JP3895232B2 - Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same - Google Patents

Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same Download PDF

Info

Publication number
JP3895232B2
JP3895232B2 JP2002235803A JP2002235803A JP3895232B2 JP 3895232 B2 JP3895232 B2 JP 3895232B2 JP 2002235803 A JP2002235803 A JP 2002235803A JP 2002235803 A JP2002235803 A JP 2002235803A JP 3895232 B2 JP3895232 B2 JP 3895232B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
aluminum alloy
alloy foil
producing
intermediate annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235803A
Other languages
Japanese (ja)
Other versions
JP2004076059A (en
Inventor
昌也 遠藤
英雄 渡辺
聡 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002235803A priority Critical patent/JP3895232B2/en
Publication of JP2004076059A publication Critical patent/JP2004076059A/en
Application granted granted Critical
Publication of JP3895232B2 publication Critical patent/JP3895232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電解コンデンサとして使用した場合に高い静電容量と高い機械的強度を持つアルミニウム合金箔の製造方法に関するものである。
【0002】
【従来の技術】
従来の技術としては、特公昭44−25016のように低純度Al箔にCuを添加させたAl合金や、特開昭51−97518のようにFe量を低く規制した合金が提案されているが、静電容量、強度は十分なものではなかった。
【0003】
【発明が解決しようとする課題】
Fe、Mn量共に多くし、Al−Fe−Mn系化合物を適度に分散させることで従来材以上の静電容量、強度が得られる製造方法を提供する。
【0004】
【課題を解決するための手段】
上記課題を解決するため本発明の電解コンデンサ陰極用アルミニウム合金箔の製造方法のうち、請求項1記載の発明は、Si:0.15〜0.25%(質量%、以下同じ)、Fe:0.35〜0.70%、Cu:0.10〜0.50%、Mn:0.2〜2.0%を含有し、残部Al及び不可避不純物からなり、且つ、Fe/Si:1.5〜3.0である合金を熱間圧延後、中間焼鈍まで圧延率80〜95%の冷間圧延を行い、300〜500℃の中間焼鈍を行い、最終冷間圧延を行うことを特徴とする。
【0005】
請求項2記載の電解コンデンサ陰極用アルミニウム合金箔の製造方法の発明は、請求項1記載の発明において、前記合金が、さらに、Mg:0.001〜2.0%、Zn:0.001〜0.5%の1種又は2種を含有することを特徴とする。
【0007】
以下に本発明で限定する事項について説明する。
Si:0.15〜0.25%
SiはAl−Fe−Mn系化合物の過剰析出を抑制する作用があるが、0.15%未満ではその作用が十分発揮されず好ましくない。0.25%を越えると純度低下による過溶解が生じ好ましくない。
【0008】
Fe:0.35〜0.70%
Feは強度向上及び低純度化に最も影響の大きい元素である。0.35%未満では強度向上への寄与が不十分、且つコストメリットがなく好ましくない。0.70%を越えると純度低下による過溶解を生じ好ましくない。
【0009】
Cu:0.10〜0.50%
Cuはマトリックス中に固溶し易く、マトリックスの腐食電位を高め、化学溶解を促進し、拡面率に寄与するために添加する。0.10%未満では後述するAl−Fe−Mn系化合物とマトリックスとの電位差が大きくなり局部溶解が起こり好ましくない。0.50%を越えると化学溶解が進行し過ぎ、過溶解を引き起こす。
【0010】
Mn:0.2〜2.0%
MnはAl−Fe−Mn系化合物を形成し、マトリックスとの電位差を作り、ピットの起点となる作用があるので添加する。0.2%未満ではAl−Fe−Mn系化合物の分散析出が少なく、満足なエッチング形態が得られない。2.0%を越える場合は析出分散した化合物の粒度が大きくなりすぎ、粗大且つ不均一なエッチング形態となる。
【0011】
Fe/Si:1.5〜3.0
Fe/Si:1.5〜3.0が好ましいのはAl−Fe−Mn系化合物が適度に分散し均一なエッチング形態になるためである。1.5未満ではFeに対するSiの割合が高く、析出を抑制するのでAl−Fe−Mn系化合物の析出が不十分で、適度な起点が得られないので好ましくない。3.0を越えると析出を抑制する作用が小さくなるのでAl−Fe−Mn系化合物の析出が多く、局部溶解を生じさせる為好ましくない。好ましくは2.0〜2.5である。
【0012】
Mg:0.001〜2.0%、Zn:0.001〜0.5%
機械的強度向上のために添加する。共に0.001%未満では効果が薄い。Mgは2.0%を越えると局部溶解を引き起こすので好ましくない。Znは0.5%を越えるとMg同様、局部溶解を引き起こすので好ましくない。
【0013】
中間焼鈍までの冷間圧延率80〜95%
後の中間焼鈍でAl−Fe−Mn系化合物の析出を引き起こす駆動力であり、80%未満では十分な析出が得られない。95%を越えると最終箔厚までの冷延率が不十分となり、強度が確保できない。
【0014】
中間焼鈍300〜500℃
Al−Fe−Mn系化合物を析出させるためであり、300℃未満では効果が薄い。500℃を越えると析出したFeが再固溶し、十分な析出状態が確保できなくなる。なお、処理はバッチ式でも連続焼鈍炉でもよいが、連続焼鈍炉で行った方が強度が高くなる。
【0015】
【発明の実施の形態】
以下に本発明の一実施形態を説明する。
本発明では、常法により溶解、鋳造、熱間圧延を行い、中間焼鈍まで圧延率80〜95%の冷間圧延を行い、300〜500℃の中間焼鈍を行い、最終冷間圧延を行うのが好ましい。
上記工程を終えて得られたアルミニウム箔には、表面の粗面化処理、所定の化成処理が行われる。
なお、粗面化処理、化成処理条件については本発明は特に限定されるものではなく、例えば常法により行うことができる。
【0016】
【実施例】
表1に示す組成の合金を溶解鋳造し、熱間圧延で板厚7mmに仕上げた。続いて冷間圧延を表1の板厚まで行った。そして連続焼鈍炉で表1の温度で中間焼鈍を行った。ついで最終板厚0.04mmまで冷延した。次に液温80℃の0.5M硫酸と1.0M塩酸の混酸中で60秒浸漬させた後、85℃のアジピン酸アンモニウム溶液中で3V化成後、静電容量を測定した。静電容量は従来例1を100としたときの相対比較で行った。また、強度の指標として最終冷延後の引張り強さを測定し、従来例1を100としたときの相対比較で表わした。
【0017】
【表1】

Figure 0003895232
【0018】
表1から明らかなように本発明材は比較材、従来材より静電容量、引張強さ共に優れることがわかる。比較例1は中間焼鈍までの冷延率が低い、比較例2は中間焼鈍温度が低いため、Al−Fe−Mn系化合物の分散析出が少なく、静電容量が低い。比較例3はZnが多すぎ、比較例4はCuが多すぎ、比較例5はMnが多すぎ、比較例6はFe/Siが高すぎて静電容量が低い。比較例7は中間焼鈍までの冷延率が高すぎて最終冷延率が低いので引張強さが低い。従来例1はFe/Siが低すぎて実施例より静電容量が低い。従来例2はFeが少ないので引張強さが低い。
【0019】
【発明の効果】
以上、説明したように本発明の製造方法によれば高容量、高強度の電解コンデンサ陰極用アルミニウム箔が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy foil having high capacitance and high mechanical strength when used as an electrolytic capacitor.
[0002]
[Prior art]
As conventional techniques, an Al alloy in which Cu is added to a low-purity Al foil as in Japanese Patent Publication No. 44-25016, and an alloy in which the amount of Fe is regulated as low as in Japanese Patent Laid-Open No. 51-97518 have been proposed. The capacitance and strength were not sufficient.
[0003]
[Problems to be solved by the invention]
Fe, together many Mn amount, the electrostatic capacitance of more conventional materials by to appropriately disperse the Al-Fe-Mn compounds, to provide a production method made strength that obtained.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, among the methods for producing an aluminum alloy foil for an electrolytic capacitor cathode of the present invention, the invention according to claim 1 is Si: 0.15 to 0.25% ( mass% , hereinafter the same), Fe: 0.35 to 0.70%, Cu: 0.10 to 0.50%, Mn: 0.2 to 2.0%, the balance being Al and inevitable impurities, and Fe / Si: 1. After hot rolling an alloy of 5 to 3.0, cold rolling at a rolling rate of 80 to 95% is performed until intermediate annealing, intermediate annealing at 300 to 500 ° C. is performed, and final cold rolling is performed. To do.
[0005]
The invention of the method for producing an aluminum alloy foil for an electrolytic capacitor cathode according to claim 2 is the invention according to claim 1, wherein the alloy is further Mg: 0.001 to 2.0%, Zn: 0.001 to It contains 0.5% of 1 type or 2 types.
[0007]
The matter limited by this invention is demonstrated below.
Si: 0.15-0.25%
Si has an action of suppressing excessive precipitation of the Al—Fe—Mn compound, but less than 0.15% is not preferable because the action is not sufficiently exhibited. If it exceeds 0.25%, excessive dissolution due to a decrease in purity occurs, which is not preferable.
[0008]
Fe: 0.35-0.70%
Fe is an element having the greatest influence on strength improvement and purity reduction. If it is less than 0.35%, the contribution to strength improvement is insufficient, and there is no cost merit. If it exceeds 0.70%, excessive dissolution due to a decrease in purity occurs, which is not preferable.
[0009]
Cu: 0.10 to 0.50%
Cu is easily dissolved in the matrix, and is added to increase the corrosion potential of the matrix, promote chemical dissolution, and contribute to the surface expansion ratio. If it is less than 0.10%, the potential difference between an Al—Fe—Mn compound described later and the matrix becomes large, and local dissolution occurs, which is not preferable. If it exceeds 0.50%, chemical dissolution proceeds excessively and causes excessive dissolution.
[0010]
Mn: 0.2 to 2.0%
Mn forms an Al—Fe—Mn-based compound, creates a potential difference with the matrix, and acts as a starting point of pits, so is added. If it is less than 0.2%, there is little dispersion precipitation of the Al—Fe—Mn compound, and a satisfactory etching form cannot be obtained. If it exceeds 2.0%, the particle size of the precipitated and dispersed compound becomes too large, resulting in a coarse and non-uniform etching form.
[0011]
Fe / Si: 1.5 to 3.0
The reason why Fe / Si: 1.5 to 3.0 is preferable is that the Al—Fe—Mn compound is appropriately dispersed to form a uniform etching form. If it is less than 1.5, the ratio of Si to Fe is high, and since precipitation is suppressed, precipitation of the Al—Fe—Mn compound is insufficient, and an appropriate starting point cannot be obtained. If it exceeds 3.0, the effect of suppressing the precipitation becomes small, so that the precipitation of Al—Fe—Mn-based compounds is large, which causes local dissolution, which is not preferable. Preferably it is 2.0-2.5.
[0012]
Mg: 0.001 to 2.0%, Zn: 0.001 to 0.5%
Add to improve mechanical strength. In both cases, the effect is less than 0.001%. If Mg exceeds 2.0%, local dissolution is not preferable. If Zn exceeds 0.5%, local dissolution is caused like Mg, which is not preferable.
[0013]
Cold rolling rate until intermediate annealing 80-95%
This is a driving force that causes precipitation of the Al—Fe—Mn compound in the subsequent intermediate annealing, and if it is less than 80%, sufficient precipitation cannot be obtained. If it exceeds 95%, the cold rolling rate up to the final foil thickness becomes insufficient, and the strength cannot be ensured.
[0014]
Intermediate annealing 300 ~ 500 ℃
This is for precipitating an Al—Fe—Mn compound, and the effect is less than 300 ° C. When the temperature exceeds 500 ° C., the precipitated Fe is re-dissolved and a sufficient precipitation state cannot be secured. In addition, although a batch type or a continuous annealing furnace may be sufficient as a process, the direction performed in a continuous annealing furnace becomes high.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
In the present invention, melting, casting and hot rolling are performed by a conventional method, cold rolling at a rolling rate of 80 to 95% is performed until intermediate annealing, intermediate annealing at 300 to 500 ° C. is performed, and final cold rolling is performed. Is preferred.
The aluminum foil obtained after the above steps are subjected to a surface roughening treatment and a predetermined chemical conversion treatment.
In addition, about roughening process and chemical conversion treatment conditions, this invention is not specifically limited, For example, it can carry out by a conventional method.
[0016]
【Example】
An alloy having the composition shown in Table 1 was melt cast and finished to a thickness of 7 mm by hot rolling. Subsequently, cold rolling was performed to the plate thickness shown in Table 1. Then, intermediate annealing was performed at a temperature shown in Table 1 in a continuous annealing furnace. Then, it was cold-rolled to a final thickness of 0.04 mm. Next, after immersion for 60 seconds in a mixed acid of 0.5 M sulfuric acid and 1.0 M hydrochloric acid at a liquid temperature of 80 ° C., 3 V formation was carried out in an ammonium adipate solution at 85 ° C., and the capacitance was measured. The capacitance was determined by relative comparison with the conventional example 1 as 100. Further, the tensile strength after the final cold rolling was measured as an index of strength, and was expressed by relative comparison with the conventional example 1 being 100.
[0017]
[Table 1]
Figure 0003895232
[0018]
As is apparent from Table 1, the material of the present invention is superior in both capacitance and tensile strength to the comparative material and the conventional material. Since Comparative Example 1 has a low cold rolling rate until intermediate annealing, and Comparative Example 2 has a low intermediate annealing temperature, the Al—Fe—Mn compound is less dispersed and precipitated, and the capacitance is low. Comparative Example 3 has too much Zn, Comparative Example 4 has too much Cu, Comparative Example 5 has too much Mn, and Comparative Example 6 has too high Fe / Si and low capacitance. In Comparative Example 7, the tensile strength is low because the cold rolling rate until intermediate annealing is too high and the final cold rolling rate is low. Conventional Example 1 has a lower capacitance than Fe and Si because Fe / Si is too low. Conventional Example 2 has low tensile strength because Fe is low.
[0019]
【The invention's effect】
As described above, according to the manufacturing method of the present invention described high capacity, aluminum foil for electrolytic capacitor cathode of high strength is obtained.

Claims (2)

Si:0.15〜0.25%(質量%、以下同じ)、Fe:0.35〜0.70%、Cu:0.10〜0.50%、Mn:0.2〜2.0%を含有し、残部Al及び不可避不純物からなり、且つ、Fe/Si:1.5〜3.0である合金を熱間圧延後、中間焼鈍まで圧延率80〜95%の冷間圧延を行い、300〜500℃の中間焼鈍を行い、最終冷間圧延を行うことを特徴とする電解コンデンサ陰極用アルミニウム合金箔の製造方法。 Si: 0.15-0.25% ( mass% , the same shall apply hereinafter), Fe: 0.35-0.70%, Cu: 0.10-0.50%, Mn: 0.2-2.0% After the hot rolling of the alloy consisting of the balance Al and inevitable impurities and Fe / Si: 1.5 to 3.0, cold rolling at a rolling rate of 80 to 95% is performed until intermediate annealing, The manufacturing method of the aluminum alloy foil for electrolytic capacitor cathodes which performs 300-500 degreeC intermediate annealing and performs final cold rolling. 前記合金が、さらに、Mg:0.001〜2.0%、Zn:0.001〜0.5%の1種又は2種を含有することを特徴とする請求項1記載の電解コンデンサ陰極用アルミニウム合金箔の製造方法2. The electrolytic capacitor cathode according to claim 1 , wherein the alloy further contains one or two of Mg: 0.001 to 2.0% and Zn: 0.001 to 0.5%. Manufacturing method of aluminum alloy foil.
JP2002235803A 2002-08-13 2002-08-13 Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same Expired - Fee Related JP3895232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235803A JP3895232B2 (en) 2002-08-13 2002-08-13 Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235803A JP3895232B2 (en) 2002-08-13 2002-08-13 Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004076059A JP2004076059A (en) 2004-03-11
JP3895232B2 true JP3895232B2 (en) 2007-03-22

Family

ID=32020188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235803A Expired - Fee Related JP3895232B2 (en) 2002-08-13 2002-08-13 Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3895232B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044200A1 (en) * 2004-08-27 2008-02-21 Seiko Epson Corporation Method for Reattaching Layer Thickness Regulating Member, Developing Device, Image Forming Apparatus, Image Forming System and Method for Remanufacturing Developing Device
JP5405410B2 (en) * 2010-08-05 2014-02-05 株式会社神戸製鋼所 Aluminum alloy hard foil for battery current collector
JP5667681B2 (en) * 2013-10-30 2015-02-12 株式会社神戸製鋼所 Method for producing aluminum alloy hard foil for battery current collector
CN104213001B (en) * 2014-09-08 2016-12-07 广西南南铝加工有限公司 Cathode Foil low aluflex and preparation method thereof
CN105603263B (en) * 2015-12-24 2017-09-19 苏州有色金属研究院有限公司 The manufacture method of the ××× aluminium alloy cold forming aluminium foil of continuous casting and rolling 8
CN111270108B (en) * 2020-03-27 2021-08-24 江苏鼎胜新能源材料股份有限公司 Novel alloy high-strength PCB aluminum substrate aluminum material and preparation method thereof
CN115233045B (en) * 2022-08-05 2023-10-13 厦门厦顺铝箔有限公司 Production process of aluminum foil for high-manganese ultrahigh-strength battery

Also Published As

Publication number Publication date
JP2004076059A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
WO2005098065A1 (en) Aluminum alloy casting material for heat treatment excelling in heat conduction and process for producing the same
KR20060133996A (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
JP3689323B2 (en) Aluminum material for electrolytic capacitor electrodes
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
KR20100108370A (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP3895232B2 (en) Aluminum alloy foil for electrolytic capacitor cathode and method for producing the same
JPH10219382A (en) Aluminum alloy sheet excellent in formability/ workability and coating/baking hardenability and its production
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
JP3670706B2 (en) Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP3685973B2 (en) Al-Mg-based Al alloy plate with excellent formability
CN111172439A (en) Refined grain magnesium alloy and preparation method thereof
JPH09249950A (en) Production of aluminum alloy sheet excellent in formability and hardenability in coating/baking
JP2945298B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JPH10226894A (en) Production of aluminum alloy sheet excellent in formability, baking finish hardenability, chemical convertibility and corrosion resistance
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JPH0251210A (en) Aluminum alloy for electrolytic capacitor cathode and its production
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JP2001234270A (en) Method for producing aluminum alloy sheet having fine crystal grain structure and aluminum alloy sheet obtained by the same producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees