JPH01307259A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH01307259A
JPH01307259A JP63137466A JP13746688A JPH01307259A JP H01307259 A JPH01307259 A JP H01307259A JP 63137466 A JP63137466 A JP 63137466A JP 13746688 A JP13746688 A JP 13746688A JP H01307259 A JPH01307259 A JP H01307259A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
layer
transistor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137466A
Other languages
Japanese (ja)
Inventor
Toru Kaga
徹 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63137466A priority Critical patent/JPH01307259A/en
Publication of JPH01307259A publication Critical patent/JPH01307259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To eliminate abnormal operation relating to a substrate potential, by providing a switching element having a highly doped source or drain electrode of a first conductivity type, substantially vertically to the substrate. CONSTITUTION:When a high voltage is applied to a gate electrode 14, a depletion layer 54 extending below the gate electrode can electrically isolate N<+>-type doped layers 15, 17 arranged on and under a transistor from each other. When a low voltage is applied to the gate electrode 14, the depletion layer 54 is made small and the N<+>-type doped layers 15, 17 on and under the transistor are electrically connected with each other. The transistor is of the type in which the carriers flow through the substrate 11 and operates completely independent of a potential of the P-type Si substrate 11. In this manner, stable operation of the memory can be obtained without causing any abnormal operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置に係り、特に高集積化に好適な
縦型MISトランジスタを有する半導体記憶装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a semiconductor memory device having a vertical MIS transistor suitable for high integration.

〔従来の技術〕[Conventional technology]

従来、縦型MISトランジスタと容量とを用いて、半導
体の島状領域にダイナミックRAM用のメモリセルを形
成した半導体記憶装置については特開昭60−7075
8.特開昭62−140456等に記載されている。
Conventionally, a semiconductor memory device in which a memory cell for dynamic RAM is formed in a semiconductor island region using a vertical MIS transistor and a capacitor is disclosed in Japanese Patent Application Laid-Open No. 60-7075.
8. It is described in JP-A-62-140456 and the like.

第2図は上記従来のメモリセルの部分断面図である。こ
のメモリセルはp型Siの島状領域22に2つのn+不
純物層23.24とゲート電極14からなる縦型MOS
トランジスタと、島状領域22下部表面のn4″不純物
WJ23を電荷蓄積部とし、その表面の絶縁膜(SiO
□)及びその上の電極16により構成される容量から成
る1トランジスタ1容量構造を有している。このように
MOSキャパシタとMoSトランジスタとが島状領域の
側壁を利用して形成されるため、メモリセルの占有面積
を小さくでき、かつキャパシタ容量を大きい値に保つこ
とができる。
FIG. 2 is a partial cross-sectional view of the conventional memory cell. This memory cell is a vertical MOS consisting of a p-type Si island region 22, two n+ impurity layers 23 and 24, and a gate electrode 14.
The transistor and the n4'' impurity WJ23 on the lower surface of the island region 22 serve as a charge storage portion, and the insulating film (SiO
It has a one-transistor, one-capacitor structure consisting of a capacitor formed by a capacitor (□) and an electrode 16 thereon. Since the MOS capacitor and the MoS transistor are formed using the sidewalls of the island region in this way, the area occupied by the memory cell can be reduced and the capacitance of the capacitor can be maintained at a large value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、メモリセルをさらに縮少する点につい
ては配慮がされていなかった。これについて第3図に、
上記第2図のメモリセルの動作状態を示して説明する。
The above-mentioned conventional technology does not give consideration to further reducing the number of memory cells. Regarding this, Figure 3 shows
The operating state of the memory cell shown in FIG. 2 will be shown and explained.

上記メモリセルの島状領域上部のトランジスタの基板電
圧は、島状領域下部のn4″不純物層23で囲まれたp
型不純物領域を介して供給されている。メモリセルが大
きい場合はこれで問題はないが、メモリセルが縮少した
場合には、電荷蓄積部であるn+不純物層23にプラス
(+)電荷が蓄積すると、そこから延びた空乏層31に
よってMOSトランジスタの基板部が絶縁されてしまう
、このためp”Si基板21からMOSトランジスタの
基板部(島状領域22)への給電がで層なくなり、トラ
ンジスタが異常動作を起こすという問題があった。
The substrate voltage of the transistor on the upper part of the island region of the memory cell is the p
It is supplied via the type impurity region. This is not a problem if the memory cell is large, but if the memory cell is shrunk, when positive (+) charges accumulate in the n+ impurity layer 23, which is the charge storage part, the depletion layer 31 extending from there causes There is a problem in that the substrate portion of the MOS transistor is insulated, and as a result, power is not supplied from the p''Si substrate 21 to the substrate portion (island region 22) of the MOS transistor, causing abnormal operation of the transistor.

本発明の目的は、基板電圧に係る異常動作のない縦型ト
ランジスタを有する半導体記憶装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory device having a vertical transistor without abnormal operation related to substrate voltage.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半導体基板表面に、第1導電型の不純物を
含む半導体柱を有し、該半導体柱に少なくともスイッチ
ング素子と容量とを配置した半導体記憶装置において、
上記スイッチング素子は高濃度の第1導電型であるソー
ス電極又はドレイン電極を有し、基板に実質的に垂直に
設けたスイッチング素子であることを特徴とする半導体
記憶装置によって達成される。
The above object is to provide a semiconductor memory device which has a semiconductor pillar containing impurities of a first conductivity type on the surface of a semiconductor substrate, and in which at least a switching element and a capacitor are disposed on the semiconductor pillar.
This is achieved by a semiconductor memory device characterized in that the switching element has a highly doped source electrode or drain electrode of the first conductivity type and is provided substantially perpendicular to the substrate.

上記半導体柱とは、半導体基板に設けられた溝に囲まれ
て他と分離された島状領域をも含むものである。
The above-mentioned semiconductor pillar also includes an island-like region surrounded by a groove provided in the semiconductor substrate and separated from the others.

本発明において半導体基板の導電型と半導体柱の導電型
は同じであっても異なるものでもよい。
In the present invention, the conductivity type of the semiconductor substrate and the conductivity type of the semiconductor pillar may be the same or different.

両者が同じ導電型であるときは半導体基板と半導体柱の
間に絶縁膜を設ける等の方法で電気的に絶縁することが
必要である。一方両者の導電型が異なるときは必ずしも
絶縁する必要はない、しかし上記と同様に両者を絶縁す
ることはα線入射で発生した電子による誤動作を防止す
ることができるので好ましい。
When both are of the same conductivity type, it is necessary to electrically insulate the semiconductor substrate and the semiconductor pillar by a method such as providing an insulating film between them. On the other hand, when the conductivity types of the two are different, it is not necessarily necessary to insulate the two, but it is preferable to insulate both in the same way as described above, since it is possible to prevent malfunctions caused by electrons generated by the incidence of alpha rays.

本発明の半導体記憶装置は、電荷蓄積部である高濃度不
純物層と同じ導電型の不純物を含む半導体柱にトランジ
スタを形成するもので、従来の装置とは動作原理の異な
るものである。
The semiconductor memory device of the present invention has a transistor formed in a semiconductor column containing an impurity of the same conductivity type as a high concentration impurity layer serving as a charge storage portion, and has a different operating principle from conventional devices.

〔作用〕[Effect]

本発明の一実施例の半導体記憶装置を第5図に示して本
発明の詳細な説明する。第5図において、13はn型不
純物層、14はゲート電極、15はn+不純物層、17
はn+不純物層、54は空乏層である。
A semiconductor memory device according to an embodiment of the present invention is shown in FIG. 5, and the present invention will be described in detail. In FIG. 5, 13 is an n-type impurity layer, 14 is a gate electrode, 15 is an n+ impurity layer, and 17 is an n-type impurity layer.
is an n+ impurity layer, and 54 is a depletion layer.

このトランジスタはゲート電極14に高電圧を印加した
場合にはゲート電極下に延びる空乏層54によってトラ
ンジスタの上下に配したn+不純物層15と17を電気
的に分離することができる。一方ゲート電極14に低電
圧を印加した場合には、空乏層54が小さくなり、該5
図に示すようにトランジスタの上下のn+不純物層間が
電気的に導通する。このトランジスタは基板内をキャリ
アが流れる型のトランジスタである。このトランジスタ
はp型Si基板11の電位とは全く無関係に動作する。
In this transistor, when a high voltage is applied to the gate electrode 14, the n+ impurity layers 15 and 17 disposed above and below the transistor can be electrically isolated by the depletion layer 54 extending below the gate electrode. On the other hand, when a low voltage is applied to the gate electrode 14, the depletion layer 54 becomes smaller and the 5
As shown in the figure, electrical conduction occurs between the n+ impurity layers above and below the transistor. This transistor is of a type in which carriers flow within the substrate. This transistor operates completely independent of the potential of the p-type Si substrate 11.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第1図及び第4図を用い
て詳細に説明する。
Hereinafter, a first embodiment of the present invention will be described in detail using FIGS. 1 and 4.

第1図は本発明の一実施例であり、p型Si基板11と
その表面上に突出したn型不純物層13の柱表面に、n
+不純物層17、ゲート電極14及びn+不純物層15
から成る縦型M工Sトランジスタと、電荷蓄積部である
n+不純物層15と電極16から成る容量を有するダイ
ナミックRAM用のメモリセルを示している。
FIG. 1 shows an embodiment of the present invention, in which an n
+ impurity layer 17, gate electrode 14 and n+ impurity layer 15
This figure shows a memory cell for a dynamic RAM having a capacitance consisting of a vertical M/S transistor consisting of an n+ impurity layer 15 and an electrode 16 serving as a charge storage section.

第4図は、第1図実施例の製造方法の一実施例を示した
ものである。まず、p型Si基板11表面に、例えば3
−の深さを有するn型不純物層13を。
FIG. 4 shows an embodiment of the manufacturing method of the embodiment shown in FIG. First, on the surface of the p-type Si substrate 11, for example, 3
An n-type impurity layer 13 having a depth of -.

リンイオン打ち込みと拡散技術で形成した(第4図(a
))。その後、基板表面に化学気相成長法(Chemi
cal Vapor Deposition : CV
 D法)で被着した約300nm厚みのSi、N4層4
3を、ホトリソグラフィによって形成したホトレジスト
パターンをマスクとして加工し、さらにこのホトレジス
トパターンをマスクとしてn型不純物層42を異方性ド
ライエツチング技術により約24加工し、幅約1−のS
i柱を形成する(第4図(b))。さらにSi、N4を
CVD法で被着し、異方性ドライエツチングで加工し、
n型不純物層13の柱側壁に50nm厚みのSi、N4
層45を形成する。その後、異方性ドライエツチングに
よってさらにSi基板を約2−掘る(第4図(C))。
It was formed using phosphorus ion implantation and diffusion technology (Fig. 4 (a)
)). After that, chemical vapor deposition (Chemical vapor deposition) is applied to the surface of the substrate.
cal Vapor Deposition: CV
Si, N4 layer 4 with a thickness of about 300 nm deposited by method D)
3 was processed using a photoresist pattern formed by photolithography as a mask, and further, using this photoresist pattern as a mask, the n-type impurity layer 42 was processed using an anisotropic dry etching technique.
An i-pillar is formed (Fig. 4(b)). Furthermore, Si and N4 are deposited by CVD method, processed by anisotropic dry etching,
Si, N4 with a thickness of 50 nm is formed on the column side wall of the n-type impurity layer 13.
Form layer 45. Thereafter, the Si substrate is further etched by approximately 2 mm by anisotropic dry etching (FIG. 4(C)).

再びSi、N4をCVD法で被着し、異方性ドライエツ
チングで加工しSi柱側壁に50nm厚みのSL、N4
層46を形成する(第4図(d))。このSi3N4層
46及びSi、N4層43を耐酸化マスクに用い、Sj
基板表面を酸化し、約200nm厚みのSio、層47
を形成する(第4図(e))。
Si and N4 were deposited again using the CVD method and processed using anisotropic dry etching to form a 50 nm thick layer of SL and N4 on the side walls of the Si pillars.
A layer 46 is formed (FIG. 4(d)). Using this Si3N4 layer 46 and Si, N4 layer 43 as an oxidation-resistant mask, Sj
The substrate surface is oxidized to form a Sio layer 47 approximately 200 nm thick.
(Fig. 4(e)).

Si、N4層46を例えば熱リン酸を用いて除去した後
、Si柱下部のSi表面にリン拡散法を用いてn+不純
物層15を形成する(第4図(f))。このn+不純物
層は容量の電荷蓄積電極となる。n4″不純物層15表
面を酸化して10nm厚みの8102層49を形成した
後、n ”poly S iをCVD法で埋積し、約2
1Mの深さまで等方性エツチングすることによって容量
のプレート電極16となるn”poly S i層を形
成する(第4図(g))。Si、N4層43.45を耐
酸化マスクとしてSi柱を保護しながら、n ”pol
ySi表面を酸化し200nm厚みのSi02層50を
形成する(第4図(h))。SL、N4層45を例えば
熱リン酸を用いて除去した後、Si柱上部の側壁を酸化
し、縦型MQSトランジスタのゲート酸化膜用Sio2
層51を15nmの厚さに形成し、さらにn”poly
SiをCVD法を用いて被着し、異方性ドライエツチン
グを用いてSi柱側壁にゲート電極14となるn ”p
oly S i層を形成する(第4図(i))。Si柱
表面のSi、N4層43を熱リン酸を用いて除去した後
酸化し、約10nm厚みのSio2層52を形成し、さ
らにイオン打ち込み法でヒ素を打ち込みn+不純物層1
7を形成する(第4図(j))。最後にCVD法により
Sio、層12を形成し、コンタクト穴53を形成した
後、データ線用の配線18を形成することによって、第
1図の第1の実施例と等価な半導体記憶装置が形成でき
る(第4図(k))。
After removing the Si, N4 layer 46 using, for example, hot phosphoric acid, an n+ impurity layer 15 is formed on the Si surface below the Si pillar by using a phosphorus diffusion method (FIG. 4(f)). This n+ impurity layer becomes a charge storage electrode of the capacitor. After oxidizing the surface of the n4'' impurity layer 15 to form an 8102 layer 49 with a thickness of 10 nm, n'' poly Si was buried by the CVD method to form a layer of about 2
By isotropically etching to a depth of 1M, an n"poly Si layer that will become the plate electrode 16 of the capacitor is formed (Fig. 4 (g)). Using the Si, N4 layer 43.45 as an oxidation-resistant mask, a Si pillar is formed. while protecting n”pol
The ySi surface is oxidized to form a 200 nm thick Si02 layer 50 (FIG. 4(h)). After removing the SL and N4 layers 45 using, for example, hot phosphoric acid, the side walls of the upper part of the Si pillars are oxidized to form an SiO2 layer for the gate oxide film of the vertical MQS transistor.
The layer 51 is formed to a thickness of 15 nm, and further
Si is deposited using the CVD method, and anisotropic dry etching is used to form an n ” p layer, which will become the gate electrode 14, on the side wall of the Si pillar.
An olySi layer is formed (FIG. 4(i)). The Si and N4 layers 43 on the surface of the Si pillars are removed using hot phosphoric acid and then oxidized to form a SiO2 layer 52 with a thickness of about 10 nm, and then arsenic is implanted by ion implantation to form the n+ impurity layer 1.
7 (Fig. 4 (j)). Finally, a Sio layer 12 is formed by the CVD method, a contact hole 53 is formed, and a data line wiring 18 is formed to form a semiconductor memory device equivalent to the first embodiment shown in FIG. It is possible (Fig. 4(k)).

第6図は本発明のもう1つの実施例を示している。この
例は、第1図の実施例の構造に、p+不純物層61を加
えた構造を示している。このp+不純物層61は、隣接
するSi柱間にリーク電流が流れることを防止するため
に設けたものである。もちろんp+不純物層がSi柱下
部のSi基板表面全体を覆っていても動作上何ら障害と
はならない。
FIG. 6 shows another embodiment of the invention. This example shows a structure in which a p+ impurity layer 61 is added to the structure of the embodiment shown in FIG. This p+ impurity layer 61 is provided to prevent leakage current from flowing between adjacent Si pillars. Of course, even if the p+ impurity layer covers the entire surface of the Si substrate at the bottom of the Si pillars, it will not cause any problem in operation.

α線入射によって基板内に発生した電子に対するバリア
効果という観点からは、Si柱下部の基板表面全体にp
4不純物層が形成していた方が好ましい。
From the viewpoint of barrier effect against electrons generated in the substrate due to the incidence of α-rays, p
It is preferable that four impurity layers be formed.

第7図に示したもう1つの実施例は、これら隣接セル間
リークやα線入射で発生した電子による誤動作を原理的
に防止することのできる構造である。すなわち、Si柱
をSi02層71でp型Si基板11から絶縁しており
、セル間リークやα線の問題がなくなる。
Another embodiment shown in FIG. 7 has a structure that can theoretically prevent malfunctions due to leakage between adjacent cells and electrons generated by the incidence of α rays. That is, the Si pillars are insulated from the p-type Si substrate 11 by the Si02 layer 71, eliminating the problems of inter-cell leakage and alpha rays.

第8図は第1図実施例中の縦型M工Sトランジスタのカ
ットオフ特性を改善できる構造の実施例を示している。
FIG. 8 shows an embodiment of a structure capable of improving the cut-off characteristics of the vertical M/S transistor in the embodiment of FIG.

Si柱上部の側壁にくびれ81を形成することによって
、上から見たSi柱柱面面積局所的にせばめている。こ
のため、ゲート電極14の電界によってSi柱内に形成
される空乏層幅が薄くても、容易にトランジスタをカッ
トオフの状態にすることができる。
By forming a constriction 81 in the side wall of the upper part of the Si column, the surface area of the Si column viewed from above is locally narrowed. Therefore, even if the width of the depletion layer formed in the Si pillar by the electric field of the gate electrode 14 is thin, the transistor can be easily brought into the cut-off state.

本発明実施例では、n型不純物を有するメモリセルの例
について説明したが、p型不純物を有する反対導電型の
メモリセルであっても同様の構造で同様の効果を実現で
きることはいうまでもない。
In the embodiments of the present invention, an example of a memory cell having an n-type impurity has been described, but it goes without saying that the same effect can be achieved with a similar structure even for a memory cell of the opposite conductivity type having a p-type impurity. .

〔発明の効果〕   ″ 本発明によれば、Si柱の下部に形成された蓄積電極(
n“不純物層)に正電荷が蓄積し、この電荷によって、
n+不純物層に囲まれたSi柱が全て空乏化されても、
Si柱下部のトランジスタの特性は影響されない。すな
わち蓄積電荷の有無によらず安定なメモリ動作を実現す
る効果がある。
[Effects of the Invention] ″ According to the present invention, the storage electrode (
Positive charges are accumulated in the n "impurity layer), and due to this charge,
Even if all the Si pillars surrounded by the n+ impurity layer are depleted,
The characteristics of the transistor under the Si pillar are not affected. In other words, there is an effect of realizing stable memory operation regardless of the presence or absence of accumulated charge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体記憶装置の断面図、
第2図は従来°の半導体記憶装置の断面図、第3図は従
来の半導体記憶装置の動作を説明する説明図、第4図は
第1図に示した半導体記憶装置の製造工程を示す工程図
、第5図は第1図に示した半導体記憶装置の動作を説明
する説明図、第6図、第7図及び第8図はそれぞれ本発
明の他の実施例の半導体記憶装置の断面図である。 11・・・p型Si基板   12・・・絶縁膜13・
・・n型不純物層   14・・・ゲート電極15.1
7・・・n+不純物層 16・・・電極18・・・配線
       21・・・p”si基板22・・・島状
領域     23.24・・・n+不純物層31・・
・空乏層      43.45.46・・・Si、N
、層47.49.50.51.52・・・SiO□層5
3・・・コンタクト穴   54・・・空乏層61・・
・pゝ不純物層   71・・・Sin、層81・・・
くびれ 代理人弁理士  中 村 純之助 第1図 第2図 第3図 第4図 第4図 第4図 第4図 第4図 1b +47−−− Sノ゛θ2 +48−m−コシ22F穴 +49−m−ρど1チ4) 第4図 第5図 第6図 第7図 第8図
FIG. 1 is a cross-sectional view of a semiconductor memory device according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a conventional semiconductor memory device, FIG. 3 is an explanatory diagram explaining the operation of the conventional semiconductor memory device, and FIG. 4 is a process showing the manufacturing process of the semiconductor memory device shown in FIG. 1. 5 are explanatory diagrams for explaining the operation of the semiconductor memory device shown in FIG. 1, and FIGS. 6, 7, and 8 are sectional views of semiconductor memory devices according to other embodiments of the present invention, respectively. It is. 11...p-type Si substrate 12...insulating film 13.
...N-type impurity layer 14...Gate electrode 15.1
7...n+ impurity layer 16...electrode 18...wiring 21...p"si substrate 22...island region 23.24...n+ impurity layer 31...
・Depletion layer 43.45.46...Si, N
, layer 47.49.50.51.52...SiO□ layer 5
3... Contact hole 54... Depletion layer 61...
・P impurity layer 71...Sin, layer 81...
Constriction Agent Patent Attorney Junnosuke Nakamura Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 4 Fig. 4 Fig. 4 Fig. 4 Fig. 4 Fig. 4 Fig. 4 Fig. 1b m-ρd1chi4) Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、半導体基板表面に、第1導電型の不純物を含む半導
体柱を有し、該半導体柱に少なくともスイッチング素子
と容量とを配置した半導体記憶装置において、上記スイ
ッチング素子は高濃度の第1導電型であるソース電極又
はドレイン電極を有し、基板に実質的に垂直に設けたス
イッチング素子であることを特徴とする半導体記憶装置
。 2、上記半導体基板と上記半導体柱との間に一絶縁膜を
備え、両者が電気的に絶縁されている請求項1記載の半
導体記憶装置。 3、上記半導体柱上部側壁の少なくとも一部に凹部を備
え、該凹部の少なくとも一部を含む半導体柱上部側壁表
面上に絶縁膜を介してゲート電極を有することを特徴と
する請求項1記載の半導体記憶装置。 4、上記スイッチング素子は絶縁ゲート型電界効果トラ
ンジスタである請求項1記載の半導体記憶装置。
[Claims] 1. A semiconductor memory device having a semiconductor pillar containing impurities of a first conductivity type on the surface of a semiconductor substrate, and in which at least a switching element and a capacitor are disposed on the semiconductor pillar, wherein the switching element has a high 1. A semiconductor memory device comprising a switching element having a source electrode or a drain electrode of a first conductivity type and provided substantially perpendicular to a substrate. 2. The semiconductor memory device according to claim 1, further comprising an insulating film between the semiconductor substrate and the semiconductor pillar, so that the two are electrically insulated. 3. The semiconductor pillar according to claim 1, wherein at least a part of the upper side wall of the semiconductor column has a recess, and a gate electrode is provided on the surface of the semiconductor pillar upper side wall including at least a part of the recess with an insulating film interposed therebetween. Semiconductor storage device. 4. The semiconductor memory device according to claim 1, wherein the switching element is an insulated gate field effect transistor.
JP63137466A 1988-06-06 1988-06-06 Semiconductor storage device Pending JPH01307259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137466A JPH01307259A (en) 1988-06-06 1988-06-06 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137466A JPH01307259A (en) 1988-06-06 1988-06-06 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH01307259A true JPH01307259A (en) 1989-12-12

Family

ID=15199265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137466A Pending JPH01307259A (en) 1988-06-06 1988-06-06 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH01307259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078741A (en) * 2003-09-02 2005-03-24 Renesas Technology Corp Semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078741A (en) * 2003-09-02 2005-03-24 Renesas Technology Corp Semiconductor memory

Similar Documents

Publication Publication Date Title
EP0164829B1 (en) Semiconductor memory device and method of manufacturing the same
KR900000207B1 (en) Semiconductor memory device with trench surrounding each memory cell
US4985718A (en) Semiconductor memory device of one transistor-one capacitor memory cell type
US20080044959A1 (en) Body-contacted semiconductor structures and methods of fabricating such body-contacted semiconductor structures
KR0133921B1 (en) Semiconductor device
US5047815A (en) Semiconductor memory device having a trench-stacked capacitor
JPH08250677A (en) Semiconductor memory device and its fabrication method
JPH0648719B2 (en) Semiconductor memory device
JP2941039B2 (en) Method for manufacturing semiconductor memory device
US5066609A (en) Method of manufacturing a semiconductor device including a trench capacitor
JPS63281457A (en) Semiconductor memory
KR100566411B1 (en) Semiconductor memory device and manufacturing method
JPH03268356A (en) Formation of contact on wall extending to board
JPH01307259A (en) Semiconductor storage device
US5065215A (en) Semiconductor memory cell and method of manufacturing the same
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JPH077823B2 (en) Semiconductor integrated circuit device
JPH03205868A (en) Mis type semiconductor memory
KR970000227B1 (en) Semiconductor memory device and method for producing the same
JPS62213273A (en) Dynamic random access memory
JPH0336309B2 (en)
JPS6058662A (en) Memory device for temporary storage of charge
JPH1174475A (en) Semiconductor integrated circuit device and its manufacture
JPS63229745A (en) Dynamic random access memory device
JPH0744274B2 (en) Semiconductor device and manufacturing method thereof