明 細 書 高強度マグネシウム合金およびその製造方法 技術分野 Description High-strength magnesium alloy and manufacturing method thereof Technical Field
本発明は、 高強度マグネシウム合金、 特に高温強度を高めたマグ ネシゥム合金およびその製造方法に関する。 背景技術 The present invention relates to a high-strength magnesium alloy, in particular, a magnesium alloy with increased high-temperature strength and a method for producing the same. Background art
マグネシウム合金は軽量を活かして種々の構造部材への適用が進 められている。 特に、 自動車に適用すれば燃費向上とそれによる資 源 ·環境保護に効果的である。 Magnesium alloys are being applied to various structural members by taking advantage of their light weight. In particular, when applied to automobiles, it is effective in improving fuel consumption and thereby protecting resources and the environment.
市販材としては、 砂型錡造用マグネシウム合金として A S TM A Z 9 1 C (標準組成 [wt%] : M g— 8.7A 1 — 0.7Z n— 0.13M n ) 、 同 Z E 4 1 A (同 : M g— 4.2Z n— 1.2R E— 0.7Z r ) 等が 、 また展伸用マグネシウム合金として同 A Z 6 1 A (同 : M g— 6. 4A 1 - 1. OZ n - 0.28M n ) 、 同 A Z 3 1 B (同 : M g— 3.0A 1 - 1. OZ n - 0.15M n ) 等が汎用されている。 Commercially available materials include: AS TM AZ 9 1 C (standard composition [wt%]: Mg—8.7A 1 — 0.7Z n— 0.13M n), ZE 4 1 A (same as: M g— 4.2Z n— 1.2RE— 0.7Z r), etc., and AZ 6 1 A (same as: Mg — 6.4A 1-1. OZ n-0.28M n) AZ 3 1 B (same as: Mg—3.0A 1-1. OZ n-0.15M n) is widely used.
このうち、 砂型錡造用合金である A Z 9 1 C、 Z E 4 1 Aは、 析 出効果型合金であり、 铸造材に T 6 (溶体化 +時効) または T 5 ( 時効のみ) を施すことにより所要強度に調整する。 ただし室温以上 、 特に 5 0 °C以上に長時間晒されると固溶元素の時効析出が起きて 、 合金組織が徐々に変化し、 それに伴って特性に経時変化が生ずる 原因となる。 その結果、 組織および特性の熱的な安定性が低く、 安 定して高い高温強度を得ることができないという欠点があった。 Of these, AZ 9 1 C and ZE 4 1 A, which are sand-type forging alloys, are precipitation effect type alloys, and T 6 (solution + aging) or T 5 (aging only) is applied to the forging material. Adjust to the required strength. However, when exposed to room temperature or higher, especially 50 ° C or higher for a long time, aging precipitation of solid solution elements occurs, causing the alloy structure to change gradually, which causes a change in characteristics over time. As a result, the thermal stability of the structure and properties was low, and there was a drawback that it was not possible to stably obtain high high-temperature strength.
また、 展伸用合金である A Z 6 1 A、 A Z 3 1 Bは、 圧延、 押出 等の際の加工 · 再結晶による結晶粒微細化を強化機構として利用し
ている。 しかし 1 0 0 °C以上の高温になると M g特有の顕著な粒界 すべりが発生するので、 結晶粒微細化は粒界すベり発生サイ トの増 加により逆に強度低下の原因となる。 また、 高温に晒されると結晶 粒が成長して微細化効果が失われ、 室温強度の低下の原因になる。 その結果、 高い高温強度を確保できないばかりでなく、 室温強度も 熱的に不安定であるという欠点があった。 In addition, AZ 6 1 A and AZ 3 1 B, which are wrought alloys, use the grain refinement by processing and recrystallization during rolling, extrusion, etc. as a strengthening mechanism. ing. However, when the temperature is higher than 100 ° C, remarkable grain boundary slippage unique to Mg occurs, so the refinement of crystal grains conversely causes a decrease in strength due to an increase in the generation site of grain boundary slippage. . In addition, when exposed to high temperatures, crystal grains grow and the effect of refining is lost, causing a decrease in room temperature strength. As a result, not only high temperature strength could not be secured, but also room temperature strength was thermally unstable.
上記従来の市販材の欠点を改良して高い高温強度を確保するため に、 特開 2002- 309332号公報には、 固溶体マトリクスを準結晶粒子 により分散強化した M g— 1〜 10at% Z n— 0. l〜3at% Y合金が開 示されている。 铸造組織は α— M g結晶粒界に準結晶の共晶組織が 形成しており、 これを熱間加工することにより準結晶を微細かつ均 一に分散させたものである。 準結晶は近似組成の結晶性化合物より も遥かに高硬度であるため、 強度と延伸性に優れたマグネシウムが 得られる。 しかし、 熱的な安定性は高まったものの、 強度自体は Z E 4 1のような類似組成の市販合金と同等程度であり、 更に高い高 温強度を得ることができないという限界があった。 In order to improve the disadvantages of the above-mentioned conventional commercially available materials and ensure high high-temperature strength, Japanese Patent Application Laid-Open No. 2002-309332 discloses Mg-1 to 10 at% Zn— in which a solid solution matrix is dispersed and strengthened with quasicrystalline particles. 0. l-3at% Y alloy is disclosed. In the forged structure, a quasicrystalline eutectic structure is formed at the α-Mg grain boundary, and the quasicrystal is finely and uniformly dispersed by hot working. Because quasicrystals are much harder than crystalline compounds of approximate composition, magnesium with excellent strength and stretchability can be obtained. However, although the thermal stability has increased, the strength itself is comparable to that of a commercially available alloy with a similar composition such as Z E 41, and there is a limit that a higher high-temperature strength cannot be obtained.
これに対して特開 2 0 0 5— 1 1 3 2 3 5号公報には、 高温強度 を向上させた合金として、 M g , 0 0. , a + b ) Z n a Y b , a / 1 2≤ b ≤ a Z 3かつ 1. 5≤ a≤ 1 0を満たす組成で、 M g母相中に M g 3 Z n6 準結晶とのその近似結晶 (準結晶由来の複雑構造相) と が微細粒子の形態で分散しているマグネシウム合金が開示されてい る。 The JP 2 0 0 5 1 1 3 2 3 5 JP contrast, as an alloy with improved high temperature strength, M g, 0 0., a + b) Z n a Y b, a / 1 2≤ b ≤ a Z 3 and 1.5 ≤ a≤ 1 0, and its approximate crystal with Mg 3 Z n 6 quasicrystal in Mg parent phase (complex structure phase derived from quasicrystal) A magnesium alloy in which and are dispersed in the form of fine particles is disclosed.
更に、 特開 2 0 0 6 — 8 9 7 7 2号公報には、 M g 1 M_ (a + b + c) Z na Z r bY。、 a / 1 2≤ (b + c ) ≤ a / 3かつ 1. 5≤ a≤ 1 0、 0. 0 5 < b < 0. 2 5 c を満たす組成で、 M g母相中に近 似結晶の微細粒子が分散しているマグネシウム合金が開示されてい る。
また、 特開 2 0 0 5 - 1 1 3 2 3 4号公報には、 M g o- + b + c ) Z n a A 1 b Yc、 ( a + b ) / 1 2 ≤ c ≤ ( a + b ) Z 3かつ 1 . 5 ≤ a≤ 1 0 , 0 . 0 5 a < b < 0 . 2 5 aを満たす組成で、 M g 母相中に、 M g 3 Z n 6 準結晶とのその近似結晶 (準結晶由来の 複雑構造相) とが微細粒子の形態で分散しているマグネシウム合金 が開示されている。 Further, JP-2 0 0 6 - 8 9 7 7 2 discloses, M g 1 M _ (a + b + c) Z n a Z r b Y. , A / 1 2 ≤ (b + c) ≤ a / 3 and 1.5 ≤ a ≤ 1 0, 0. 0 5 <b <0. 2 5 c, similar to Mg matrix A magnesium alloy in which fine particles of crystals are dispersed is disclosed. Japanese Laid-Open Patent Publication No. 2 0 0 5-1 1 3 2 3 4 describes that M g o- + b + c) Z n a A 1 b Y c , (a + b) / 1 2 ≤ c ≤ ( a + b) Z 3 and 1.5 ≤ a ≤ 1 0, 0. 0 5 5 a <b <0. 2 5 a, and in the Mg matrix, Mg 3 Z n 6 A magnesium alloy in which the approximate crystal (complex structure phase derived from a quasicrystal) is dispersed in the form of fine particles is disclosed.
上記従来技術のマグネシウム合金はいずれも、 M g母相中に準結 晶とその近似結晶を微細な強化粒子として分散させてことにより高 い高温強度を実現しているが、 希土類元素 (Y) を必須成分とする ため、 コス ト上昇が避けられないという問題があった。 発明の開示 All of the above prior art magnesium alloys achieve high high-temperature strength by dispersing quasicrystals and their approximate crystals as fine reinforcing particles in the Mg matrix, but rare earth elements (Y) As an essential component, there is a problem that cost increases cannot be avoided. Disclosure of the invention
本発明は、 高価な希土類元素を用いずに低廉化しつつ高温強度を 向上させた高強度マグネシウム合金およびその製造方法を提供する ことを目的とする。 An object of the present invention is to provide a high-strength magnesium alloy that is inexpensive and improves high-temperature strength without using expensive rare earth elements, and a method for producing the same.
上記の目的を達成するために、 第 1発明の高強度マグネシウム合 金は、 組成式 M g 1 () ()- (a + b) Z n a Xbで表され、 Xは Z r 、 T i 、 H f から選択される 1種以上であり、 a、 bはそれぞれ at%で表し た Z n、 Xの含有量であり、 下記式 ( 1 ) ( 2 ) ( 3 ) の関係 : a / 2 8 ≤ b≤ a / 9 - - - ( 1 ) In order to achieve the above object, the high-strength magnesium alloy of the first invention is represented by the composition formula M g 1 () () -( a + b ) Z n a X b , where X is Z r, T 1 or more selected from i and H f, a and b are the contents of Zn and X, respectively, expressed in at%, and the relationship of the following formulas (1), (2) and (3): a / 2 8 ≤ b≤ a / 9---(1)
2 < a < 1 0 ( 2 ) 2 <a <1 0 (2)
0 . 0 5 < b < 1 . 0 · · · ( 3 ) 0. 0 5 <b <1.0 (3)
を満たし、 かつ、 And
M g母相中に M g — Z n — X系準結晶とのその近似結晶とが微細 粒子の形態で分散していることを特徴とする。 It is characterized in that the Mg-Zn-X quasicrystal and its approximate crystal are dispersed in the form of fine particles in the Mg matrix.
第 1発明の高強度マグネシウム合金を製造する第 2発明の方法は
不活性雰囲気中にて M gを溶解して M g溶湯を形成する工程、 上記 M g溶湯中に M g— Z n— X系準結晶 (Xは Z r、 T i 、 H f の 1種以上) を添加して、 合金溶湯を形成する工程、 The method of the second invention for producing the high-strength magnesium alloy of the first invention is as follows: A process of melting Mg in an inert atmosphere to form a molten Mg, in which the Mg-Zn-X series quasicrystal (X is one of Zr, Ti, Hf) A process of forming a molten alloy,
上記合金溶湯を铸造する工程、 Forging the molten alloy,
得られた铸造物を熱処理して M g母相中に上記準結晶とその近似 結晶を析出させる工程を含むことを特徴とする。 The obtained forged product is heat treated to precipitate the quasicrystal and its approximate crystal in an Mg matrix.
本発明の高強度マグネシウム合金は、 M g母相中に微細粒子の形 態の M g— Z n— X系準結晶とその近似結晶とを強化粒子として分 散させたことにより、 従来希土類元素を用いて準結晶および近似結 晶を分散させた合金と同等の高い強度、 特に高温強度を達成できる The high-strength magnesium alloy of the present invention is a conventional rare earth element obtained by dispersing Mg-Zn-X quasicrystals in the form of fine particles and their approximate crystals as reinforcing particles in an Mg matrix. Can achieve high strength, especially high temperature strength, equivalent to alloys in which quasicrystals and approximate crystals are dispersed using
図面の簡単な説明 Brief Description of Drawings
図 1 は、 本発明により作製した M g , Z n 83 Z r 6準結晶の電子 線回折パターンの写真である。 1, M g manufactured according to this invention, is a photograph of electron beam diffraction pattern of Z n 83 Z r 6 quasicrystal.
図 2は、 本発明により作製した M g合金の金属組織を示す透過電 子顕微鏡写真である。 発明を実施するための最良の形態 FIG. 2 is a transmission electron micrograph showing the metal structure of the Mg alloy produced according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の高強度マグネシウム合金は、 上記規定した組成範囲とす ることにより、 M g母相中に — Z n—: (X = Z r、 T i 、 H f の 1種以上) から成る準結晶とその近似結晶とが分散した組織を 得ることができる。 The high-strength magnesium alloy of the present invention has a composition range as defined above, so that the Mg parent phase contains —Z n—: (one or more of X = Zr, Ti, Hf). A structure in which crystals and their approximate crystals are dispersed can be obtained.
準結晶とは、 短範囲では規則構造 (代表的には 5回対称性) であ るが、 通常の結晶の特徴である並進対称性を持たない構造の化合物 である。 準結晶を生ずる組成としては、 これまでに、 A 1 — P d— M n、 A 1 — C u— F e、 C d— Y b、 M g— Z n— Yなどが知ら
れている。 特異な構造であるため、 近似組成の結晶性の金属間化合 物と比較して、 高硬さ、 高融点、 低摩擦係数などを始めとして種々 の特異な性質を持つ。 A quasicrystal is a compound that has a regular structure (typically 5-fold symmetry) in the short range, but does not have the translational symmetry characteristic of ordinary crystals. The compositions that produce quasicrystals are known as A 1 — P d — M n, A 1 — C u — F e, C d — Y b, M g — Z n — Y, etc. It is. Because of its unique structure, it has various unique properties such as high hardness, high melting point, and low friction coefficient compared to crystalline intermetallic compounds of approximate composition.
近似結晶とは、 準結晶に由来する複雑構造を有し、 部分的に準結 晶と同様の構造を持つ結晶性化合物であり、 由来元の準結晶と同様 の性質を持つ。 An approximate crystal is a crystalline compound that has a complex structure derived from a quasicrystal, partially having the same structure as the quasicrystal, and has the same properties as the quasicrystal from which it was derived.
M g— Z n— X系準結晶の組成は、 望ましくは Z nと Xとの at% 比 a : b = 8 3 : 6であり、 M g u Z n Z rい M g j j Z n 83 T i 6、 M g! , Z n 83 H f 6から選択される 1種以上である。 しかし、 これらに限定する必要はなく、 上記規定した合金組成範囲内で許容 される組成の準結晶であってよく、 その近似結晶も許容される。 微 細粒子は、 数十 nm〜数百 nm程度の粒径を有する。 The composition of the Mg-Zn-X quasicrystal is preferably the at% ratio between Zn and X, a: b = 8 3: 6, and M gu Z n Z r M gjj Z n 83 T i 6 , Mg! , Z n 83 H f 6 or more. However, it is not necessary to limit to these, and it may be a quasicrystal having a composition allowed within the alloy composition range specified above, and its approximate crystal is also allowed. The fine particles have a particle size of about several tens of nm to several hundreds of nm.
準結晶および近似結晶は、 非常に硬質であり、 かつ 2 3 0 °C程度 まで分解せずに安定しているため、 微細粒子として M g母相中に分 散していると転位と強く相互作用し、 極めて高い分散強化作用を発 揮し、 常温および高温の強度を向上させる。 特に、 ひ一 M g結晶粒 界に存在する微細粒子は高温における粒界すベりを抑制し、 高い高 温強度に貢献する。 Quasicrystals and approximate crystals are very hard and stable without decomposition up to about 230 ° C, so if they are dispersed as fine particles in the Mg matrix, they strongly interact with dislocations. Acts and exhibits extremely high dispersion strengthening action, improving the strength at normal and high temperatures. In particular, the fine particles present in the Hi-Mg grain boundary suppress grain boundary sliding at high temperatures and contribute to high high-temperature strength.
本発明の合金は、 準結晶および近似結晶の構成成分として従来合 金の希土類に替えて Z r、 T i 、 H f を用いるが、 これらの元素は 合金の主成分である M gの溶湯と溶け合い難いため、 従来の希土類 元素を含む合金のように最終組成の合金溶湯を直接溶製することに よっては、 製造することができない。 すなわち、 各合金成分の原料 を最終的な合金組成に合わせて秤量し、 一緒に溶解炉に装入して加 熱し溶湯を形成しても、 高融点の Z r、 T i 、 H f はこの溶湯には 溶け込まず固体として残留してしまう。 これら高融点元素の融点は 非常に高温であり、 M gの沸点よりも高い。
従来合金で用いた Y等の希土類元素もそれ自体は M gに比べて遥 かに高融点であるが、 溶製時に低温で先に生成した M g溶湯との接 触により合金化して低融点化し、 容易に M g溶湯に溶け込むため、 従来の合金は最終組成の溶湯を直接溶製することができた。 The alloy of the present invention uses Zr, Ti, and Hf as constituents of the quasicrystal and the approximate crystal in place of the conventional rare earth alloy, but these elements are combined with the molten Mg, which is the main component of the alloy. Since it is difficult to melt, it cannot be produced by directly melting a molten alloy of the final composition like a conventional alloy containing rare earth elements. That is, even if the raw materials of each alloy component are weighed according to the final alloy composition, charged together in a melting furnace and heated to form a molten metal, the high melting points Zr, Ti, and Hf are It does not dissolve in the molten metal and remains as a solid. These refractory elements have very high melting points, higher than the boiling point of Mg. The rare earth elements such as Y used in conventional alloys themselves have a much higher melting point than Mg, but they are alloyed by contact with the molten Mg produced earlier at low temperatures during melting. The conventional alloy was able to directly melt the molten metal with the final composition because it was easily converted into Mg melt.
本発明の合金は、 上記のように最終組成の合金溶湯を直接溶製で きないため、 本発明の方法においては、 M gのみを溶解して M g溶 湯を形成し、 これに準結晶を添加することにより合金溶湯の形成を 可能とした。 M g溶湯の量と、 準結晶の組成および添加量によって 、 最終的な合金組成に調整する。 合金溶湯は、 十分に攪拌して均一 な溶湯にする。 Since the alloy of the present invention cannot directly melt the molten alloy of the final composition as described above, in the method of the present invention, only Mg is melted to form a Mg melt, and a quasicrystal It was possible to form molten alloy by adding. The amount of Mg melt, the composition of the quasicrystal and the amount added, to adjust the final alloy composition. Thoroughly stir the molten alloy into a uniform melt.
得られた合金溶湯を通常の方法により铸造する。 得られた铸造物 を熱処理して M g母相中に準結晶および近似結晶を微細粒子として 析出させる。 The obtained molten alloy is formed by a usual method. The resulting fabricated product is heat treated to precipitate quasicrystals and approximate crystals as fine particles in the Mg matrix.
これにより最終的に M g母相中に準結晶と近似結晶の微細粒子が 分散した組織が得られる。 This finally yields a structure in which fine particles of quasicrystals and approximate crystals are dispersed in the Mg matrix.
準結晶と近似結晶の微細粒子の生成機構は現時点では十分に解明 されていないが、 次のように生成するものと考えられる。 The formation mechanism of fine particles of quasicrystals and approximate crystals has not been fully elucidated at present, but is thought to be generated as follows.
M g溶湯中に準結晶を添加し十分に攪拌した合金溶湯は目視上は 均一であるが、 微視的には溶湯内に組成の揺らぎが存在し、 特定元 素が偏在する微細領域が溶湯内全域に亘つて分布しており、 铸造時 の冷却過程でこの微細偏在領域を核として準結晶および近似結晶ま たはその前駆組成物が微細に晶出する。 凝固完了した鐯造物は、 M g母相中に準結晶または近似結晶の構成元素である Z nおよび X ( Z r 、 T i 、 H f の 1種以上) が過飽和に固溶した状態であり、 熱 処理により微細な晶出物などを核として準結晶または近似結晶が微 細粒子として析出する。 The molten alloy with quasicrystals added and sufficiently stirred in the molten Mg is visually uniform, but microscopically there is a composition fluctuation in the molten metal, and there is a fine region in which the specific elements are unevenly distributed. The quasicrystal and approximate crystal or its precursor composition crystallize finely in the cooling process during fabrication, with this finely distributed region as the nucleus. The solidified product is a supersaturated solid solution of Zn and X (one or more of Z r, T i, and H f), which are constituent elements of quasicrystals or approximate crystals, in the Mg matrix. By heat treatment, quasi-crystals or approximate crystals are precipitated as fine particles with fine crystals as nuclei.
すなわち、 最終的に得られる合金の金属組織においては、 铸造時
の冷却過程で晶出した準結晶および近似結晶の微細粒子と、 その後 の熱処理で析出した準結晶および近似結晶の微細粒子とが存在し、 両者が共に分散強化により強度向上に寄与する。 実施例 In other words, in the final microstructure of the alloy, There are quasi-crystal and approximate crystal fine particles crystallized during the cooling process, and quasi-crystal and approximate crystal fine particles precipitated by the subsequent heat treatment, both of which contribute to strength improvement by dispersion strengthening. Example
〔実施例 1〕 Example 1
本発明により、 合金全体の最終組成が表 1 に示す組成である M g 一 Z n— Z rマグネシウム合金を作製し、 金属組織観察と引張試験 を行つた。 According to the present invention, an Mg-Zn—Zr magnesium alloy having the final composition of the entire alloy shown in Table 1 was prepared, and the metal structure was observed and a tensile test was performed.
(1) 準結晶の作製 (1) Preparation of quasicrystal
純 M g (99.9% ) 、 純 Z n ( 99.99 %) 、 純 Z r (99.5% ) の 各金属 (括弧内の数値は純度) を、 at%比で M g , , Z n 83 Z r 6の 準結晶組成となるように秤量し、 総量 5 gとして、 アルミナ製タン マン管 ( Φ 1 2 mm X I 0 mm) にセッ トし、 石英管内に封入した 。 石英管の内部を髙純度のアルゴンで置換した。 Net M g (99.9%), pure Z n (99.99%), the respective metal (values in parentheses purity) of the pure Z r (99.5%), M g in at% ratio,, Z n 83 Z r 6 Weighed so that the quasicrystalline composition was as follows. The total amount was set to 5 g, set in an alumina Tamman tube (Φ 12 mm XI 0 mm), and sealed in a quartz tube. The inside of the quartz tube was replaced with high purity argon.
室温から 5時間かけて 7 0 0 °Cまで昇温し、 1 2時間保持した後 、 5 0 0 °Cに降温して 4 8時間保持した。 これにより、 M g , i Z n 83 Z r 6準結晶が得られた。 図 1 にその電子線回折パターンを示し たように、 典型的な 5回対称性が確認された。 The temperature was raised from room temperature to 700 ° C. over 5 hours, held for 12 hours, then cooled to 500 ° C. and held for 48 hours. Thus, M g, the i Z n 83 Z r 6 quasicrystal obtained. As shown in Fig. 1, the electron diffraction pattern shows typical five-fold symmetry.
得られた塊状の準結晶を粉碎して粒径数十; mとして、 以下に用 いた。 The obtained massive quasicrystal was pulverized to a particle size of several tens; m and used for the following.
(2) 合金の溶製 (2) Melting of alloys
純 M g (純度 99.99 %) を黒鉛坩堝中に装入し、 アルゴン雰囲 気下に保持した高周波溶解炉にて 7 0 0 に昇温して溶解し M g溶 湯を形成した。 Pure Mg (purity 99.99%) was charged into a graphite crucible and melted by raising the temperature to 70 0 in a high-frequency melting furnace held in an argon atmosphere to form an Mg melt.
M g溶湯中に、 上記(Uで作製した準結晶を、 最終的な合金組 成が表 1 に示す M g— Z n— Z r組成となるように調整した量で添
加して、 溶湯温度を 7 0 0 °Cに保持したまま、 全て溶解して均一に なるまで攪拌した後、 2時間保持した。 In the Mg melt, add the above-mentioned quasicrystals prepared in U in an amount adjusted so that the final alloy composition becomes the Mg-Zn-Zr composition shown in Table 1. In addition, the molten metal temperature was kept at 700 ° C., and the mixture was stirred until it was completely dissolved and uniform, and then kept for 2 hours.
(3) 铸造 (3) Forging
得られた合金溶湯を 7 0 0 °Cに保ち、 約 1 0 0 °Cに予熱した铸 鉄製 J I S 4号船型铸型 ( 7 0 mm X 7 0 mm X 3 0 0 mm) に鍀 込んだ。 The obtained molten alloy was kept at 700 ° C. and poured into a pig iron J IS 4 No. 4 ship type (70 mm × 70 mm × 300 mm) preheated to about 100 ° C.
(4) 熱処理 (4) Heat treatment
上記で得られた铸造物をアルゴン雰囲気下で 5 0 0 °Cにて 4 8 時間熱処理した。 The fabricated product obtained above was heat-treated at 50 ° C. for 48 hours under an argon atmosphere.
ぐ金属組織の観察 > Observation of metal structure>
熱処理後の試料について、 透過電子顕微鏡 (T EM) にて金属組 織を観察した。 About the sample after heat processing, the metal structure was observed with the transmission electron microscope (TEM).
その結果、 図 2に示すように、 α— M g結晶粒内に数十 n mの微 細な析出物が白色の点状に観察された。 この析出物は M g!】 Z n 83 Z r 6準結晶とその近似結晶であることを確認した。 As a result, as shown in FIG. 2, fine precipitates of several tens of nm were observed as white spots in α-Mg crystal grains. This precipitate is Mg! ] Was confirmed to be a Z n 83 Z r 6 quasi-crystals and their approximate crystal.
ぐ引張試験〉 Tensile test>
熱処理後の試料から、 平行部 ψ 5 X 2 5 mmの丸棒引張試験片を 採取し、 室温、 1 5 0 °Cおよび 2 0 0 °Cにて引張試験を行った。 島 津製作所製 A G— 2 5 0 k ND引張試験機を用い、 引張速度 0. 8 m m /分で行なった。 From the heat-treated sample, a round bar tensile test piece having a parallel portion of ψ 5 X 25 mm was collected and subjected to a tensile test at room temperature, 1550 ° C and 2100 ° C. Using an A G-2500 k ND tensile tester manufactured by Shimadzu Corporation, the tensile speed was 0.8 mm / min.
更に、 上記熱処理後に押出しを行った試料についても同様に引張 試験を行なった。 押出し条件は、 押出温度 2 5 0 ° (:、 押出比 1 0 : 1であった。 Further, a tensile test was similarly performed on the sample extruded after the heat treatment. The extrusion conditions were as follows: extrusion temperature 2550 ° (: extrusion ratio 10: 1).
また、 組成が本発明の範囲外である比較例についても同様に引張 試験を行った。 In addition, a tensile test was conducted in the same manner with respect to a comparative example whose composition was out of the scope of the present invention.
〔実施例 2 Example 2
本発明により、 合金全体の最終組成が表 1 に示す組成である M g
一 Z n— T i マグネシウム合金を作製し、 金属組織観察と引張試験 を fxつた。 According to the present invention, the final composition of the entire alloy is the composition shown in Table 1 Mg One Z n—Ti magnesium alloy was fabricated and fx of metal structure observation and tensile tests were performed.
準結晶として、 M g! i Z n 8 3 T i 6準結晶を作製して純 M g溶湯 に添加した以外は、 実施例 1 と同様な手順で作製した。 As a quasicrystal, Mg! except for adding to prepare a i Z n 8 3 T i 6 quasicrystal pure M g melt was manufactured in a similar procedure as in Example 1.
熱処理後に、 透過電子顕微鏡により 一 M g結晶粒内に数十 n m の微細な析出物が白色の点状に観察された。 この析出物は M g u Z n 8 3 T i 6準結晶とその近似結晶であることを確認した。 After the heat treatment, fine precipitates of several tens of nm were observed as white spots in 1 Mg crystal grains using a transmission electron microscope. This precipitate was confirmed to be a M gu Z n 8 3 Ti 6 quasicrystal and its approximate crystal.
上記熱処理後の試料および実施例 1 と同じ条件で押出した試料に ついて、 実施例 1 と同じ条件で引張試験結果を行なった。 Tensile test results were performed under the same conditions as in Example 1 for the samples after the heat treatment and the samples extruded under the same conditions as in Example 1.
また、 組成が本発明の範囲外である比較材についても同様に引張 試験を行った。 Similarly, a tensile test was performed on a comparative material having a composition outside the range of the present invention.
更に、 従来材についても同様に引張試験を行った。 Further, a tensile test was performed on the conventional material in the same manner.
以上の試験結果を表 1 にまとめて示す。
The above test results are summarized in Table 1.
表 1 table 1
本発明材は、 従来材と比較して特に 1 5 0 °Cにおける引張強さが 優れている。 また、 室温から 1 5 0 °Cへの温度上昇に伴う強度低下 が非常に小さい。 これは、 — M g結晶粒内に析出 · 分散している 準結晶および近似結晶から成る微細粒子は熱安定性が非常に高いた め、 1 5 0 °Cの高温下でも転位と強く相互作用し、 転位の運動に対 する障壁として有効に機能していることによる。 本発明範囲外の組 成の比較材は、 準結晶および近似結晶が生成しないか、 生成しても 非常に微少量であるため、 これら生成相による分散強化作用がほと んど得られず、 高い強度が得られない。 産業上の利用可能性 The material of the present invention is particularly excellent in tensile strength at 150 ° C compared to the conventional material. In addition, the decrease in strength accompanying the temperature increase from room temperature to 1550 ° C is very small. This is because — Fine particles composed of quasicrystals and approximate crystals precipitated and dispersed in Mg grains are very thermally stable, so they interact strongly with dislocations even at high temperatures of 150 ° C. This is because it functions effectively as a barrier to dislocation movement. Comparative materials with a composition outside the scope of the present invention do not produce quasicrystals or approximate crystals, or even if they are produced, the amount of dispersion strengthening by these produced phases is hardly obtained. High strength cannot be obtained. Industrial applicability
本発明によれば、 高価な希土類元素を用いずに低廉化しつつ高温 強度を向上させた高強度マグネシウム合金およびその製造方法が提 供される。
According to the present invention, there are provided a high-strength magnesium alloy which is reduced in price without using an expensive rare earth element and improved in high-temperature strength and a method for producing the same.