JPH01306543A - Wire for dot printer and its manufacture - Google Patents

Wire for dot printer and its manufacture

Info

Publication number
JPH01306543A
JPH01306543A JP13676988A JP13676988A JPH01306543A JP H01306543 A JPH01306543 A JP H01306543A JP 13676988 A JP13676988 A JP 13676988A JP 13676988 A JP13676988 A JP 13676988A JP H01306543 A JPH01306543 A JP H01306543A
Authority
JP
Japan
Prior art keywords
wire
weight
less
parts
dot printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13676988A
Other languages
Japanese (ja)
Inventor
Yoichi Mochida
洋一 持田
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13676988A priority Critical patent/JPH01306543A/en
Publication of JPH01306543A publication Critical patent/JPH01306543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Impact Printers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title wire at low cost by adding the hard fine grains of TiN, VC, etc., to high-carbon alloy iron powder having specific compsn., kneading the mixture with a specific organic binder, thereafter extruding it into the wire shape, to debindering and to vacuum sintering. CONSTITUTION:5-15wt.% TiN as hard fine grains having <=3mum grain size is, independently or in the compound with the fine grains of VC, added to the fine powder having 1-10mum grain size of high-carbon high alloy iron contg. the compsn. constituted of, by weight, 2.5-3.1% C, <2.0% Si, <1.5% Mn, 3-10% Cr, >3.0% W, >3.0% Mo (where 20-30% W+2Mo is regulated), 2-12% V, 2-12% Co and the balance Fe, and they are mixed. An organic binder such as methylcellulose and a water-soluble binder contg. 1.0-10wt.pts. glycerin, wax emulsion, stearic acid emulsion, etc., are kneaded into 100wt.pts. above mixture. The resultant is extruded into the bar shape or wire shape, is debindered, is thereafter sintered in vacuum and is furthermore subjected to wire drawing, by which the wire for a dot printer can be manufactured by a simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ドツトプリンタ用ワイヤおよびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a dot printer wire and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ドツトプリンタ用ワイヤには、最近粉末高速度工具鋼が
広く使われている。そしてその製造方法は、原料粉末を
キャンニングし熱間静水圧プレス(以下HIPと記す)
で焼結圧密化した後、鍛造。
Recently, powdered high-speed tool steel has been widely used for dot printer wire. The manufacturing method is to can the raw material powder and use hot isostatic pressing (hereinafter referred to as HIP).
After being sintered and consolidated, it is forged.

圧延により、例えば直径6nm程度の丸線材とし。By rolling, it is made into a round wire rod with a diameter of about 6 nm, for example.

これを多数回の伸線とこれらの伸線工程間に入れた焼鈍
工程とを繰り返すことにより、目的とするφ0.3mm
程度まで加工を行うものである。
By repeating this many times of wire drawing and an annealing step between these wire drawing steps, the desired diameter of 0.3 mm is achieved.
It is processed to a certain degree.

一方、金属粉末のニアネソトシエイプ技術として、金属
粉末にある種のバインダを混入し可塑性混練体とした後
、押出成形−焼結法にて細線を作る技術を本発明者らは
開発した(特願昭60−168+60吟)。
On the other hand, the present inventors have developed a technique for forming thin wires by mixing a certain type of binder into metal powder to form a plastic kneaded body using an extrusion molding and sintering method ( Special application 1986-168 + 60 Gin).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のキャンニング−HI P法によるドツトプリンタ
用ワイヤの製造方法では、原料となる金属粉末から最終
製品を仕上げるまでに、多くの加工工程を必要とすると
いう問題点があり、また使用される金属は、塑性加工が
容易な材質に限定され、十分な要求性能を与えるもので
はなかった。
The conventional manufacturing method of wire for dot printers using the canning-HIP method has the problem that many processing steps are required from raw metal powder to finishing the final product, and the metal used is However, it was limited to materials that could be easily plastically worked, and did not provide sufficient required performance.

本発明の目的は、金属粉末の押出成形技術を応用し、よ
り高い要求性能を満たすドツトプリンタ用ワイヤおよび
これらワイヤを幅広い材質にわたって安価に製造する方
法を提供することである。
An object of the present invention is to provide a dot printer wire that satisfies higher performance requirements by applying metal powder extrusion technology, and a method for manufacturing these wires from a wide range of materials at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の請求項1は従来のキャンニング−HI P法で
は、その被加工性の不足から製造が困難または不可能な
程度に高合金化し、もって優れた耐摩耗性等の要求特性
を与えられたドツトプリンタ用ワイヤである。すなわち
、合金元素として重量比で少なくとも、C2,5〜3.
1%、Si2%以下、Mn1.5%以下、Cr 3〜1
05、W3%以上、Mo3%以上、但しW + 2 M
 o 20−305、 V 2−12%、Co2−12
%を含有する雅加工性高耐摩耗性高合金高速度工具鋼ま
たはこれにさらに別添加の硬質微粒子の重量比で2〜1
2%を均一に分散した材料でなることを特徴とするドツ
トプリンタ用ワイヤである。
Claim 1 of the present invention is that the conventional canning-HIP method is capable of producing a highly alloyed material that is difficult or impossible to manufacture due to its insufficient workability, thereby providing required properties such as excellent wear resistance. This is a dot printer wire. That is, the alloying element contains at least C2.5 to C3.
1%, Si 2% or less, Mn 1.5% or less, Cr 3-1
05, W3% or more, Mo3% or more, however, W + 2 M
o 20-305, V 2-12%, Co2-12
% of machinability, high wear resistance, high alloy high speed tool steel, or additional hard fine particles added thereto, at a weight ratio of 2 to 1.
This wire for dot printers is characterized by being made of a material in which 2% is uniformly dispersed.

本発明の請求項3ないし6は、粒径lOμ01以下の合
金鋼粉末またはこれにさらに硬質微粒子を添加した原料
粉末に有機バインダを混合して可塑性混練体とし、これ
を押出成形法により、棒または線状に成形した後該成形
体を脱バインダおよび真空焼結し実質的に真密度化し、
さらに引抜等の塑性加工を加えることを特徴とするドツ
トプリンタ用ワイヤの製造方法である。
Claims 3 to 6 of the present invention provide a plastic kneaded body by mixing an organic binder with an alloy steel powder having a particle size of 1Oμ01 or less or a raw material powder to which hard fine particles are added, and forming the plastic kneaded body into a rod or a plastic kneaded body by an extrusion method. After forming into a linear shape, the formed body is removed from the binder and vacuum sintered to substantially achieve true density,
This method of manufacturing wire for a dot printer is characterized by further adding plastic working such as drawing.

本発明は前記出願の技術をドツトプリンタ用ワイヤ、す
なわち高耐摩耗性したがって高硬度が要求され、かつ直
径約0 、311101と細く、折損に対する靭性値お
よびその信頼性が特に要求される用途に適するようさら
に改良したものである。
The present invention applies the technique of the above application to a wire for dot printers, which requires high abrasion resistance and hence high hardness, and is thin in diameter (approximately 0.31110 mm), and is suitable for applications where toughness against breakage and reliability are particularly required. This is a further improvement.

超硬合金製ドツトプリンタ用ワイヤは、押出成形および
焼結によって製造され、特に高い耐摩耗性を要求される
場合に用いられるが、該材料は引抜、伸線等の塑性加工
が不可能または非常に困難である。そのため、ワイヤ径
の仕上は研磨以外に適当な方法がなく、かっこの研磨は
ワイヤ径が約0.3mmφと非常に細いことおよび材料
が脆いため非常な注意が必要であり、勢い高価なものと
なる。
Cemented carbide wire for dot printers is manufactured by extrusion molding and sintering, and is used when particularly high wear resistance is required. Have difficulty. Therefore, there is no suitable method for finishing the wire diameter other than polishing, and polishing the brackets requires extreme care because the wire diameter is very thin at approximately 0.3 mmφ and the material is brittle, and it is expensive. Become.

本発明のワイヤは使用状態では焼入焼もどしの熱処理に
より、前述の超硬合金にせまる硬さと耐摩耗性を与える
ことが可能な反面、その製造においては焼鈍状態で行な
うことにより、引抜その他の塑性加工が可能であり、特
に引抜加工を行なうことにより高い直径精度を与えるこ
とができ、ドツトプリンタ用ワイヤの製造上超硬合金に
比し非常に有利である。
In use, the wire of the present invention can be heat-treated by quenching and tempering to give it hardness and wear resistance that rival those of the cemented carbide mentioned above, but in manufacturing, it is manufactured in an annealed state, so it cannot be used for drawing or other purposes. It can be plastically worked, and particularly by drawing, it can provide high diameter accuracy, which is very advantageous compared to cemented carbide in the production of wires for dot printers.

本発明の第1は前記のように、押出および焼結により小
径ワイヤを直接得、これに焼鈍状態で引抜等の最小限度
の塑性加工を与えることが可能なものである。このため
、多少の被加工性の低下は許容され、したがって製品の
性能向上のため高合金化したものであり、従来このよう
な高合金材は1−ットプリンタ用ワイヤとして実現され
ていなかった。
The first aspect of the present invention is that, as described above, it is possible to directly obtain a small diameter wire by extrusion and sintering, and to apply a minimum amount of plastic working such as drawing to this wire in an annealed state. For this reason, some deterioration in workability is acceptable, and therefore high alloy materials are used to improve the performance of the product. Conventionally, such high alloy materials have not been realized as wires for 1-t printers.

本発明の製法に用いる合金鋼粉末は、粒径10μm以下
とする。粒径が10μmを越えると焼結性が低下し、小
径である製品の耐折損性を低下する。
The alloy steel powder used in the manufacturing method of the present invention has a particle size of 10 μm or less. If the particle size exceeds 10 μm, the sintering properties will decrease, and the breakage resistance of small-diameter products will decrease.

また脱バインダ性を確保するために合金鋼粉末の粒径は
1μm以上とすることが望ましい。
Further, in order to ensure binder removal properties, it is desirable that the particle size of the alloy steel powder be 1 μm or more.

以下に各合金元素の添加理由および数値限定理由を述べ
る。
The reason for adding each alloying element and the reason for limiting the numerical value will be described below.

本発明のワイヤ材質は、製品状態の硬さが1iRc70
−73(I11/幻1030−1220)の高硬度が得
られ、併せて炭化物が硬化状態で30vo1%以上存在
し、高硬度と併せて炭化物による耐摩耗性も極めて高く
することを可能とするものである。
The wire material of the present invention has a hardness of 1iRc70 in the product state.
A high hardness of -73 (I11/Gen 1030-1220) can be obtained, and in addition, carbide exists in a hardened state at 30 VO 1% or more, and in addition to high hardness, it is possible to achieve extremely high wear resistance due to carbide. It is.

このためには、炭化物形成元素のうちW 3%以上、M
o3%以上、W + 2 M o 20−305、V 
2−12%含有することを必要とする。WとMoはCと
結合し、M、C型の炭化物を形成し、一部は基地に固溶
し、焼もどし硬さを上昇させると共に、他は炭化物とし
て残留して耐摩耗性を付与する。W3%以上。
For this purpose, W 3% or more, M
o3% or more, W + 2 Mo 20-305, V
It is necessary to contain 2-12%. W and Mo combine with C to form M and C type carbides, some of which solidly dissolve in the matrix and increase tempering hardness, while others remain as carbides and provide wear resistance. . W3% or more.

Mo3%以上、W+2Mo205以上ないとHRC70
以上の焼もどし硬さが得られず、またW + 2 M 
oが305を越えると炭化物の形状が不定形化し、必要
な機械的性質が得られなくなる。この時生成するM6C
型炭化物硬さを上昇させるためには、Wは7〜12%、
Moは5〜9%の範囲が望ましい。
HRC70 unless Mo3% or more, W+2Mo205 or more
It is not possible to obtain a tempering hardness higher than W + 2 M
If o exceeds 305, the shape of the carbide becomes amorphous, making it impossible to obtain the necessary mechanical properties. M6C generated at this time
In order to increase the hardness of the type carbide, W is 7 to 12%,
Mo is preferably in a range of 5 to 9%.

■は炭素と結合して硬質のMC型炭化物を形成する。こ
の炭化物は焼もどし硬さの向上にはあまり寄与しないが
、耐摩耗性の向上には著しく寄与する。十分な耐摩耗性
を得るには、■として最低2%は必要で12%を越える
と材料が脆化する。また望ましくは4%以上である。
(2) combines with carbon to form a hard MC type carbide. Although this carbide does not contribute much to improving tempering hardness, it significantly contributes to improving wear resistance. In order to obtain sufficient wear resistance, a minimum of 2% is required as (2), and if it exceeds 12%, the material becomes brittle. Moreover, it is desirably 4% or more.

Crは3〜105を必要とする。Crは基地中におよび
炭化物として存在するが、基地に固溶して焼入性を向上
させる効果が大きい。また、ドラ(−ワイヤの場合、イ
ンクに含有される化学物質との腐食摩耗が大きく、でき
るだけ多量添加し耐食性を与える必要がある。しかし、
105を越える添加では焼もどし硬さを低下させ、3%
未満では焼入性が得られないため3〜105の範囲とす
る。通常7%以下で十分である。
Cr requires 3 to 105. Cr exists in the matrix and as a carbide, but it is highly effective in improving hardenability by being dissolved in the matrix. In addition, in the case of screwdriver (-wire), the corrosion and abrasion caused by the chemical substances contained in the ink is large, so it is necessary to add as much as possible to provide corrosion resistance.However,
Addition of more than 105 lowers the tempering hardness by 3%.
If it is less than 3, hardenability cannot be obtained, so it is set in the range of 3 to 105. Usually 7% or less is sufficient.

CはCr、W、Mo、Vと結合し、炭化物を形成するの
に必要な理論的炭素量およびマトリックス中に固溶する
量を添加する必要がある。本発明組成では、2.5〜3
.1%の添加が必要である。
C combines with Cr, W, Mo, and V, and it is necessary to add the theoretical amount of carbon required to form a carbide and the amount of solid solution in the matrix. In the composition of the present invention, 2.5 to 3
.. 1% addition is required.

Coは主として基地に固溶して焼もどし硬さの向上に寄
与する。11 RC70以上の硬さを得るには少なくと
も2%は必要で4%以上が望ましい。
Co mainly dissolves in the matrix and contributes to improving the tempering hardness. 11 To obtain a hardness of RC70 or higher, at least 2% is necessary, and 4% or more is desirable.

一方、12%を越えて添加しても焼もどし硬さの向上に
添加量に見合う効果がない。
On the other hand, even if it is added in an amount exceeding 12%, there is no effect commensurate with the amount added in improving tempering hardness.

Siは脱酸元素として2%以下で添加する。通常は1z
以下の添加でよいが、さらに増加して添加すると炭化物
の析出反応を促進させることができる。
Si is added as a deoxidizing element in an amount of 2% or less. Usually 1z
The following amount of addition may be sufficient, but if the addition is further increased, the carbide precipitation reaction can be promoted.

またSiは基地を強化してドツトプリンタ用ワイヤの降
伏強度を向上させる効果、疲労限を高めるという効果も
ある。しかし多量の添加は靭性の劣化を招きドツトプリ
ンタ用ワイヤ折損の原因になるので2%以下に限定した
In addition, Si has the effect of strengthening the base, improving the yield strength of the wire for dot printers, and increasing the fatigue limit. However, addition of a large amount leads to deterioration of toughness and causes wire breakage for dot printers, so it is limited to 2% or less.

Mnは主に脱酸剤および脱硫剤として添加する。Mn is mainly added as a deoxidizing agent and a desulfurizing agent.

但し、多量に添加すると靭性が劣化したり、加工性が悪
くなるので1.3以下にすることが必要である。
However, if added in a large amount, the toughness will deteriorate and the workability will deteriorate, so it is necessary to limit the amount to 1.3 or less.

本発明のドツトプリンタ用ワイヤは、上記の元素以外に
Ni2%以下、N1%以下等を適宜加えてもよい。この
うち、Nは基地の硬さを高める作用とMC炭化物中に固
溶してMCN型の炭窒化物を形成して耐溶着性を高める
作用がある。しかし工業的に含有できる量は、はぼ1%
までであるので1%に限定した。なお、高速度工具鋼に
おいて、通常N O,05%以下は不純物として含有さ
れる。
In addition to the above-mentioned elements, the dot printer wire of the present invention may contain 2% or less Ni, 1% or less N, etc., as appropriate. Of these, N has the effect of increasing the hardness of the matrix and the effect of forming a solid solution in the MC carbide to form an MCN type carbonitride, thereby increasing the welding resistance. However, the amount that can be contained industrially is only 1%.
Therefore, it was limited to 1%. In addition, in high-speed tool steel, normally 0.05% or less of NO is contained as an impurity.

また、押出成形の原料として硬質の化合物微粒子を添加
することが有効である。以下にこのうちやや得意な作用
を有するTiNおよびVCについて述べる。
It is also effective to add hard compound fine particles as a raw material for extrusion molding. Below, TiN and VC, which have somewhat better effects, will be described.

T i Nは合金粉末とは別個に単独粒子として混合添
加する。該化合物は、焼結中にMC型炭化物と反応し、
大部分は(Ti、V)(CN)の形態で存在し、耐焼付
性の向上と焼結組織の微細化に効果がある。5%未満で
はこれらの効果が少なく、15%を越えて添加すると材
料を脆化させやすい。
T i N is mixed and added as a single particle separately from the alloy powder. The compound reacts with the MC type carbide during sintering,
Most of it exists in the form of (Ti, V) (CN), which is effective in improving seizure resistance and refining the sintered structure. If it is less than 5%, these effects will be small, and if it is added in excess of 15%, the material will tend to become brittle.

焼結後の炭窒化物粒子は、原料粉末の粒径よりは微細化
できない。したがって、1” i Nの粒子径を3μm
以下に規制する必要がある。3μmを越えると粗大な炭
窒化物粒子を生成し、機械的性質を劣化させる。
The carbonitride particles after sintering cannot be made finer than the particle size of the raw material powder. Therefore, the particle size of 1" i N is set to 3 μm.
It is necessary to regulate the following. When it exceeds 3 μm, coarse carbonitride particles are generated, which deteriorates mechanical properties.

VCはTiNと反応して主として(Ti、 V)(CN
)となる。前述のように、鋼中のMC型炭化物ともT 
jNは反応するが、予めVCも2重量部以下共同添加す
ることにより、TiNの焼結性が著しく向上するので望
ましい。
VC reacts with TiN to form mainly (Ti, V) (CN
). As mentioned above, MC type carbide in steel is also T.
Although jN reacts, it is desirable to add VC in an amount of 2 parts by weight or less together in advance, since this significantly improves the sinterability of TiN.

また他の望ましい硬質微粒子としては、Ti、V。Other desirable hard particles include Ti and V.

Zr、 Nb、 Hf、 T’aの窒化物、炭化物、炭
窒化物があげられ、これらの1種または2種以上を重量
比で2〜105を添加することが望ましい。2%未hη
では処理に見合う効果が得られず、12%を越えると効
果が飽和しさらに被剛性、靭性の低下が甚だしくなる。
Examples include nitrides, carbides, and carbonitrides of Zr, Nb, Hf, and T'a, and it is desirable to add one or more of these in a weight ratio of 2 to 105. 2% less hη
If it exceeds 12%, the effect will be saturated and the stiffness and toughness will be significantly reduced.

次に本発明の第2におけるバインダ等の望ましい添加範
囲を説明する。
Next, the desirable addition range of the binder and the like in the second aspect of the present invention will be explained.

本発明において、水溶性有機バインダは、原料粉末10
0重量部に対し1.0〜10重量部とすることが望まし
い。1.0重量部未満では、十分な成形性およびグリー
ン強度が得られず、また10重量部を越えるとグリーン
強度は飽和して経済性を低下し、また脱バインダ性、脱
バインダ後の密度を低下する。具体的にはメチルセルロ
ースが望ましく、この場合1.0〜7.0重量部とする
ことが望ましい。
In the present invention, the water-soluble organic binder contains raw material powder 10
It is desirable that the amount is 1.0 to 10 parts by weight relative to 0 parts by weight. If it is less than 1.0 parts by weight, sufficient moldability and green strength cannot be obtained, and if it exceeds 10 parts by weight, the green strength is saturated and economical efficiency is lowered, and the binder removal property and the density after binder removal are reduced. descend. Specifically, methylcellulose is desirable, and in this case, it is desirable to use 1.0 to 7.0 parts by weight.

水は5.0〜15.0重量部とすることが望ましい。It is desirable that the amount of water be 5.0 to 15.0 parts by weight.

5.0重量部未満では成形に必要な流動性が得られず、
一方15.0重量部を越えると保形性がなくなり成形不
可能となる。グリセリンは必要ならば混練体の可塑性を
良くするため添加するが、9.0重量部を越えて添加す
ると成形性が低下する。ワックスエマルジョン、ステア
リン酸エマルジョンも必要ならば、分散剤、可塑剤とし
て添加することにより、成形性が良好となるが、それぞ
れ5重量部を越えて添加すると脱バインダ性、脱バイン
ダ後の密度を低下する。
If it is less than 5.0 parts by weight, the fluidity necessary for molding cannot be obtained,
On the other hand, if it exceeds 15.0 parts by weight, the shape retention property is lost and molding becomes impossible. Glycerin may be added if necessary to improve the plasticity of the kneaded product, but if it is added in excess of 9.0 parts by weight, moldability will decrease. If necessary, wax emulsion and stearic acid emulsion can be added as dispersants and plasticizers to improve moldability, but if they are added in excess of 5 parts by weight, the binder removal properties and density after binder removal will decrease. do.

〔実施例〕〔Example〕

実施例I C1,305、Si 0.52%、Mn0.46%、C
r 4.2%、W6.5%、Mo5.2%、 V 3.
1%、Co 7.9%、残部鉄および不可避不純物から
なる水アトマイズ予備合金粉末を作成した。平均粒径は
30μ璽で02含有量は2000ρρmであった。該粉
末をアトライタ中で粉砕した後分級し、平均粒径5μm
(見掛密度405)の粉末を得た。この粉末100重量
部に対し黒鉛粉末を0.2重量部、メチルセルロース(
市販品名5M400)を4.0重量部添加し、V型ブレ
ンダで12時間混合した。
Example I C1,305, Si 0.52%, Mn 0.46%, C
r 4.2%, W6.5%, Mo5.2%, V3.
A water atomized pre-alloyed powder consisting of 1% Co, 7.9% Co, the balance iron and unavoidable impurities was prepared. The average particle size was 30μm and the 02 content was 2000ρρm. The powder was crushed in an attritor and then classified to have an average particle size of 5 μm.
A powder with an apparent density of 405 was obtained. For 100 parts by weight of this powder, 0.2 parts by weight of graphite powder and methylcellulose (
4.0 parts by weight of commercial product name 5M400) was added and mixed for 12 hours using a V-type blender.

上記混合粉末に、水6.0重量部、ワックスエマルジョ
ン2.0重量部、ステアリン酸エマルジョン1.0重量
部、グリセリン1,0重量部を添加後、ヘンシェルミキ
サにて混合し、三本ロールミルに3回通して混練した。
After adding 6.0 parts by weight of water, 2.0 parts by weight of wax emulsion, 1.0 parts by weight of stearic acid emulsion, and 1.0 parts by weight of glycerin to the above mixed powder, they were mixed in a Henschel mixer, and then transferred to a three-roll mill. The mixture was kneaded three times.

この混練体を、スクリュ式押出機を用いてφ1.2の丸
棒状に成形した。成形体を80℃の熱風により12時間
乾燥した。成形体のグリーン密度は605であった。こ
の乾燥体を、H2雰囲気で50℃/llrの昇温速度で
600℃まで昇温し脱バインダを行なった後真空雰囲気
に切り換えて連続して、100°C/11rの速度で9
00℃まで昇温・保持した後冷却した。
This kneaded body was molded into a round bar shape of φ1.2 using a screw extruder. The molded body was dried with hot air at 80° C. for 12 hours. The green density of the molded body was 605. This dried body was heated to 600°C at a heating rate of 50°C/llr in an H2 atmosphere to remove the binder, then switched to a vacuum atmosphere and continuously heated at a rate of 100°C/11r for 9
The temperature was raised to and maintained at 00°C, and then cooled.

該脱バインダ体は、仮焼結状態となっており、取扱いに
十分な強度であり、C,02含有量はそれぞれC1,7
2%、0.5100ppmであった。
The binder-free body is in a pre-sintered state and has sufficient strength for handling, and the C and 02 contents are C1 and C7, respectively.
2%, 0.5100 ppm.

この脱バインダ体を10−’ torr、1250℃で
真空焼結した。焼結体はC1,29%、0 、50pp
11で、密度は8.01 g /fflで真密度となっ
た。
This binder-free body was vacuum sintered at 10-' torr and 1250°C. The sintered body is C1.29%, 0.50pp.
No. 11, the density was 8.01 g/ffl, which was the true density.

上記焼結体を表面研磨した後冷間伸線加工し。After the surface of the sintered body was polished, it was subjected to cold wire drawing.

φ0.30+mのドツトプリンタ用ワイヤ素材に仕上げ
た。
Finished as wire material for dot printers with a diameter of 0.30+m.

実施例2 C1,9%、Si 0.52%、 Mn 0.505、
Cr4.6%、W 10.2%、 Mo 8.05、V
 5.1%、Co 10.3%、残部鉄および不可避不
純物からなる水アトマイズ予備合金粉末を作成した。平
均粒径は25μ鵠で0□含有量は2500ppmであっ
た。該粉末を、振動ミルを使用し、8時間粉砕した後、
10μm以下に分級して、平均粒径7μ麿、見掛密度4
2%の粉末を得た。
Example 2 C1.9%, Si 0.52%, Mn 0.505,
Cr4.6%, W 10.2%, Mo 8.05, V
A water atomized pre-alloyed powder consisting of 5.1% Co, 10.3% Co, the balance iron and unavoidable impurities was prepared. The average particle size was 25 μm and the 0□ content was 2500 ppm. After grinding the powder for 8 hours using a vibrating mill,
Classified to 10μm or less, average particle size 7μm, apparent density 4
A 2% powder was obtained.

この粉末100重量部に対して黒鉛粉末を0.1重量部
、メチルセルロース(市販品名60Sh4000)を4
.0重量部添加し、■型ブレンダで12時間混合した。
For 100 parts by weight of this powder, 0.1 parts by weight of graphite powder and 4 parts by weight of methylcellulose (commercial product name 60Sh4000) were added.
.. 0 parts by weight was added and mixed for 12 hours using a ■ type blender.

上記混合粉末に、水8.0重量部、グリセリン1重量部
を添加後、ヘンシェルミキサにて混合し、連続ニーダ−
にて混練した。
After adding 8.0 parts by weight of water and 1 part by weight of glycerin to the above mixed powder, they were mixed in a Henschel mixer and then transferred to a continuous kneader.
It was kneaded.

上記混線体を、プランジャー式押出機を用いてφ0.6
mの丸棒状に成形し、実施例1と同様の方法で乾燥、脱
バインダ、焼結した。ここで脱バインダ体のC,O2含
有量はそれぞれC2,42%、025700ppmで焼
結体は、C1,94%、0242ppmとなった・ 上記焼結体にHIP処理を行なった。HI P後の密度
は8.09 g /cJで真密度であった。
The above mixed wire body was made into a φ0.6 piece using a plunger type extruder.
It was molded into a round bar shape of m in diameter, dried, binder removed, and sintered in the same manner as in Example 1. Here, the C and O2 contents of the binder-free body were C2.42% and 0.25700 ppm, respectively, and the sintered body had C1.94% and 0.242 ppm. The above sintered body was subjected to HIP treatment. The density after HIP was 8.09 g/cJ, which was the true density.

上記により得られたφ0.49mmの焼結体を引抜仕上
げ加工し、φ0.30nnのドットプリンタ用ワイヤ素
材を作った。
The sintered body with a diameter of 0.49 mm obtained above was subjected to drawing finishing to produce a wire material for a dot printer with a diameter of 0.30 nn.

実施例3 C2,98%、S i O,/15%−Mn 0.39
%、 Cr 4.5%。
Example 3 C2, 98%, S i O, /15%-Mn 0.39
%, Cr 4.5%.

W ]、00.05Mo8.2%、 V 8.2%、C
o 8.7%、残部鉄および不可避的不純物からなる水
アトマイズ予備合金粉末を作成した。平均粒径は20μ
mで02含有敏は3100ppmであった。該粉末をア
トライタ中で300rpmで5時間粉砕後IOμm以下
に分級したところ、平均粒径6μm、見掛密度41%の
粉末が得られた。この粉末100重量部に対して3μm
以下のTiN粉末9重量部、VC粉末1.0重量部、メ
チルセルロース(市販品名5M1500)を5重量部添
加しV型ブレンダで24時間混合した。
W], 00.05Mo8.2%, V8.2%, C
A water atomized prealloyed powder was prepared consisting of 8.7% o, the balance iron and unavoidable impurities. Average particle size is 20μ
The 02 content was 3100 ppm. The powder was crushed in an attritor at 300 rpm for 5 hours and then classified to IO μm or less, resulting in a powder with an average particle size of 6 μm and an apparent density of 41%. 3 μm for 100 parts by weight of this powder
The following 9 parts by weight of TiN powder, 1.0 parts by weight of VC powder, and 5 parts by weight of methylcellulose (commercial product name 5M1500) were added and mixed in a V-type blender for 24 hours.

上記混合粉末に、水7.5重量部、グリセリン0.5重
量部、ステアリン酸エマルジョン1.0重量部を添加後
、ヘンシェルミキサにて混合し、三本ロールミルに5回
通し混練した。
After adding 7.5 parts by weight of water, 0.5 parts by weight of glycerin, and 1.0 parts by weight of stearic acid emulsion to the above mixed powder, they were mixed in a Henschel mixer and kneaded by passing through a three-roll mill five times.

この混練体を、スクリュ式押出機を用いてφ0.4の丸
棒状に成形した。上記成形体を、真空中で乾燥後N2雰
囲気で100℃/firで500℃まで昇温し。
This kneaded body was molded into a round bar shape of φ0.4 using a screw extruder. After drying the molded body in vacuum, the temperature was raised to 500°C at 100°C/fir in an N2 atmosphere.

脱バインダを行なった。このバインダ体は、C3,31
%、0 、4800ppmであった。
The binder was removed. This binder body is C3,31
%, 0, 4800 ppm.

脱バインダ体を10−’ torr、1240℃で真空
焼結したところ、焼結体はφ0.32nmとなり、C2
,91%、0、521ppmで密度7.72 g /a
Jで真密度となった。
When the binder-free body was vacuum sintered at 10-' torr and 1240°C, the sintered body had a diameter of 0.32 nm and a C2
, 91%, 0, 521 ppm density 7.72 g/a
J is the true density.

上記φ0.32+aの焼結線材に仕上げ加工し、φ0.
30a+のドツトプリンタ用ワイヤを作った。
The above φ0.32+a sintered wire material is finished and φ0.32+a is finished.
I made wire for a 30a+ dot printer.

実施例4 実施例1.2.3により製造したドツトプリンタ用ワイ
ヤ素材と、実施例1と同じ成分の粉末高速度鋼を従来の
方法で、加工したドツトプリンタ用ワイヤ素材(従来材
)をそれぞれ適正条件で焼入焼もどし熱処理を行なった
後の特性値と超硬合金のそれとを比較して第1表に示す
Example 4 The dot printer wire material manufactured in Example 1.2.3 and the dot printer wire material (conventional material) processed by the conventional method using powdered high-speed steel with the same composition as in Example 1 were each processed under appropriate conditions. Table 1 shows a comparison of the characteristic values after quenching and tempering heat treatment with those of cemented carbide.

第1表 第1表から、実施例1,2.3はいずれも従来材と同等
以上の曲げ強度を有し、ドツトプリンタ用ワイヤとして
十分使用できることがわかる。
From Table 1, it can be seen that Examples 1 and 2.3 all have bending strengths equal to or higher than conventional materials, and can be used satisfactorily as wires for dot printers.

また実施例2,3は、硬さにおいて従来材をはるかに越
えるものであり、特に本願の第1発明である実施例3は
高硬度であり、高い耐摩耗性が期待できる。
In addition, Examples 2 and 3 far exceed conventional materials in hardness, and in particular Example 3, which is the first invention of the present application, has high hardness and can be expected to have high wear resistance.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1 合金元素として重量比で少なくともC 2.5〜3
.1%、Si2%以下、Mn1.5%以下、Cr3〜1
0%、W3%以上、Mo3%以上、但しW+2Mo20
〜30%、V2〜12%、Co2〜12%を含有する難
加工性高耐摩耗性高合金高速度工具鋼またはこれにさら
に別添加の硬質微粒子の重量比で2〜12%を均一に分
散した材料でなることを特徴とするドットプリンタ用ワ
イヤ。 2 重量比で、C2.5〜3.1%、Si2.05以下
、Mn1.5%以下、Cr3〜7%、W7%以上、Mo
5%以上、但しW+2Mo20〜30%、V4〜12%
、Co4〜12%、N1%以下、Ti化合物微粒子12
%以下からなる材料でなることを特徴とする請求項1記
載のドットプリンタ用ワイヤ。 3 粒径10μm以下の合金鋼粉末またはこれにさらに
硬質微粒子を添加した原料粉末に有機バインダを混合し
て可塑性混練体とし、これを押出成形法により棒または
線状に成形した後該成形体を脱バインダおよび真空焼結
し実質的に真密度化し、さらに引抜等の塑性加工を加え
ることを特徴とするドットプリンタ用ワイヤの製造方法
。 4 有機バインダは水溶性であり、原料粉末100重量
部に対し、水分を除くバインダ分は1.0〜10.0重
量部、水分は5.0〜15.0重量部であることを特徴
とする請求項3記載のドットプリンタ用ワイヤの製造方
法。 5 水分を除くバインダ分は、原料粉末100重量部に
対し、メチルセルロースの1.0〜7.0重量部または
必要によりこれに添加する可塑剤としてのグリセリン9
.0重量部以下、分散剤または滑材としてのワックスエ
マルジョン5重量部以下、ステアリン酸エマルジョン5
重量部以下の1種または2種以上でなることを特徴とす
る請求項4記載のドットプリンタ用ワイヤの製造方法。 6 硬質微粒子は、3μm以下のTiNを単独または3
μm以下のVCと複合で5〜15wt%とすることを特
徴とする請求項3、4または5記載のドットプリンタ用
ワイヤの製造方法。
[Claims] 1. At least C 2.5 to 3 in weight ratio as an alloying element
.. 1%, Si2% or less, Mn1.5% or less, Cr3-1
0%, W3% or more, Mo3% or more, however, W+2Mo20
Difficult-to-work, highly wear-resistant, high-alloy high-speed tool steel containing ~30%, V2 ~12%, and Co2 ~12%, or 2~12% by weight of hard fine particles added to it, uniformly dispersed. Wire for dot printers characterized by being made of a material made of 2 Weight ratio: C 2.5-3.1%, Si 2.05 or less, Mn 1.5% or less, Cr 3-7%, W 7% or more, Mo
5% or more, however, W+2Mo20-30%, V4-12%
, Co4-12%, N1% or less, Ti compound fine particles 12
The wire for a dot printer according to claim 1, characterized in that the wire is made of a material consisting of % or less. 3. Mix an organic binder with alloy steel powder with a grain size of 10 μm or less or a raw material powder with hard fine particles added thereto to form a plastic kneaded body, and after molding this into a rod or wire shape by extrusion molding, the molded body is A method for manufacturing a wire for a dot printer, which comprises removing the binder, vacuum sintering the wire to substantially achieve true density, and further adding plastic working such as drawing. 4. The organic binder is water-soluble, and the binder content excluding water is 1.0 to 10.0 parts by weight, and the water content is 5.0 to 15.0 parts by weight, relative to 100 parts by weight of the raw material powder. The method for manufacturing a dot printer wire according to claim 3. 5 The binder content excluding water is 1.0 to 7.0 parts by weight of methylcellulose or 9 parts of glycerin as a plasticizer added to this if necessary, per 100 parts by weight of the raw material powder.
.. 0 parts by weight or less, wax emulsion as a dispersant or lubricant, 5 parts by weight or less, stearic acid emulsion 5 parts by weight or less
5. The method for manufacturing a dot printer wire according to claim 4, characterized in that the wire is made of one or more kinds below the weight part. 6 Hard particles are TiN of 3 μm or less alone or 3
6. The method for manufacturing a wire for a dot printer according to claim 3, wherein the amount is 5 to 15 wt% in combination with VC of .mu.m or less.
JP13676988A 1988-06-03 1988-06-03 Wire for dot printer and its manufacture Pending JPH01306543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13676988A JPH01306543A (en) 1988-06-03 1988-06-03 Wire for dot printer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13676988A JPH01306543A (en) 1988-06-03 1988-06-03 Wire for dot printer and its manufacture

Publications (1)

Publication Number Publication Date
JPH01306543A true JPH01306543A (en) 1989-12-11

Family

ID=15183084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13676988A Pending JPH01306543A (en) 1988-06-03 1988-06-03 Wire for dot printer and its manufacture

Country Status (1)

Country Link
JP (1) JPH01306543A (en)

Similar Documents

Publication Publication Date Title
CN1084393C (en) Iron aluminide useful as electrical resistance heating element
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
JPH02145741A (en) High strength nitrogen-containing cermet and its manufacture
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JPH076011B2 (en) Method for producing high hardness and high toughness cemented carbide with excellent thermal conductivity
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JPS62278250A (en) Thread rolling dies made of dispersion-strengthened-type sintered alloy steel
JPH01306543A (en) Wire for dot printer and its manufacture
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH0586435A (en) Tool parts material having high corrosion resistance and high wear resistance
JPH05147916A (en) Production of fine tungsten-based carbide powder
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JPS62120401A (en) Production of sintered tool steel member
JPS62287041A (en) Production of high-alloy steel sintered material
JPH11124649A (en) Die parts made of tungsten carbide type cemented carbide
JP2015127455A (en) Powder high speed tool steel
JPH0751721B2 (en) Low alloy iron powder for sintering
JPS59197544A (en) Preparation of sintered high speed steel
JPH0754001A (en) Production of fine composite carbide powder for producing tungsten carbide base cemented carbide
JP3366696B2 (en) Manufacturing method of high strength cermet
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH05147917A (en) Production of fine tungsten-based carbide powder