was heat-treated in the same manner as in Example 2. The results are shown in Tables 6 and 7.
[0043]
[Table 6]
[0044]
[Table 7]
[0045]
Comparative Example 4
By operating in the same manner as in Comparative Example 2, a high-purity aluminum alloy ingot was obtained, and the obtained ingot was cut into a plate having a length of 30 mm, a width of 100 mm, and a thickness of 20 mm. Using the obtained plate-like ingot material, the same operation as in Example 2 was performed to obtain a high-purity aluminum alloy plastically processed material (rolled material). The obtained rolled material was heat-treated in the same manner as in Example 2. The results are shown in Tables 8 and 9.
[0046]
[Table 8]
[0047]
[Table 9]
Claims (6)
1.70×CSi−1質量% ≦ CMg ≦ 1.70×CSi (1)
〔式中、CMgはマグネシウムの含有量(単位は質量%)を、CSiはシリコンの含有量(単位は質量%)をそれぞれ示す。〕
を満足し、不純物の含有量が0.1質量%以下であることを特徴とする高純度アルミニウム合金材。It contains 0.4% by mass or more and 2.1% by mass or less of magnesium and 0.4% by mass or more and 1.2% by mass or less of silicon.
1.70 × C Si -1 mass% ≦ C Mg ≦ 1.70 × C Si (1)
[In the formula, C Mg indicates the content of magnesium (unit is% by mass), and C Si indicates the content of silicon (unit is% by mass). ]
Characterized by having a content of impurities of 0.1% by mass or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002359108A JP2004190090A (en) | 2002-12-11 | 2002-12-11 | High purity aluminum alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002359108A JP2004190090A (en) | 2002-12-11 | 2002-12-11 | High purity aluminum alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004190090A true JP2004190090A (en) | 2004-07-08 |
Family
ID=32758597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002359108A Pending JP2004190090A (en) | 2002-12-11 | 2002-12-11 | High purity aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004190090A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630537A (en) * | 2015-02-11 | 2015-05-20 | 山东大学 | Method for preparing germanium porous material |
CN105238963A (en) * | 2015-10-26 | 2016-01-13 | 东莞华程金属科技有限公司 | Aluminum alloy mobile phone shell and manufacturing method thereof |
CN105238961A (en) * | 2015-10-12 | 2016-01-13 | 苏州中色研达金属技术有限公司 | 6XXX aluminum alloy and machining method thereof |
CN105238971A (en) * | 2015-11-19 | 2016-01-13 | 湖南创元铝业有限公司 | Aluminum alloy and preparation method of aluminum alloy product |
CN105238962A (en) * | 2015-10-12 | 2016-01-13 | 苏州中色研达金属技术有限公司 | High-performance 6XXX aluminum alloy for outer part of electronic product and machining method thereof |
-
2002
- 2002-12-11 JP JP2002359108A patent/JP2004190090A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630537A (en) * | 2015-02-11 | 2015-05-20 | 山东大学 | Method for preparing germanium porous material |
CN105238961A (en) * | 2015-10-12 | 2016-01-13 | 苏州中色研达金属技术有限公司 | 6XXX aluminum alloy and machining method thereof |
CN105238962A (en) * | 2015-10-12 | 2016-01-13 | 苏州中色研达金属技术有限公司 | High-performance 6XXX aluminum alloy for outer part of electronic product and machining method thereof |
CN105238963A (en) * | 2015-10-26 | 2016-01-13 | 东莞华程金属科技有限公司 | Aluminum alloy mobile phone shell and manufacturing method thereof |
CN105238971A (en) * | 2015-11-19 | 2016-01-13 | 湖南创元铝业有限公司 | Aluminum alloy and preparation method of aluminum alloy product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5405115B2 (en) | Method for producing grain refined mother alloy | |
JP5852580B2 (en) | Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same | |
JP7323616B2 (en) | Magnesium alloy material and its manufacturing method | |
JP4500916B2 (en) | Magnesium alloy and manufacturing method thereof | |
EP2481822B1 (en) | Magnesium-aluminum based alloy with grain refiner | |
JP4849402B2 (en) | High strength magnesium alloy and method for producing the same | |
JP5360591B2 (en) | Aluminum alloy ingot and method for producing the same | |
JPH0816254B2 (en) | Method for producing alloy containing titanium carbide | |
CN101285144A (en) | Magnesium alloy for semi-solid forming and preparation method of semi- solid blank | |
JP5215710B2 (en) | Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same | |
CN113969362B (en) | Continuous gradient aluminum alloy deformation material and preparation method thereof | |
JP2020510750A (en) | Magnesium alloy sheet and method of manufacturing the same | |
JP2004190090A (en) | High purity aluminum alloy material | |
CN102418009B (en) | Aluminum alloy capable of digesting high-hardness compounds and smelting method of aluminum alloy | |
JP3246363B2 (en) | Forming method of semi-molten metal | |
JP4839739B2 (en) | High purity aluminum alloy material | |
CN108893664A (en) | A kind of aluminum alloy materials and preparation method | |
JP3895232B2 (en) | Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same | |
KR102044983B1 (en) | High corrosion resistant magnesium alloy and method for manufacturing the same | |
WO2002071513A2 (en) | Aluminum anodes and method of manufacture thereof | |
JP2002212692A (en) | METHOD FOR PRODUCING Al-Si BASED ALLOY MATERIAL | |
KR100391760B1 (en) | Manufacturing process of Magnesium alloys and components excellent in Corrosion resistance using semisolid/semiliquid process | |
LU502448B1 (en) | Ipse homogenization smelting method | |
JPS6362836A (en) | Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof | |
JPH05132731A (en) | Aluminum alloy having a gold color tone after anodic oxidation treatment and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051003 |
|
A977 | Report on retrieval |
Effective date: 20070416 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Written amendment |
Effective date: 20070625 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070724 |