JP4849402B2 - High strength magnesium alloy and method for producing the same - Google Patents

High strength magnesium alloy and method for producing the same Download PDF

Info

Publication number
JP4849402B2
JP4849402B2 JP2006251434A JP2006251434A JP4849402B2 JP 4849402 B2 JP4849402 B2 JP 4849402B2 JP 2006251434 A JP2006251434 A JP 2006251434A JP 2006251434 A JP2006251434 A JP 2006251434A JP 4849402 B2 JP4849402 B2 JP 4849402B2
Authority
JP
Japan
Prior art keywords
quasicrystal
alloy
molten
magnesium alloy
strength magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006251434A
Other languages
Japanese (ja)
Other versions
JP2008069438A (en
Inventor
安邦 蔡
諭 大橋
晃 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006251434A priority Critical patent/JP4849402B2/en
Priority to CN2007800278886A priority patent/CN101495660B/en
Priority to PCT/JP2007/068214 priority patent/WO2008032857A1/en
Priority to US12/375,691 priority patent/US20090320967A1/en
Publication of JP2008069438A publication Critical patent/JP2008069438A/en
Application granted granted Critical
Publication of JP4849402B2 publication Critical patent/JP4849402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高強度マグネシウム合金、特に高温強度を高めたマグネシウム合金およびその製造方法に関する。   The present invention relates to a high-strength magnesium alloy, in particular, a magnesium alloy with an increased high-temperature strength and a method for producing the same.

マグネシウム合金は軽量を活かして種々の構造部材への適用が進められている。特に、自動車に適用すれば燃費向上とそれによる資源・環境保護に効果的である。   Magnesium alloys are being applied to various structural members by taking advantage of their light weight. In particular, when applied to automobiles, it is effective for improving fuel efficiency and protecting resources and the environment.

市販材としては、砂型鋳造用マグネシウム合金としてASTM AZ91C(標準組成[wt%]:Mg−8.7Al−0.7Zn−0.13Mn)、同ZE41A(同:Mg−4.2Zn−1.2RE−0.7Zr)等が、また展伸用マグネシウム合金として同AZ61A(同:Mg−6.4Al−1.0Zn−0.28Mn)、同AZ31B(同:Mg−3.0Al−1.0Zn−0.15Mn)等が汎用されている。   Commercially available materials include ASTM AZ91C (standard composition [wt%]: Mg-8.7Al-0.7Zn-0.13Mn), ZE41A (same: Mg-4.2Zn-1.2RE-0.7Zr), etc. as magnesium alloys for sand casting. However, AZ61A (Mg-6.4Al-1.0Zn-0.28Mn), AZ31B (Mg-3.0Al-1.0Zn-0.15Mn), etc. are widely used as the magnesium alloy for extension.

このうち、砂型鋳造用合金であるAZ91C、ZE41Aは、析出効果型合金であり、鋳造材にT6(溶体化+時効)またはT5(時効のみ)を施すことにより所要強度に調整する。ただし室温以上、特に50℃以上に長時間晒されると固溶元素の時効析出が起きて、合金組織が徐々に変化し、それに伴って特性に経時変化が生ずる原因となる。その結果、組織および特性の熱的な安定性が低く、安定して高い高温強度を得ることができないという欠点があった。   Among these, AZ91C and ZE41A, which are sand casting alloys, are precipitation effect type alloys, and are adjusted to the required strength by applying T6 (solution treatment + aging) or T5 (aging only) to the cast material. However, when exposed to room temperature or higher, particularly 50 ° C. or longer, aging precipitation of solid solution elements occurs, the alloy structure gradually changes, and this causes changes in characteristics over time. As a result, there is a drawback that the thermal stability of the structure and properties is low, and high high-temperature strength cannot be obtained stably.

また、展伸用合金であるAZ61A、AZ31Bは、圧延、押出等の際の加工・再結晶による結晶粒微細化を強化機構として利用している。しかし100℃以上の高温になるとMg特有の顕著な粒界すべりが発生するので、結晶粒微細化は粒界すべり発生サイトの増加により逆に強度低下の原因となる。また、高温に晒されると結晶粒が成長して微細化効果が失われ、室温強度の低下の原因になる。その結果、高い高温強度を確保できないばかりでなく、室温強度も熱的に不安定であるという欠点があった。   Further, AZ61A and AZ31B, which are wrought alloys, utilize the grain refinement by processing and recrystallization during rolling, extrusion, and the like as a strengthening mechanism. However, when the temperature is higher than 100 ° C., remarkable grain boundary slippage peculiar to Mg is generated. Therefore, the refinement of crystal grains causes a decrease in strength due to an increase in grain boundary slip generation sites. Further, when exposed to high temperature, crystal grains grow and the effect of refining is lost, which causes a decrease in room temperature strength. As a result, there is a disadvantage that not only high high-temperature strength cannot be secured, but also room temperature strength is thermally unstable.

上記従来の市販材の欠点を改良して高い高温強度を確保するために、特許文献1(特開2002-309332号公報)には、固溶体マトリクスを準結晶粒子により分散強化したMg−1〜10at%Zn−0.1〜3at%Y合金が開示されている。鋳造組織はα−Mg結晶粒界に準結晶の共晶組織が形成しており、これを熱間加工することにより準結晶を微細かつ均一に分散させたものである。準結晶は近似組成の結晶性化合物よりも遥かに高硬度であるため、強度と延伸性に優れたマグネシウムが得られる。しかし、熱的な安定性は高まったものの、強度自体はZE41のような類似組成の市販合金と同等程度であり、更に高い高温強度を得ることができないという限界があった。   In order to improve the drawbacks of the above-mentioned conventional commercially available materials and ensure high high-temperature strength, Patent Document 1 (Japanese Patent Laid-Open No. 2002-309332) discloses Mg-1 to 10 atm in which a solid solution matrix is dispersion strengthened by quasicrystalline particles. % Zn-0.1-3 at% Y alloy is disclosed. The cast structure has a quasicrystalline eutectic structure formed at the α-Mg grain boundaries, and the quasicrystal is finely and uniformly dispersed by hot working. Since the quasicrystal has a hardness much higher than that of a crystalline compound having an approximate composition, magnesium having excellent strength and stretchability can be obtained. However, although the thermal stability is increased, the strength itself is comparable to that of a commercially available alloy having a similar composition such as ZE41, and there is a limit that a higher high-temperature strength cannot be obtained.

これに対して特許文献2には、高温強度を向上させた合金として、Mg100-(a+b)Znab、a/12≦b≦a/3かつ1.5≦a≦10を満たす組成で、Mg母相中にMg3Zn61準結晶とのその近似結晶(準結晶由来の複雑構造相)とが微細粒子の形態で分散しているマグネシウム合金が開示されている。 On the other hand, Patent Document 2 describes Mg 100- (a + b) Zn a Y b , a / 12 ≦ b ≦ a / 3 and 1.5 ≦ a ≦ 10 as an alloy with improved high-temperature strength. There is disclosed a magnesium alloy having a composition that satisfies, in which Mg 3 Zn 6 Y 1 quasicrystal and its approximate crystal (complex structure phase derived from quasicrystal) are dispersed in the form of fine particles in the Mg matrix.

更に、特許文献3には、Mg100-(a+b+c)ZnaZrbc、a/12≦(b+c)≦a/3かつ1.5≦a≦10、0.05<b<0.25cを満たす組成で、Mg母相中に近似結晶の微細粒子が分散しているマグネシウム合金が開示されている。 Further, Patent Document 3 describes Mg 100- (a + b + c) Zn a Zr b Y c , a / 12 ≦ (b + c) ≦ a / 3 and 1.5 ≦ a ≦ 10, 0.05 <b. A magnesium alloy in which fine particles of approximate crystals are dispersed in an Mg matrix with a composition satisfying <0.25c is disclosed.

また、特許文献4には、Mg100-(a+b+c)ZnaAlbc、(a+b)/12≦c≦(a+b)/3かつ1.5≦a≦10、0.05a<b<0.25aを満たす組成で、Mg母相中に、Mg3Zn61準結晶とのその近似結晶(準結晶由来の複雑構造相)とが微細粒子の形態で分散しているマグネシウム合金が開示されている。 Patent Document 4 discloses Mg 100- (a + b + c) Zn a Al b Y c , (a + b) / 12 ≦ c ≦ (a + b) / 3 and 1.5 ≦ a ≦ 10, 0.05a The composition satisfying <b <0.25a, and the Mg 3 Zn 6 Y 1 quasicrystal and its approximate crystal (complex structure phase derived from the quasicrystal) are dispersed in the form of fine particles in the Mg matrix. A magnesium alloy is disclosed.

上記従来技術のマグネシウム合金はいずれも、Mg母相中に準結晶とその近似結晶を微細な強化粒子として分散させてことにより高い高温強度を実現しているが、希土類元素(Y)を必須成分とするため、コスト上昇が避けられないという問題があった。   All of the above prior art magnesium alloys achieve high high-temperature strength by dispersing quasicrystals and their approximate crystals as fine reinforcing particles in the Mg matrix, but rare earth elements (Y) are essential components. Therefore, there was a problem that an increase in cost was inevitable.

特開2002−309332号公報JP 2002-309332 A 特開2005−113235号公報JP 2005-113235 A 特開2006−89772号公報Japanese Patent Laid-Open No. 2006-89772 特開2005−113234号公報JP 2005-113234 A

本発明は、高価な希土類元素を用いずに低廉化しつつ高温強度を向上させた高強度マグネシウム合金およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-strength magnesium alloy that is reduced in price without using an expensive rare earth element and improved in high-temperature strength, and a method for producing the same.

上記の目的を達成するために、第1発明の高強度マグネシウム合金は、組成式Mg100-(a+b)Znabで表され、XはZr、Ti、Hfから選択される1種以上であり、a、bはそれぞれat%で表したZn、Xの含有量であり、下記式(1)(2)(3)の関係:
a/28≦b≦a/9・・・(1)
2<a<10・・・・・・・(2)
0.05<b<1.0・・・(3)
を満たし、かつ、
Mg母相中にMg−Zn−X系準結晶とその近似結晶とが微細粒子の形態で分散していることを特徴とする。
In order to achieve the above object, the high-strength magnesium alloy of the first invention is represented by the composition formula Mg 100- (a + b) Zn a X b , wherein X is one selected from Zr, Ti, and Hf Where a and b are the contents of Zn and X expressed in at%, respectively, and the relationship of the following formulas (1), (2) and (3):
a / 28 ≦ b ≦ a / 9 (1)
2 <a <10 (2)
0.05 <b <1.0 (3)
And satisfy
And approximate crystal Mg-Zn-X system quasicrystals and its the Mg mother phase is characterized by being dispersed in the form of fine particles.

第1発明の高強度マグネシウム合金を製造する第2発明の方法は、
不活性雰囲気中にてMgを溶解してMg溶湯を形成する工程、
上記Mg溶湯中にMg−Zn−X系準結晶(XはZr、Ti、Hfの1種以上)を添加して、合金溶湯を形成する工程、
上記合金溶湯を鋳造する工程、
得られた鋳造物を熱処理してMg母相中に上記準結晶とその近似結晶を析出させる工程
を含むことを特徴とする。
The method of the second invention for producing the high strength magnesium alloy of the first invention is:
A step of melting Mg in an inert atmosphere to form a molten Mg,
Adding a Mg—Zn—X-based quasicrystal (X is one or more of Zr, Ti, and Hf) to the molten Mg to form a molten alloy;
Casting the molten alloy,
It includes a step of heat-treating the obtained casting to precipitate the quasicrystal and its approximate crystal in the Mg matrix.

本発明の高強度マグネシウム合金は、Mg母相中に微細粒子の形態のMg−Zn−X系準結晶とその近似結晶とを強化粒子として分散させたことにより、従来希土類元素を用いて準結晶および近似結晶を分散させた合金と同等の高い強度、特に高温強度を達成できる。   The high-strength magnesium alloy of the present invention is a quasicrystal using a rare earth element in the past by dispersing Mg-Zn-X quasicrystals in the form of fine particles and their approximate crystals as reinforcing particles in the Mg matrix. In addition, high strength, particularly high temperature strength, equivalent to an alloy in which approximate crystals are dispersed can be achieved.

本発明の高強度マグネシウム合金は、上記規定した組成範囲とすることにより、Mg母相中にMg−Zn−X(X=Zr、Ti、Hfの1種以上)から成る準結晶とその近似結晶とが分散した組織を得ることができる。   The high-strength magnesium alloy of the present invention has a quasicrystal composed of Mg—Zn—X (X = Zr, Ti, or Hf) in the Mg matrix and its approximate crystal by setting the composition range as specified above. And a dispersed structure can be obtained.

準結晶とは、短範囲では規則構造(代表的には5回対称性)であるが、通常の結晶の特徴である並進対称性を持たない構造の化合物である。準結晶を生ずる組成としては、これまでに、Al−Pd−Mn、Al−Cu−Fe、Cd−Yb、Mg−Zn−Yなどが知られている。特異な構造であるため、近似組成の結晶性の金属間化合物と比較して、高硬さ、高融点、低摩擦係数などを始めとして種々の特異な性質を持つ。
近似結晶とは、準結晶に由来する複雑構造を有し、部分的に準結晶と同様の構造を持つ結晶性化合物であり、由来元の準結晶と同様の性質を持つ。
A quasicrystal is a compound having a regular structure (typically 5-fold symmetry) in the short range, but having no translational symmetry, which is a characteristic of ordinary crystals. Al-Pd-Mn, Al-Cu-Fe, Cd-Yb, Mg-Zn-Y, and the like have been known as compositions that produce quasicrystals. Because of its unique structure, it has various unique properties such as high hardness, high melting point, low friction coefficient, etc., compared to crystalline intermetallic compounds of approximate composition.
An approximate crystal is a crystalline compound having a complex structure derived from a quasicrystal, partially having the same structure as the quasicrystal, and having the same properties as the quasicrystal from which it was derived.

Mg−Zn−X系準結晶の組成は、望ましくはZnとXとのat%比a:b=83:6であり、Mg11Zn83Zr6、Mg11Zn83Ti6、Mg11Zn83Hf6から選択される1種以上である。しかし、これらに限定する必要はなく、上記規定した合金組成範囲内で許容される組成の準結晶であってよく、その近似結晶も許容される。微細粒子は、数十nm〜数百nm程度の粒径を有する。 The composition of the Mg—Zn—X quasicrystal is desirably an at% ratio of Zn and X: a: b = 83: 6, and Mg 11 Zn 83 Zr 6 , Mg 11 Zn 83 Ti 6 , Mg 11 Zn 83 One or more selected from Hf 6 . However, it is not necessary to limit to these, and it may be a quasicrystal having a composition allowed within the above-defined alloy composition range, and its approximate crystal is also allowed. The fine particles have a particle size of about several tens nm to several hundreds nm.

準結晶および近似結晶は、非常に硬質であり、かつ230℃程度まで分解せずに安定しているため、微細粒子としてMg母相中に分散していると転位と強く相互作用し、極めて高い分散強化作用を発揮し、常温および高温の強度を向上させる。特に、α−Mg結晶粒界に存在する微細粒子は高温における粒界すべりを抑制し、高い高温強度に貢献する。   Quasicrystals and approximate crystals are very hard and stable without being decomposed to about 230 ° C., so if they are dispersed as fine particles in the Mg matrix, they interact strongly with dislocations and are extremely high. Demonstrates dispersion strengthening and improves strength at normal and high temperatures. In particular, the fine particles present at the α-Mg crystal grain boundaries suppress grain boundary sliding at high temperatures and contribute to high high temperature strength.

本発明の合金は、準結晶および近似結晶の構成成分として従来合金の希土類に替えてZr、Ti、Hfを用いるが、これらの元素は合金の主成分であるMgの溶湯と溶け合い難いため、従来の希土類元素を含む合金のように最終組成の合金溶湯を直接溶製することによっては、製造することができない。すなわち、各合金成分の原料を最終的な合金組成に合わせて秤量し、一緒に溶解炉に装入して加熱し溶湯を形成しても、高融点のZr、Ti、Hfはこの溶湯には溶け込まず固体として残留してしまう。これら高融点元素の融点は非常に高温であり、Mgの沸点よりも高い。   The alloy of the present invention uses Zr, Ti, Hf instead of the rare earth of the conventional alloy as a constituent of the quasicrystal and the approximate crystal. However, these elements are difficult to melt with the molten Mg which is the main component of the alloy. It cannot be produced by directly melting a molten alloy having a final composition such as an alloy containing rare earth elements. That is, even if the raw materials of each alloy component are weighed according to the final alloy composition, charged together into a melting furnace and heated to form a molten metal, high melting point Zr, Ti, and Hf are contained in this molten metal. It does not melt and remains as a solid. The melting point of these high melting point elements is very high and higher than the boiling point of Mg.

従来合金で用いたY等の希土類元素もそれ自体はMgに比べて遥かに高融点であるが、溶製時に低温で先に生成したMg溶湯との接触により合金化して低融点化し、容易にMg溶湯に溶け込むため、従来の合金は最終組成の溶湯を直接溶製することができた。   The rare earth elements such as Y used in the conventional alloys themselves have a much higher melting point than Mg, but they are alloyed by contact with the molten Mg previously produced at low temperature during melting, making it easier to melt. In order to melt into the molten Mg, the conventional alloy was able to directly melt the molten metal having the final composition.

本発明の合金は、上記のように最終組成の合金溶湯を直接溶製できないため、本発明の方法においては、Mgのみを溶解してMg溶湯を形成し、これに準結晶を添加することにより合金溶湯の形成を可能とした。Mg溶湯の量と、準結晶の組成および添加量によって、最終的な合金組成に調整する。合金溶湯は、十分に攪拌して均一な溶湯にする。   Since the alloy of the present invention cannot directly melt the molten alloy of the final composition as described above, in the method of the present invention, only Mg is dissolved to form a molten Mg, and a quasicrystal is added thereto. It was possible to form molten alloy. The final alloy composition is adjusted by the amount of molten Mg, the composition of quasicrystals, and the amount added. The molten alloy is sufficiently stirred to obtain a uniform molten metal.

得られた合金溶湯を通常の方法により鋳造する。得られた鋳造物を熱処理してMg母相中に準結晶および近似結晶を微細粒子として析出させる。   The obtained molten alloy is cast by a usual method. The obtained casting is heat-treated to precipitate quasicrystals and approximate crystals as fine particles in the Mg matrix.

これにより最終的にMg母相中に準結晶と近似結晶の微細粒子が分散した組織が得られる。   As a result, a structure is finally obtained in which fine particles of quasicrystals and approximate crystals are dispersed in the Mg matrix.

準結晶と近似結晶の微細粒子の生成機構は現時点では十分に解明されていないが、次のように生成するものと考えられる。
Mg溶湯中に準結晶を添加し十分に攪拌した合金溶湯は目視上は均一であるが、微視的には溶湯内に組成の揺らぎが存在し、特定元素が偏在する微細領域が溶湯内全域に亘って分布しており、鋳造時の冷却過程でこの微細偏在領域を核として準結晶および近似結晶またはその前駆組成物が微細に晶出する。凝固完了した鋳造物は、Mg母相中に準結晶または近似結晶の構成元素であるZnおよびX(Zr、Ti、Hfの1種以上)が過飽和に固溶した状態であり、熱処理により微細な晶出物などを核として準結晶または近似結晶が微細粒子として析出する。
すなわち、最終的に得られる合金の金属組織においては、鋳造時の冷却過程で晶出した準結晶および近似結晶の微細粒子と、その後の熱処理で析出した準結晶および近似結晶の微細粒子とが存在し、両者が共に分散強化により強度向上に寄与する。
The formation mechanism of fine particles of quasicrystals and approximate crystals has not been fully elucidated at present, but is thought to be generated as follows.
The molten alloy that has been sufficiently stirred with the addition of quasicrystals in the molten Mg is visually uniform, but microscopically there is a fluctuation of the composition in the molten metal, and the fine region where the specific elements are unevenly distributed is the entire molten metal. In the cooling process at the time of casting, the quasicrystal and the approximate crystal or the precursor composition thereof are finely crystallized with the finely distributed region as a nucleus. The solidified casting is a state in which Zn and X (one or more of Zr, Ti, and Hf), which are constituent elements of quasicrystals or approximate crystals, are supersaturated in Mg matrix, and are finely processed by heat treatment. Quasicrystals or approximate crystals are precipitated as fine particles with the crystallized substance as a nucleus.
In other words, the final microstructure of the alloy has quasicrystals and approximate crystal fine particles crystallized during the cooling process during casting, and quasicrystals and approximate crystal fine particles precipitated by subsequent heat treatment. Both contribute to strength improvement by strengthening dispersion.

〔実施例1〕
本発明により、合金全体の最終組成が表1に示す組成であるMg−Zn−Zrマグネシウム合金を作製し、金属組織観察と引張試験を行った。
[Example 1]
According to the present invention, an Mg—Zn—Zr magnesium alloy having a final composition of the whole alloy shown in Table 1 was prepared, and a metal structure observation and a tensile test were performed.

(1) 準結晶の作製
純Mg(99.9%)、純Zn(99.99%)、純Zr(99.5%)の各金属(括弧内の数値は純度)を、at%比でMg11Zn83Zr6の準結晶組成となるように秤量し、総量5gとして、アルミナ製タンマン管(φ12mm×10mm)にセットし、石英管内に封入した。石英管の内部を高純度のアルゴンで置換した。
(1) Production of quasicrystal Pure Mg (99.9%), pure Zn (99.99%), pure Zr (99.5%) metals (the values in parentheses are the purity), Mg 11 Zn 83 Zr 6 The quasicrystalline composition was weighed to a total amount of 5 g, set in an alumina Tamman tube (φ12 mm × 10 mm), and sealed in a quartz tube. The inside of the quartz tube was replaced with high-purity argon.

室温から5時間かけて700℃まで昇温し、12時間保持した後、500℃に降温して48時間保持した。これにより、Mg11Zn83Zr6準結晶が得られた。図1にその電子線回折パターンを示したように、典型的な5回対称性が確認された。
得られた塊状の準結晶を粉砕して粒径数十μmとして、以下に用いた。
The temperature was raised from room temperature to 700 ° C. over 5 hours, held for 12 hours, then lowered to 500 ° C. and held for 48 hours. Thereby, a Mg 11 Zn 83 Zr 6 quasicrystal was obtained. As shown in the electron diffraction pattern of FIG. 1, a typical five-fold symmetry was confirmed.
The obtained massive quasicrystal was pulverized to a particle size of several tens of μm and used below.

(2) 合金の溶製
純Mg(純度99.99%)を黒鉛坩堝中に装入し、アルゴン雰囲気下に保持した高周波溶解炉にて700℃に昇温して溶解しMg溶湯を形成した。
Mg溶湯中に、上記(1)で作製した準結晶を、最終的な合金組成が表1に示すMg−Zn−Zr組成となるように調整した量で添加して、溶湯温度を700℃に保持したまま、全て溶解して均一になるまで攪拌した後、2時間保持した。
(2) Melting of alloy Pure Mg (purity 99.99%) was charged into a graphite crucible and melted by heating to 700 ° C. in a high-frequency melting furnace held in an argon atmosphere to form a molten Mg.
In the molten Mg, the quasicrystal produced in the above (1) is added in an amount adjusted so that the final alloy composition becomes the Mg—Zn—Zr composition shown in Table 1, and the molten metal temperature is set to 700 ° C. While being held, the mixture was stirred until it was completely dissolved and uniform, and then held for 2 hours.

(3) 鋳造
得られた合金溶湯を700℃に保ち、約100℃に予熱した鋳鉄製JIS4号船型鋳型(70mm×70mm×300mm)に鋳込んだ。
(3) Casting The obtained molten alloy was kept at 700 ° C. and cast into a cast iron JIS No. 4 ship mold (70 mm × 70 mm × 300 mm) preheated to about 100 ° C.

(4) 熱処理
上記で得られた鋳造物をアルゴン雰囲気下で500℃にて48時間熱処理した。
(4) Heat treatment The casting obtained above was heat-treated at 500 ° C for 48 hours in an argon atmosphere.

<金属組織の観察>
熱処理後の試料について、透過電子顕微鏡(TEM)にて金属組織を観察した。
その結果、図2に示すように、α−Mg結晶粒内に数十nmの微細な析出物が白色の点状に観察された。この析出物はMg11Zn83Zr6準結晶とその近似結晶であることを確認した。
<Observation of metal structure>
About the sample after heat processing, the metal structure was observed with the transmission electron microscope (TEM).
As a result, as shown in FIG. 2, fine precipitates of several tens of nanometers were observed as white spots in α-Mg crystal grains. This precipitate was confirmed to be a Mg 11 Zn 83 Zr 6 quasicrystal and its approximate crystal.

<引張試験>
熱処理後の試料から、平行部φ5×25mmの丸棒引張試験片を採取し、室温、150℃および200℃にて引張試験を行った。島津製作所製AG−250kND引張試験機を用い、引張速度0.8mm/分で行なった。
<Tensile test>
A round bar tensile test piece having a parallel part φ5 × 25 mm was collected from the heat-treated sample and subjected to a tensile test at room temperature, 150 ° C. and 200 ° C. Using an AG-250kND tensile tester manufactured by Shimadzu Corporation, the tensile rate was 0.8 mm / min.

更に、上記熱処理後に押出しを行った試料についても同様に引張試験を行なった。押出し条件は、押出温度250℃、押出比10:1であった。   Furthermore, the tensile test was similarly performed about the sample which extruded after the said heat processing. The extrusion conditions were an extrusion temperature of 250 ° C. and an extrusion ratio of 10: 1.

また、組成が本発明の範囲外である比較例についても同様に引張試験を行った。   Moreover, the tensile test was similarly done about the comparative example whose composition is outside the range of the present invention.

〔実施例2〕
本発明により、合金全体の最終組成が表1に示す組成であるMg−Zn−Tiマグネシウム合金を作製し、金属組織観察と引張試験を行った。
準結晶として、Mg11Zn83Ti6準結晶を作製して純Mg溶湯に添加した以外は、実施例1と同様な手順で作製した。
[Example 2]
According to the present invention, an Mg—Zn—Ti magnesium alloy having a final composition of the entire alloy shown in Table 1 was prepared, and a metal structure observation and a tensile test were performed.
As a quasicrystal, an Mg 11 Zn 83 Ti 6 quasicrystal was prepared and the same procedure as in Example 1 was performed except that it was added to a pure Mg molten metal.

熱処理後に、透過電子顕微鏡によりα−Mg結晶粒内に数十nmの微細な析出物が白色の点状に観察された。この析出物はMg11Zn83Ti6準結晶とその近似結晶であることを確認した。 After the heat treatment, fine precipitates of several tens of nm were observed as white spots in the α-Mg crystal grains by a transmission electron microscope. This precipitate was confirmed to be an Mg 11 Zn 83 Ti 6 quasicrystal and its approximate crystal.

上記熱処理後の試料および実施例1と同じ条件で押出した試料について、実施例1と同じ条件で引張試験結果を行なった。
また、組成が本発明の範囲外である比較材についても同様に引張試験を行った。
更に、従来材についても同様に引張試験を行った。
以上の試験結果を表1にまとめて示す。
The tensile test result was performed on the sample after the heat treatment and the sample extruded under the same conditions as in Example 1 under the same conditions as in Example 1.
Moreover, the tensile test was similarly done about the comparative material whose composition is outside the range of the present invention.
Furthermore, the tensile test was similarly performed about the conventional material.
The above test results are summarized in Table 1.

本発明材は、従来材と比較して特に150℃における引張強さが優れている。また、室温から150℃への温度上昇に伴う強度低下が非常に小さい。これは、α−Mg結晶粒内に析出・分散している準結晶および近似結晶から成る微細粒子は熱安定性が非常に高いため、150℃の高温下でも転位と強く相互作用し、転位の運動に対する障壁として有効に機能していることによる。本発明範囲外の組成の比較材は、準結晶および近似結晶が生成しないか、生成しても非常に微少量であるため、これら生成相による分散強化作用がほとんど得られず、高い強度が得られない。 The material of the present invention is particularly excellent in tensile strength at 150 ° C. as compared with the conventional material. Moreover, the strength reduction accompanying the temperature rise from room temperature to 150 ° C. is very small. This is because fine particles composed of quasicrystals and approximate crystals precipitated and dispersed in α-Mg crystal grains have a very high thermal stability, and thus strongly interact with dislocations even at a high temperature of 150 ° C. Because it functions effectively as a barrier to exercise. The comparative material having a composition outside the scope of the present invention does not produce quasicrystals or approximate crystals, or even if they are produced, the amount of dispersion strengthening by these produced phases is hardly obtained, and high strength is obtained. I can't.

本発明によれば、高価な希土類元素を用いずに低廉化しつつ高温強度を向上させた高強度マグネシウム合金およびその製造方法が提供される。   According to the present invention, a high-strength magnesium alloy and a method for producing the same are provided which are inexpensive and improve high-temperature strength without using expensive rare earth elements.

本発明により作製したMg11Zn83Zr6準結晶の電子線回折パターンの写真である。Is a photograph of electron beam diffraction patterns of Mg 11 Zn 83 Zr 6 quasicrystal manufactured according to this invention. 本発明により作製したMg合金の金属組織を示す透過電子顕微鏡写真である。It is a transmission electron micrograph which shows the metal structure of Mg alloy produced by this invention.

Claims (4)

組成式Mg100-(a+b)Znabで表され、XはZr、Ti、Hfから選択される1種以上であり、a、bはそれぞれat%で表したZn、Xの含有量であり、下記式(1)(2)(3)の関係:
a/28≦b≦a/9・・・(1)
2<a<10・・・・・・・(2)
0.05<b<1.0・・・(3)
を満たし、かつ、
Mg母相中にMg−Zn−X系準結晶とその近似結晶とが微細粒子の形態で分散していることを特徴とする高強度マグネシウム合金。
Compositional formula Mg 100- (a + b) Zn a X b , X is one or more selected from Zr, Ti, Hf, a and b are the contents of Zn and X expressed in at%, respectively. The relationship of the following formulas (1), (2) and (3):
a / 28 ≦ b ≦ a / 9 (1)
2 <a <10 (2)
0.05 <b <1.0 (3)
And satisfy
High strength magnesium alloy in the Mg mother phase and the approximate crystal Mg-Zn-X system quasicrystals and its characterized in that it dispersed in the form of fine particles.
請求項1において、上記準結晶はMg11Zn83Zr6、Mg11Zn83Ti6、Mg11Zn83Hf6から選択される1種以上であることを特徴とする高強度マグネシウム合金。 According to claim 1, said quasicrystals Mg 11 Zn 83 Zr 6, Mg 11 Zn 83 Ti 6, Mg 11 Zn 83 high strength magnesium alloy, characterized in that at least one member selected from Hf 6. 請求項1または2に記載の高強度マグネシウム合金を製造する方法であって、下記の工程:
不活性雰囲気中にてMgを溶解してMg溶湯を形成する工程、
上記Mg溶湯中にMg−Zn−X系準結晶を添加して、合金溶湯を形成する工程、
上記合金溶湯を鋳造する工程、
得られた鋳造物を熱処理してMg母相中に上記準結晶とその近似結晶を析出させる工程
を含むことを特徴とする高強度マグネシウム合金の製造方法。
A method for producing the high-strength magnesium alloy according to claim 1, wherein the following steps are performed:
A step of melting Mg in an inert atmosphere to form a molten Mg,
Adding a Mg-Zn-X quasicrystal to the molten Mg to form a molten alloy;
Casting the molten alloy,
A method for producing a high-strength magnesium alloy, comprising a step of heat-treating the obtained casting to precipitate the quasicrystal and its approximate crystal in an Mg matrix.
請求項3において、上記Mg−Zn−X系準結晶の作製を、
Mg、Zn、Xの各原料を準結晶組成となるように秤量する工程、
秤量した各原料を坩堝内に投入し、不活性雰囲気中にて溶解して溶湯を形成する工程、
上記溶湯を降温させ、上記準結晶のみが存在する単相領域の温度に保持する工程、
上記単相領域の温度から室温に冷却する工程
を含む方法によって行なうことを特徴とする高強度マグネシウム合金の製造方法。
In Claim 3, preparation of the said Mg-Zn-X type | system | group quasicrystal is carried out.
A step of weighing each raw material of Mg, Zn, and X so as to have a quasicrystalline composition;
A step of putting each weighed raw material into a crucible and melting it in an inert atmosphere to form a molten metal,
Lowering the temperature of the molten metal, and maintaining the temperature in a single-phase region where only the quasicrystal is present,
A method for producing a high-strength magnesium alloy, which is performed by a method including a step of cooling from the temperature of the single-phase region to room temperature.
JP2006251434A 2006-09-15 2006-09-15 High strength magnesium alloy and method for producing the same Expired - Fee Related JP4849402B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006251434A JP4849402B2 (en) 2006-09-15 2006-09-15 High strength magnesium alloy and method for producing the same
CN2007800278886A CN101495660B (en) 2006-09-15 2007-09-12 High-strength magnesium alloy and process for production thereof
PCT/JP2007/068214 WO2008032857A1 (en) 2006-09-15 2007-09-12 High-strength magnesium alloy and process for production thereof
US12/375,691 US20090320967A1 (en) 2006-09-15 2007-09-12 High strength magnesium alloy and method of production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251434A JP4849402B2 (en) 2006-09-15 2006-09-15 High strength magnesium alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008069438A JP2008069438A (en) 2008-03-27
JP4849402B2 true JP4849402B2 (en) 2012-01-11

Family

ID=39183902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251434A Expired - Fee Related JP4849402B2 (en) 2006-09-15 2006-09-15 High strength magnesium alloy and method for producing the same

Country Status (4)

Country Link
US (1) US20090320967A1 (en)
JP (1) JP4849402B2 (en)
CN (1) CN101495660B (en)
WO (1) WO2008032857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331866A (en) * 2015-10-14 2016-02-17 济南大学 Mg-Zn-Gd quasi-crystal strengthened AZ91 magnesium alloy and preparing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403508B2 (en) * 2009-03-24 2014-01-29 独立行政法人物質・材料研究機構 Mg alloy member.
CN101787475B (en) * 2010-03-22 2011-09-07 北京工业大学 Quasicrystal particle reinforced magnesium matrix composite material and preparation method thereof
CN102242300B (en) * 2011-08-23 2012-12-19 中国兵器工业第五九研究所 High-toughness corrosion-resistant magnesium alloy and preparation method thereof
CN102618770B (en) * 2012-03-27 2013-11-06 北京工业大学 Ultrahigh-strength multi-purpose lightweight alloy, smelting technology and application
KR101807985B1 (en) 2014-03-28 2017-12-11 신닛테츠스미킨 카부시키카이샤 Plated steel plate containing quasicrystal
WO2015145721A1 (en) 2014-03-28 2015-10-01 新日鐵住金株式会社 Plated steel sheet containing quasicrystal
EP3190203A4 (en) 2014-09-05 2018-04-18 Nippon Steel & Sumitomo Metal Corporation Quasicrystal-containing plated steel sheet and method for producing quasicrystal-containing plated steel sheet
CN104451312B (en) * 2014-11-11 2016-11-23 沈阳航空航天大学 High specific strength magnesium alloy containing trace high-melting-point element and preparation method thereof
CN106350720B (en) * 2016-10-17 2017-12-22 南京镐极信息技术有限公司 Heat resistance casting magnesium alloy containing hafnium and preparation method thereof
CN110846687A (en) * 2019-11-22 2020-02-28 龙南龙钇重稀土科技股份有限公司 Mg-Zn-Zr intermediate alloy and preparation method thereof
JPWO2022210430A1 (en) 2021-03-29 2022-10-06

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078936A (en) * 2001-04-11 2002-10-19 학교법인연세대학교 Quasicrystalline phase hardened Mg-based metallic alloy exhibiting warm and hot formability
JP3597186B2 (en) * 2002-03-04 2004-12-02 住友電工スチールワイヤー株式会社 Magnesium-based alloy tube and method of manufacturing the same
CN1195089C (en) * 2003-04-03 2005-03-30 上海交通大学 Prepn process of particle-reinforced Mg-base composite mateiral
JP4155149B2 (en) * 2003-10-09 2008-09-24 トヨタ自動車株式会社 High strength magnesium alloy and method for producing the same
JP2006089772A (en) * 2004-09-21 2006-04-06 Toyota Motor Corp Magnesium alloy
CN1814837A (en) * 2006-02-23 2006-08-09 上海交通大学 High-strength heat-resisting magnesium alloy and preparing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331866A (en) * 2015-10-14 2016-02-17 济南大学 Mg-Zn-Gd quasi-crystal strengthened AZ91 magnesium alloy and preparing method thereof

Also Published As

Publication number Publication date
CN101495660A (en) 2009-07-29
WO2008032857A1 (en) 2008-03-20
US20090320967A1 (en) 2009-12-31
CN101495660B (en) 2010-11-10
JP2008069438A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4849402B2 (en) High strength magnesium alloy and method for producing the same
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
EP2481822B1 (en) Magnesium-aluminum based alloy with grain refiner
WO2014171549A1 (en) Fire-resistant magnesium alloy and production method therefor
Qin et al. Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite
JP2005113235A (en) High strength magnesium alloy, and its production method
KR101241426B1 (en) Method of manufacturing aluminium alloy
WO2010055897A1 (en) Magnesium alloy and magnesium alloy casting
US20070204936A1 (en) Magnesium Alloy
Graves et al. Pathways for microstructural development in TiAl
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
JP2743720B2 (en) Method for producing TiB2 dispersed TiAl-based composite material
JP3894987B2 (en) Heat-resistant platinum material
JP4155149B2 (en) High strength magnesium alloy and method for producing the same
CN109161767B (en) Creep-resistant magnesium alloy containing W phase and preparation method thereof
JP2011063884A (en) Heat-resistant aluminum alloy wire
CN114657399A (en) Preparation method of high-thermal-conductivity and high-electric-conductivity Mg-Zn-Cu magnesium alloy
CN111378876B (en) Sc-containing aluminum alloy for vacuum pump rotor and preparation method thereof
TWI427158B (en) Magnesium alloy and method for making the same
CN109072359B (en) Aging heat treatment type high-strength magnesium alloy and preparation method thereof
CN115652150B (en) High-strength and high-toughness heat-resistant aluminum alloy based on boron refined grains and preparation and heat treatment methods thereof
CN111455234B (en) Sm-containing aluminum alloy for vacuum pump rotor and preparation method thereof
WO2023133978A1 (en) High-thermal-conductivity magnesium alloy containing high-solid-solubility rare earth element and preparation method therefor
WO1992017615A1 (en) Spray formed al-li-cu-mg-zr alloys

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

R151 Written notification of patent or utility model registration

Ref document number: 4849402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees