JPH0130595B2 - - Google Patents

Info

Publication number
JPH0130595B2
JPH0130595B2 JP56088009A JP8800981A JPH0130595B2 JP H0130595 B2 JPH0130595 B2 JP H0130595B2 JP 56088009 A JP56088009 A JP 56088009A JP 8800981 A JP8800981 A JP 8800981A JP H0130595 B2 JPH0130595 B2 JP H0130595B2
Authority
JP
Japan
Prior art keywords
welding
voltage
current
value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56088009A
Other languages
English (en)
Other versions
JPS57202988A (en
Inventor
Shuji Nakada
Yoshio Kawaguchi
Susumu Aono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Avionics Co Ltd
Original Assignee
Nissan Motor Co Ltd
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Avionics Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56088009A priority Critical patent/JPS57202988A/ja
Priority to EP82901790A priority patent/EP0080514B1/en
Priority to DE8282901790T priority patent/DE3268006D1/de
Priority to US06/466,348 priority patent/US4503312A/en
Priority to PCT/JP1982/000222 priority patent/WO1982004413A1/ja
Publication of JPS57202988A publication Critical patent/JPS57202988A/ja
Publication of JPH0130595B2 publication Critical patent/JPH0130595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/255Monitoring devices using digital means the measured parameter being a force

Description

【発明の詳細な説明】 この発明は、抵抗溶接過程において、溶接個所
の状態に即した溶接条件の制御によつて、保証さ
れた品質の溶接を行うことのできる適応制御装置
に関する。
従来の抵抗溶接、例えばスポツト溶接において
は、一般に被溶接材間の接触状態は、電極加圧
力、電極チツプ先端の寸法や形状、電極の圧潰状
況、被溶接材の材質や加工状態などによつて大き
く左右される。したがつて、電極加圧力、溶接電
流、及び溶接時間を一定に保つても、一定の溶接
部品質は得られない。なお、ここで「電極加圧
力」とは被溶接材を挾む電極間の加圧力を云う。
このような問題に対処するため、従来から電極
間電圧方式、電極チツプ間抵抗方式、超音波方式
などの各種モニタ方式が考えられている。しか
し、これらのモニタ方式はそれぞれ適用範囲は異
なるが、いずれも溶接終了後において、その溶接
された部分の品質の可否をおおまかに判定し得る
にすぎず、その溶接された部分の品質を積極的に
保証するものではない。なお、ここで「溶接部の
品質」とは、溶接された個所に形成されるナゲツ
トの大きさ及び溶け込み率、それによつて得られ
る溶接部の引張り剪断強度等を意味する。したが
つて、従来の抵抗溶接装置や、各種モニタ装置を
併用しても、溶接部の品質不良が発生し、手直し
が必要となるばかりか、場合によつては製品を廃
棄しなければならなくなることもあつた。
そこで、近年このような難点を克服するものと
して、溶接電流通電中の被溶接材を挾む電極(ス
ポツト溶接の場合の電極チツプも含む)間の電圧
が、溶接部の品質と密接な関係を持つていること
に基づき、その電圧を予め良好な溶接部の品質が
得られるように設定した基準電圧曲線に倣つて変
化させるように、電極加圧力、あるいは電極加圧
力と溶接電流とを制御することによつて抵抗溶接
部の品質を溶接過程中において自動的に保証する
適応制御方法が提案されている。しかし、これら
の方法のみでは溶接部のナゲツトの大きさを常に
最適に制御することは困難であり、例えば電極が
圧潰した場合などには、ナゲツト径が過大になつ
て所望以上の過大な品質が得られることがあり、
そのために必要以上の電力消費を招く恐れがあ
る。逆に、被溶接材の接触面の状態等の条件によ
つては、電極間電圧は基準電圧曲線に倣つて変化
しても、充分な通電路面積が得られていないた
め、必要なナゲツト径が得られないというような
場合も生ずる。
この発明は、上記の問題を解決して、常に所望
の抵抗溶接個所の品質を溶接過程中において自動
的に過不足なく保証し得るようにすることを目的
とする。
そのため、次のような事実を実験によつて確認
し、それを抵抗溶接における適応制御に応用し
た。すなわち、溶接電流通電中の被溶接材を挾む
電極間の抵抗は、抵抗溶接個所の被溶接材間の接
触面積、すなわち通電路面積と密接な関係をもつ
ており、溶接中における溶接部の通電路面積は、
電極間の抵抗値によつて観測することができる。
また、電極間の電圧が溶接個所の温度及び発熱状
態と密接な関係をもつていて、この電極間電圧の
時間的変化を示す電圧曲線が、被溶接材の種類、
形状、板厚などが決まると定まり、その中で溶接
部での溶け込みの良好な電圧曲線が定められるこ
とは既に確認している。さらに、この電極間電圧
のうち、溶接がなされるために有効なことは所定
の水準以上の電圧であり、その所定水準以上の電
圧の積分値及びその時間的変化が溶接部分の品質
を左右することも既に確認している。
この発明は上記の実験結果に基礎をおいてい
る。そして、抵抗溶接における溶接電流通電前に
微弱電流を流して被溶接材を挾む電極間の抵抗が
予め定めた基準抵抗値と一致するように、電極間
の加圧力を制御したのち、その後の溶接過程にお
ける溶接電流通電中、被溶接材を挾む電極間の抵
抗が基準抵抗曲線による抵抗値と一致するように
電極間の加圧力を修正制御し、さらにはそれと同
時に、電極間の電圧が予め設定した基準電圧曲線
に倣つて変化するように溶接電流を制御し、この
電極間電圧の積分値が予め定めた基準積分値に到
達した時に溶接電流を遮断することによつて溶接
時間を制御する。あるいはまた、上記電極間電圧
が予め定めた水準電圧を越えた時、その差電圧の
積分値が予め定めた基準積分値に到達した時に溶
接電流を遮断することによつて溶接時間を制御す
る。このような電極間の加圧力および溶接時間の
制御により、被溶接材間の接触状態の変動や電極
チツプ先端形状の圧潰状況の変化等があつても、
その変化に適応して常に所望の溶接部の品質を保
証することができる。
次に、図面を参照してこの発明の内容を説明す
る。
第1図は、板厚0.8mmの軟鋼板をスポツト溶接
した場合の電極(チツプ)間電圧−時間曲線(以
下単に“電圧曲線”という)の代表例を示したも
のである。そして、電極チツプの先端と被溶接材
との接触部の平均直径(以下“電極チツプ径”と
いう)をDe、電極加圧力をP、溶接電流をIと
すると、曲線aはDe=6.8mm、P=380Kg、I=
12000Aの場合、曲線bは、De=4.8mm、P=190
Kg、I=7800Aの場合の電圧曲線である。なお、
溶接時間は通電する交流のサイクル数で示してい
る。この図から明らかなように、電極チツプ径が
大きく変化しても電極間電圧は曲線a,bにみる
ように条件によつて大きな差を生じない。
第2図は、第1図の場合と同一条件で溶接した
場合の電極間抵抗−時間曲線(以下単に“抵抗曲
線”という)の代表例を示したものである。この
図から明らかなように、電極間抵抗は電極チツプ
径に大きく影響され、曲線aに示すように電極チ
ツプ径が大きくなると曲線bに比べて電極間抵抗
は小さくなる傾向にある。
第3図は、第1、第2図と同様な条件で溶接し
た場合の被溶接材間の通電路径及びナゲツト径を
示す曲線であり、曲線a−1はDe=6.8mm、P=
380Kg、I=12000Aの場合の通電路径−時間曲
線、a−2はその場合のナゲツト径−時間曲線、
曲線c−1はDe=4.8mm、P=190Kg、I=6000A
の場合の通電路径−時間曲線、c−2はその場合
のナゲツト径−時間曲線である。この図から、ナ
ゲツトが形成された状態では、ナゲツト径と通電
路面積とは密接に関連しており、これらは電極チ
ツプ径に大きく影響されることがわかる。
第4図は、溶接電流通電初期(通電開始後1サ
イクル)における通電路面積Sの逆数1/S及び
通電路径と電極加圧力との関係を示したものであ
る。この図から、電極加圧力と通電路面積、又は
通電路径とは、あるバラツキの範囲内でほぼ一定
の関係にあり、電極加圧力によつて通電初期での
通電路面積を制御することができることがわか
る。
第5図は、種々の電極チツプ先端形状及び寸
法、電極加圧力、溶接電流等の異る溶接条件下で
の、溶接中における電極間抵抗と通電路面積の逆
数1/Sとの関係の時間的変化を示したものであ
る。図に見られるように、電極間抵抗は、溶接中
において時々刻々変化していく。なお、各曲線の
矢印の向きが時間の経過方向を示す。通電路面積
の逆数との関係をみると、電極間抵抗が最大値を
通過した後の時刻ではほぼ比例関係にあり、どの
ような溶接条件の場合にも、破線で示す1本の比
例直線に近似する関係にある。
第6図は、種々の溶接条件における通電初期の
電極間抵抗と通電路面積の逆数1/Sとの関係を
示すが、この場合にもほぼ破線で示す1本の比例
直線に沿つた比例関係があることがわかる。これ
によつて、電極間抵抗Rは、R=ρ・l/S
(ρ:材料の固有抵抗、l:電極間距離、S:被
溶接材間の通電路面積)の関係にあることによる
ことが容易に理解される。
これらのグラフに示された事実は、電極間抵抗
の測定により被溶接材間の通電路面積を、溶接中
に容易に推定し得ることを示している。なお、注
目している溶接個所の近傍に他の溶接点がすでに
存在する場合にも、電極間抵抗による通電路面積
の推定は、ほぼ同一誤差範囲内で行いうる。ま
た、電極間電圧及び電極間抵抗の中には、被溶接
材間の値の外に、電極チツプと被溶接材との間の
値も含まれているが、一般に後者のそれは前者の
それに比して約20〜30%と小さく、且つ時間的に
ほぼ一定であるので、電極間電圧及び抵抗をもつ
て、被溶接材間のそれを代表しているとみてよ
い。
以上の諸事実は、電極の先端形状、寸法や、被
溶接材の種類等によらず常に成立しており、被溶
接材の板厚、枚数等が変つても、その基本的な傾
向に変化はない。したがつて、溶接過程中の電極
間抵抗を検出することにより、被溶接材間の通電
路面積を溶接中に検出することが可能である。そ
して、この通電路面積は、形成されるナゲツトの
大きさと密接な関連をもつているので、所望のナ
ゲツト径が得られるような通電路面積となるよう
に、予め基準抵抗曲線を設定しておき、溶接中に
電極間抵抗がその基準抵抗曲線による抵抗値と一
致するように時々刻々、又は予め定めた特定の時
点で電極加圧力を制御すれば、所望の溶接部の品
質(ナゲツト径)を得ることができる。
さらに、電極間電圧により被溶接材間での発熱
状態、すなわちナゲツトの形成度合(溶け込み
率)を検出し得ることがすでに明らかにされてい
るので、溶接電流通電中に上述の電極加圧力の制
御に加えて、電極間電圧の積分値が、必要なナゲ
ツトの形成度合に対応した電圧曲線になるように
溶接電流を制御すれば、所望の溶接部の品質を一
層確実に得ることができる。なお、溶接電流通電
時間を適正に制御する手段としては、予め定めた
適正な通電時間(サイクル数)で溶接電流を遮断
するようにしてもよいが、電極間電圧が予め定め
た水準電圧を越えた時の差電圧の積分値が、予め
設定した適正値に到達した時点で溶接電流を遮断
するようにすれば一層確実である。
以下に、この発明による適応制御装置について
実施例を挙げ、図面を参照して説明する。
第7図はこの発明による第1の実施例の構成を
示すブロツク図である。図中1a,1bは軟鋼板
等の被溶接材、2aはピストン3に連結された可
動の電極、2bは固定の電極である。溶接工程中
この電極2a,2bにより被溶接材1a,1bが
挾まれて加圧され、そこに変圧器4を介して交流
電源15からの溶接電流が通電される。また、5
は被溶接材1a,1bを溶融することなく、電極
2a,2b間の接触抵抗を検出し得る程度の微弱
電流を溶接電流の通電前に電極2a,2b間に供
給するための微弱電流発生電源であり、変圧器4
から被溶接材1a,1bに溶接電流を通電する前
に、電極2a,2b間に一定の微弱電流を供給す
る。なお、この電源5の具体例としては、小形の
交流溶接電源、または適宜な周波数の高周波電源
を用いることができる。
記号6は微弱電流、または溶接電流通電中、電
極2a,2b間の電圧(以下“電極間電圧”とい
う)を時々刻々検出して整流する電圧検出回路、
7はその検出電圧の各半波の最大値を半サイクル
間、又は予め定めた期間保持する波形代表点保持
回路、8aは溶接電流を、8bは微弱電流を時々
刻々検出して整流する電流検出回路、9は電流検
出回路8a,8bの検出電流の各半波の最大値を
半サイクル間、又は予め定めた期間保持する波形
代表点保持回路である。10は波形代表点保持回
路7に保持された電圧値を波形代表点保持回路9
に保持された電流値で除して、電極2a,2b間
の抵抗値(以下“電極間抵抗”という)を検出す
る抵抗値演算回路である。11は基準抵抗値発生
回路であり、溶接電流通電前および通電中におい
て、予め所望の溶接品質が得られる場合の電極間
抵抗の時間的変化に相当する基準抵抗曲線を設定
記憶しておき、それによる抵抗値を通電開始後後
述する通電時間制御回路17からのタイミング信
号Tpに同期して時々刻々、又は予め定めた特定
の時点で出力する。なお、ここに云う「基準抵抗
曲線」とは、必ずしも連続的に変化する曲線に限
るものではなく、特定の時点ごとの抵抗値を結ぶ
曲線でもよく、特定の時点が、例えば通電初期の
1時点のみの場合もある。
記号12は差動増幅器であり、抵抗値演算回路
10の演算により検出された電極間抵抗に相当す
る電圧と、基準抵抗値発生回路11からのその時
点の基準抵抗曲線上の抵抗値に相当する電圧とを
入力して比較し、その電圧差に応じた信号を出力
する。13は差動増幅器12の出力信号を増幅す
る増幅器、14は加圧力制御回路であり、増幅器
13の出力信号をうけてピストン3を制御し、電
極2a,2b間の加圧力を制御する。16は交流
電源15の出力側に接続され、溶接個所の状態に
応じた溶接電流を流すための電流制御回路であ
る。また、17は通電時間制御回路であり、後述
の溶接電流通電時間自動制御機能と協動して動作
するが、溶接電流を予め設定した必要な時間だけ
流すため、通電開始および停止信号を電流制御回
路16へ送るようにしてもよい。なお、通電時間
制御回路17は破線で示す経路で、通電開始後各
回路の同期をとるためのタイミング信号Tpを送
る。
上記の機能によれば、溶接電流通電前および溶
接電流通電中、半サイクル毎に、あるいは予め定
めた特定の時点毎に、電極間抵抗値と基準抵抗曲
線による抵抗値とが差動増幅器12によつて比較
され、その差に応じた信号によつて加圧力制御回
路14が作動して、ピストン3を介して電極2
a,2b間の加圧力を制御することにより、上記
抵抗値の差をゼロにすることができる。すなわ
ち、加圧力を増加すると電極間抵抗は減少し、加
圧力を減少すると電極間抵抗は増加する。それに
よつて、電極間抵抗が通電中に亘つて、上記基準
抵抗曲線に許容範囲内で倣うように、あるいは少
くとも予め定めた特点の時点で基準抵抗曲線によ
る抵抗値と許容範囲内で一致するように制御され
て、被溶接材1a,1b間の通電路面積を保証す
る。
動作の順序としては、溶接電流通電前、即ち、
実際の溶接を行なう前に微弱電流発生電源5から
微弱電流を流して、被溶接材1a,1bを挾む電
極2a,2b間の接触抵抗を検出し、あらかじめ
適宜設定しておいた加圧力を被溶接材の接触抵抗
に適応した加圧力に修正する。その後、溶接電流
を流し、上述のごとくして得られた適正な通電路
面積に一定な溶接電流を必要時間流すことによつ
て、所望の溶接部の品質が得られる。なお、被溶
接材の種類等の条件によつては、溶接電流通電初
期の時点で上述の電極間抵抗の検出及びそれによ
る加圧力制御を行つて通電路面積を保証し、その
後予め必要とされている一定の溶接電流を必要な
時間流すことによつても所望の溶接品質を得るこ
とが可能である。しかし、その場合には、溶接電
流通電初期の1〜2サイクルは溶接に必要な電流
より少さい電流を流し、その間に電極間抵抗を検
出して規定の通電路面積を確保するように電極加
圧力を制御した後、溶接に必要な大きさの電流を
流すようにすると、電極2a,2bと被溶接材1
a,1bとの間の表面チリや、被溶接材1a,1
b間の中チリの発生を防止することができる。こ
のことは、溶接電流通電中に亘つて電極間抵抗を
検出して加圧力制御を行う場合にも勿論有効であ
る。なお、電極間電圧を溶接電流によつて制御す
る場合、ときによつては通電初期での異常に高い
接触抵抗などによつて、制御系が誤動作する場合
がある。そのときには、電圧検出回路によつて、
通電初期の1〜2サイクルは電極間電圧の検出を
停止させ、その後に制御系を動作させるようにす
るとよい。
次に、上述の電極2a,2b間の加圧力の制御
機能に加えて、溶接電流を決める電極間電圧の制
御を行なう機能について説明する。第7図を参照
し、電極間電圧制御のための電流制御回路16は
サイリスタ、トライアツク等の制御整流素子から
なつている。18は演算回路であり、後述する差
動増幅器22の出力信号と記憶回路19からの信
号を入力して演算した値を電流制御回路16の点
弧位相角制御信号に変換して出力し、電流制御回
路16に与える。記憶回路19は通電初期1〜2
サイクル間の点弧位相角を予め記憶して通電を開
始し、通電開始1〜2サイクル後には波形代表点
保持回路20を動作させて制御を開始する。そし
て、電流検出回路8aによつて実際の通電電流を
検出し、各時点で前の半サイクルの電流の点弧位
相を記憶する。20は波形代表点保持回路7と同
様な波形代表点保持回路であり、電圧検出回路6
によつて検出される電極間電圧の各半波の最大値
を半サイクル間、又は予め定めた期間保持する。
21は基準電圧発出回路であり、予め良好な溶接
部品質が得られる電極間電圧の時間的変化に相当
する基準電圧曲線を設定記憶しておき、それによ
る基準電圧を通電開始後、通電時間制御回路17
からのタイミング信号Tpに同期して時々刻々出
力する。差動増幅器22は、波形代表点保持回路
20の出力電圧と基準電圧発生回路21の出力電
圧を入力して比較し、その電圧差に応じた信号を
出力する。
上記の機能によれば、溶接電流通電初期は差動
増幅器22の出力信号の値に関係なく、記憶回路
19に記憶された初期電流点弧位相角によつて、
演算回路18が点弧位相角制御信号を出して電流
制御回路16を制御し、所定の電流を流す。それ
によつて、初期接触抵抗の変動及び初期チリなど
による異常電極間電圧に起因する制御の誤動作を
防ぐ。その後、差動増幅器22から出力される出
力信号と記憶回路19に記憶された前の半サイク
ルの点弧位相角のデータとを演算回路18に入力
して、差動増幅器22の出力電圧をゼロにする方
向に溶接電流を制御するよう、点弧位相角信号を
変化させる。かくして、電流制御回路16は溶接
電流を制御し、この溶接電流が増加すると電極間
電圧は増加する方向に、減少すると電極間電圧は
減少する方向に変化する。ところで、被溶接材の
温度分布が同一であつても、溶接電流の点弧位相
が変れば電極間電圧は変化する。そこで、点弧位
相角の大小によつて、基準電圧発生回路21に記
憶された基準電圧曲線を補正する必要がある。そ
のために、記憶回路19に記憶された実際の溶接
電流の点弧位相角を演算回路18を介して基準電
圧発生回路21に転送し、位相角による基準電圧
曲線の補正を行なつている。この溶接電流の制御
による電極間電圧の制御と併行して、前述の電極
間抵抗が検出され、それによつて電極間加圧力も
制御される。このように、溶接電流通電中、電極
間電圧が基準電圧曲線に倣つて変化し、且つ電極
間抵抗が基準抵抗曲線に倣つて変化するように、
溶接電流及び電極加圧力が制御され、所望の溶接
部の品質が得られる。
このような構成によれば、抵抗溶接部の状況、
特に電極2a,2bと被溶接材1a,1bとの間
及び被溶接材1a,1b間の接触状況が変化し易
い場合、例えばプレス製品、高張力鋼板等の溶接
の場合に対する制御範囲が広くなり、被溶接材の
状況に応じて常に的確な制御を行なうことができ
る。また、電極チツプ先端の圧潰が激しい場合に
は、自動的に電極と被溶接材間及び被溶接材間の
通電路面積が調整されるため、過度に大きなナゲ
ツトが形成されることがなくなり、過大なエネル
ギー(電力)消費も防止し得る。なお、上記の説
明では、電極間抵抗が時々刻々検出され、基準抵
抗曲線と時々刻々比較されて、その抵抗値の差に
応じて電極加圧力を制御するように述べたが、通
電初期にのみ、あるいは通電初期、中期、後期等
の特定の時点で電極間抵抗を検出し、その時点で
の基準抵抗値との差に応じて電極加圧力を制御す
るようにしてもよい。一般に、加圧力の制御には
油圧サーボ系を採用すれば、約50Hzの応答は容易
に得られるが、通電初期、中期、後期などの特定
時点で電極加圧力を制御する場合には、より応答
の遅い空気加圧系を採用してもよい。
次に、溶接電流通電時間を自動的に、常に最適
時間に制御するための機能について説明する。こ
の目的のために積分・加算回路23、積分値比較
回路24および基準設定積分値発生回路25が設
けられている。積分・加算回路23は、波形代表
点保持回路20から出力される電極間電圧の各半
波毎の最大値Vcを積分・加算する。積分値比較
回路24は積分・加算回路23から出力される積
分値、すなわち電極間電圧Vcの積分値と、基準
設定積分値発生回路25から出力される予め所望
の溶接部の品質が得られるように設定した積分値
とを比較し、その値が一致した時に溶接電流を遮
断する信号を通電時間制御回路17へ送つて溶接
電流を遮断する。このようにすれば、溶接電流通
電時間が自動的に常に最適時間に制御されるの
で、より適切な溶接部の品質を得ることができ
る。
第8図は加圧力制御回路14の具体的な構成例
を示したものである。この図において、91はモ
ータ92によつて駆動される油圧ポンプ、93は
方向切換弁、94は加圧力調整用の比例式減圧
弁、95,96は逆止弁、97はリリーフ弁であ
り、これらとピストン3のシリンダ室上端および
下端とを結ぶ配管により油圧回路が形成されてい
る。98は圧力ゲージポートP1とP2との間の圧
力差によつてピストン3に加わる圧力を検出する
圧力検出器、99は前述の増幅器12からの信号
Vdを入力し、圧力検出器98からの検出圧力に
応じた信号Vpをフイードバツク入力として比例
式減圧弁94を制御する信号を出力するサーボア
ンプである。方向切換弁93が図示の位置にある
時はピストン3のシリンダ室下端側から油圧が供
給され、電極2aが上昇しているが、図に見られ
ない制御盤からの信号により方向切換弁93が図
示とは逆に切換わると、油圧ポンプ91による油
圧が比例式減圧弁94を介してピストン3のシリ
ンダ室上端から供給され、電極2aが仮想線で示
すように下降して電極2bと共働して被溶接材1
a,1bに加圧する。その加圧力はサーボアンプ
99により比例式減圧弁94が信号Vdに応じて
制御されることにより、常に信号Vdに応じて増
減される。
なお、電極チツプが圧潰し、電極と被溶接材間
及び被溶接材の板間の通電路面積が過度に増加す
ると、基準電圧値に電極間電圧を一致させるには
必要な溶接電流が増加するが、溶接機の電流容量
を越えると必要な電流の供給が不能になる。そこ
で、溶接機が供給し得る最大電流と必要な溶接電
流との差を検出し、その値がゼロになると信号を
出力して、制御機能を停止させると共に、それを
表示するか、又は警報を発するようにしておくこ
とが望ましい。スポツト溶接においては、電極チ
ツプ先端形状が加圧力と通電路面積の関係、特に
比例定数に影響を与え、一般にどのような形状の
チツプを用いてもよいが、加圧力による通電路面
積の制御の観点からは、R形、ドーム形の使用が
望ましい。本制御方法では、電極チツプ間電圧が
基準電圧からはずれた場合には、その差電圧をと
り出し、その差電圧を打ち消すように溶接電流を
変化させているが、この溶接電流の変化は普通溶
接電流制御装置内のサイリスタの点弧角を変化さ
せて行なつている。差電圧とサイリスタの点弧角
の変化量の関係は制御の応答性を考慮してあらか
じめ別途設定しており、一般に電源電圧が一定の
場合には、この関係は変える必要はない。しか
し、工場現場などにおいては、電源電圧が時間的
に大きく変動する場合がある。この場合、電源電
圧の変動時に、差電圧を解消するように溶接電流
を変化させるサイリスタの点弧角が、変動前と同
一の設定では差電圧を解消するに充分な溶接電流
の変化を与えることができなくなる。したがつ
て、電源電圧の変動時には、電源電圧の変動量に
応じて、差電圧に対するサイリスタの点弧角の関
係を変化させると、本制御方法は電源電圧が大き
く変化してもより有効に品質の保証を行ない得
る。なお、溶接電流の検出はいずれも溶接変圧器
の1次側で行なつているが、2次側で検出しても
よい。特にマルチ・スポツト溶接、シリーズ・ス
ポツト溶接などでは、2次側で電流を検出するこ
とが望ましい。
第9図はこの発明による第2の実施例の構成を
示すブロツク図である。この例は、前に述べたと
ころの電極間電圧Vcが予め定めた水準電圧Vp
越えた時の差電圧の積分値を利用することによつ
て、溶接電流通電時間の制御精度をより向上させ
るために適している。この図において、第7図と
同一の機能には同じ記号を付して示してあり、し
たがつて、その部分の説明は省略する。なお、第
7図の実施例と異なる点は、積分・加算回路23
に水準電圧設定回路26を設けた点、および基準
設定積分値発生回路25は良好な溶接部品質が得
られる基準電圧積分値曲線を予め記憶させ、それ
によつて各時点の基準電圧(積分値)を出力する
ようにさせた点である。
この第2の実施例において、積分・加算回路2
3は波形代表点保持回路20から出力される電極
間電圧の各半波毎の最大値Vcが、予め水準電圧
設定回路26によつて設定された水準電圧Vp
越えたときのみ、その差電圧(Vc−Vp)を積
分・加算する。積分値比較回路24は積分・加算
回路23から出力される積分値、すなわち電極間
電圧Vcが水準電圧Vpを越えた時の差電圧(Vc
Vp)の積分値と、基準設定積分値発生回路25
から出力される予め所望の溶接部の品質が得られ
るように設定した積分値とを比較し、その値が一
致した時に溶接電流を遮断する信号を通電時間制
御回路17へ送り溶接電流を遮断する。これによ
つて、溶接電流通電時間が自動的に常に最適時間
に制御されるので、より適切な溶接部の品質を得
ることができる。
第10図は、この発明による第3の実施例の構
成を示すブロツク図である。この実施例によれ
ば、前述の第1および第2の実施例のごとく、あ
らかじめ設定された最適溶接条件で溶接した際の
電気量、即ち電極間抵抗値、電極間電圧値および
電流値と、その後の溶接時に検出した電気量とを
半サイクル毎のサンプリング間隔で比較して得た
両電気量の差を用いて、加圧力、溶接電流および
通電時間の制御を行なうのみでなく、この半サイ
クルの間に個々の溶接装置自体、溶接条件、ある
いは溶接条件の変化など、すべてに対応して上記
のごとき広範囲の演算処理を行なうことができ
る。それによつて、あらかじめ指定された溶接条
件のもとに溶接した際の基準となる電気量に迅
速、かつ確実に追従させることができる。
第10図を参照して、波形代表点保持回路7,
9および20のそれぞれの出力は、アナログ−デ
ジタル(以下A/Dという)変換器27,28お
よび29によつてそれぞれA/D変換される。
A/D変換器27の出力である電圧値と、A/D
変換器28の出力である電流値は抵抗値演算回路
10′に入力されて、電圧値を電流値で除して電
極間抵抗を検出する。検出された電極間抵抗はス
イツチSW1を介して基準抵抗値記憶回路11′に
記憶される。またA/D変換器29の出力である
電極間電圧は、予め水準電圧設定回路26′によ
つて設定された水準電圧Vpを越えたときのみ、
その差電圧(Vc−Vp)が積分・加算回路23′に
よつて積分され、スイツチSW2を介して電圧積分
値記憶回路25′に記憶される。さらに、A/D
変換器29の出力はスイツチSW3を介して基準電
圧記憶回路21′にも入力されて、電極間電圧を
記憶する。これらの記憶回路11′,21′および
25′は、被溶接材1aおよび1bを指定された
最適溶接条件で溶接した際の各種電気量を記憶す
るもので、例えば磁気方式、または半導体で構成
されたRAM(Random Access Memory)が使
用できる。また、記憶回路21′には図示してい
ない表示装置、例えば通常のペン書きオシロスコ
ープ、または電磁オシロスコープ等を接続して、
随時記憶されたデジタル値をアナログ電圧波形に
変えて表示し、観測し得るように構成することも
できる。
抵抗値比較回路12′においては、基準抵抗値
記憶回路11′に記憶されているデジタル化され
た抵抗値と、その後の溶接過程において新たに検
出した抵抗のデジタル値を半サイクル毎に比較
し、この両抵抗の差を増幅器13に出力する。電
圧積分値比較回路24′においては、基準電圧積
分値記憶回路25′に記憶されているデジタル化
された基準電圧積分値と、その後の溶接過程にお
いて新たに検出した電圧積分値を半サイクル毎に
比較し、この両電圧積分値の差を通電時間制御回
路17に出力する。さらに、電圧比較回路22′
においても、基準電圧記憶回路21′に記憶され
ているデジタル化された基準電圧波形と、その後
の溶接過程において新たに検出した電極間電圧の
デジタル値を半サイクル毎に比較し、この両電圧
の差を位相変換データ出力回路30に出力する。
位相変換データ出力回路30には、あらかじめこ
の差電圧のデジタル値と溶接電流を制御する電流
制御回路16の位相変換量とを対応させた位相変
換のデータバンクが内蔵されており、比較回路2
2′から差電圧のデジタル値が与えられると、そ
の差電圧に対応する位相変換量を検索して、電流
制御回路16に入力する。位相変換データ出力回
路30には、電源電圧監視器31から電源15の
電圧データも入力されるが、これについては後述
する。
位相変換データ出力回路30の位相変換データ
バンクとしては、例えば磁気方式、または半導体
で構成されたROM(Read Only Memory)が使
用される。このROMには、第11図の模式化し
て示すごとき位相変換データテーブルが記憶され
ている。この図において、左端欄の数字1,2,
…,mは、あらかじめ指定された最適溶接条件の
もとに被溶接材1aと1bとを溶接した際の基準
となる電気量、例えば電極間電圧Vsと、その後
の溶接時に検出した電極間電圧Vcとの差電圧Δυ
の絶対値をコード化した数字である。この数字の
決め方は、まず実験によつて予想される差電圧
Δυの最大の変動値(幅)を決定し、これをもと
に位相変換データテーブルの記憶容量を限定した
のち、m等分したものである。また、上段欄の数
字1,2,…,n(表番号、または検索番地と呼
ぶ)は、制御の回復率(ループゲイン)に対し、
使用が予想される溶接装置、溶接材料、あるいは
溶接条件を考慮して、適当な幅をもつた値を実験
によつて求め、その幅をn等分したものである。
差電圧Δυをもとに制御すべき溶接電流をΔiとす
れば、この両者の間には次の関係がある。
Δip=kΔυ(p-1) ここで、kは制御の回復率(ループゲイン)、
pは溶接時間中における半サイクル周期の繰返し
数である。すなわち、このデータテーブルは、基
準となる電極間電圧Vsと、その後の溶接時に検
出した電極間電圧Vcとの差電圧Δυをもとに、上
式におけるそれぞれのループゲインkの値に相当
する電流制御回路16内のSCRの点弧角をコー
ド化した値で表わしたものである。この値は検索
されて位相変換データ出力回路30から読み出さ
れ、電流制御回路16に与えられる。
電流制御回路16は位相制御回路16a、サイ
リスタ・トリガパルス発生回路16b、スイツチ
ング素子16cおよびSCR16dからなつてい
る。詳細については後述する位相制御回路16a
の出力信号はサイリスタ・トリガパルス発出回路
16bに与えられる。サイリスタ・トリガパルス
発出回路16bは通電時間制御回路17の作動期
間中トリガパルスを発生する。サイリスタ・トリ
ガパルス発生回路16bの出力は、スイツチング
素子16cを介してSCR16dに加えられ、こ
のSCR16dによつて交流電源15からの供給
電圧が調整され、変圧器4を介して溶接電極2a
および2bに供給される。
いま、比較回路22′の出力である差電圧Δυの
絶対値が、位相変換データテーブルの差電圧欄の
3に相当したとすれば、別途選ばれた表番号(表
番号の選択については後述する)、例えば2との
交点にある値“1”に相当する量だけ、SCR1
6dの点弧角が補正されることになる。なお、位
相変換データテーブルに示される差電圧Δυは絶
対値であるため、Δυ>0のときの出力値は正、
Δυ<0のときの出力値は負、Δυ=0のときの出
力値は0とされる。
表番号1,2,…,nの選択は、電源電圧に変
動が生じた場合、または上述の差電圧Δυの値が
あらかじめ想定した許容範囲を逸脱した場合に上
述のSCR16dの点弧角の補正量を補償するた
めになされたものである。ここで、差電圧Δυの
値が許容範囲を逸脱する場合を除いて考えると、
まず個々の溶接工程が開始される前に、表番号の
選択によつて電源電圧Veの変動に対する補償が
行なわれ、ついで溶接中は差電圧Δυの多寡によ
る補償が行なわれる。これらの制御について、第
12図を参照して詳しく説明する。同図におい
て、電源電圧監視器31は電源15の電圧Ve
常時監視するための装置であり、例えば公知のデ
ジタル・ボルトメータ等を使用することができ
る。この電源電圧監視器31によつてデジタル化
された電圧データは、位相変換データ出力回路3
0の電源電圧デコーダ30aに与えられる。デコ
ーダ30aは基準となる電圧値に対する入力電圧
の変動量を複数レベルの信号に分類して出力す
る。例えば、最適溶接条件のもとにおいて溶接し
た際の標準電圧を100Vと設定した場合に、初め
指定された表番号から表番号を1ランクシフトさ
せる値を電源電圧変動値の5%とすると、電源電
圧が105〜109Vの範囲にある時は表番号を1ラン
クシフトアツプさせる選択信号を出力し、110〜
114Vの範囲にある時は2ランク、115〜119Vの
範囲にある時は3ランクシフトアツプさせる選択
信号を出力する。また、電源電圧が標準電圧を下
廻り、95〜91Vの範囲にある時は表番号を1ラン
クシフトダウンさせる選択信号を出力し、90〜
86Vの範囲にある時は2ランク、85〜81Vの範囲
にある時は3ランクシフトダウンさせる選択信号
を出力する。このようにして、デコーダ30aか
ら得られた選択信号はデータバンク30cに入力
され、それぞれの選択信号の有するシフト量によ
つて表番号が選択(指定)される。いま、溶接を
行なうに当つて、その時の変動幅を考慮し、表番
号2が選定されているときに、電源電圧が5%昇
圧した場合は1ランクシフトアツプにより表番号
3が選定され、5%降圧した場合には表番号1が
選定される。
このようにして選択された表番号とその後に行
なわれる溶接の際の差電圧番号の選択(差電圧デ
コーダ30bによる)により、良好な溶接が行な
われているときに、何らかの条件変化によつて基
準となる電極間電圧Vsとその後の溶接時に検出
した電極間電圧Vcとの差電圧Δυの値が予め設定
された許容幅を超えて大幅に変動した場合は、そ
の差電圧Δυによつて、すでに電源電圧にもとづ
いて選択されている位相変換データバンク30c
の表番号がさらに修正される。このような場合に
適合するように、位相変換データ出力回路30に
は、別に閾値で動作する差電圧デコーダ30d
(図には見られない)が設けられており、比較回
路22′の出力をうけて、得られるデコーダ出力
により位相変換データバンク30cの表番号をシ
フトするようにしてある。例えば、差電圧Δυが
0.3Vを越えると、差電圧デコーダ30dによつ
て、電源電圧が変動した場合と同様に位相変換デ
ータバンク30cのデータテーブルの表番号を自
動的に1ランクシフトさせる。これによつて、
SCR16dの点弧角を変更するのに最適な表が
選択される。
電流制御回路16内の位相制御回路16aには
溶接電流設定回路が設けられており、溶接の初期
において、溶接電流設定ツマミ16eによりサイ
リスタ・トリガパルス発生回路16bを制御し
て、溶接電流を設定する。なお、この位相制御回
路16aに入力した位相変換データ出力回路30
からの検索されたデータ出力は、すでに位相変換
量に変えられているので、そのままの形で位相制
御回路16aを通過し、サイリスタ・トリガパル
ス発生回路16bに与えられる。これをうけたサ
イリスタ・トリガパルス発生回路16bのトリガ
パルスは、位相変換量に相当する量だけデジタル
的にシフトされ、上記記憶回路21′に記憶され
ている標準の電極間電圧波形に追従するように、
SCR16dの点弧角が制御される。
上記のごとく構成された位相変換データ出力回
路30を介して行なわれる制御機能の操作手順に
ついて、以下に詳述する。まず、本格的な溶接作
業に先立つて、被溶接材を実験的に溶接し、当該
被溶接材を溶接するに最も適した溶接条件(溶接
電流、通電時間および加圧力)を定めて、この溶
接条件たる溶接電流および通電時間を位相制御回
路16aの溶接電流設定つまみ16eおよび通電
時間制御回路17の溶接時間(通電時間)設定つ
まみ17aによつて設定する。その後、溶接機頭
(図示せず)に装備された上・下電極2aおよび
2bで被溶接材1aおよび1bを挾持し、加圧を
開始すると、溶接機頭内に装備されたマイクロ・
スイツチがプリセツトされた加圧力において作動
し、通電開始の指令を通電時間制御回路17に与
える。制御回路17においては、マイクロ・スイ
ツチの指令を起点として溶接時間設定ツマミ16
eによりあらかじめ設定された時間に亘り、溶接
電流をサイリスタ・トリガパルス発生回路16b
により制御されたSCR16dを介して被溶接材
1aおよび1bに供給する。この最初の溶接時に
溶接電極2aおよび2b間に発生する電圧波形は
以後の溶接において標準となる電圧波形であり、
これを電圧検出回路6を介して波形代表点保持回
路20に保有する。波形代表点保持回路20の出
力は、A/D変換器29においてA/D変換さ
れ、スイツチSW3を介して記憶回路21′に記憶
される。このような過程を経て記憶回路21′に
記憶された波形を標準電圧波形と称する。叙上の
操作によつて、当該被電極材に最適な標準電圧波
形を記憶回路21′に記憶させたならば、スイツ
チSW3を開いて実際の溶接作業を行なう。
以後に行なわれる同種の溶接においてピツク・
アツプされ、波形代表点保持回路20およびA/
D変換器29により処理された電極間電圧は、比
較回路22′に入力されて記憶回路21′の標準電
圧波形と比較される。この比較は定められたサン
プリング間隔(半サイクル)毎に照合され、両電
圧波形の差値(差電圧)が求められて位相変換デ
ータ出力回路30に与えられる。位相変換データ
出力回路30においては、まず溶接直前に電源電
圧監視器31からの電源電圧の変動量により、当
初設定された位相変換データテーブルの表番号を
修正し、ついでこの補償された番号の表内の前記
差電圧に対応するSCR16dの位相変換データ
(位相変換量)が検索される。この検索されたデ
ータは、後段の位相制御回路16aに入力され、
サイリスタ・トリガパルス発生回路16bおよび
スイツチング素子16cを介してSCR16dの
点弧角を逐次調整し、溶接電流の値は半サイクル
毎に増減される。その結果、溶接の電極間電圧波
形は標準電圧波形に追従し、これによつて、溶接
品質は常に一定に保たれる。
この実施例によれば、被溶接箇所が既に溶接さ
れた箇所との近接によつて生ずる分流や被溶接箇
所の表面状態ならびに溶接条件(溶接電流、通電
時間、加圧力)などに変動が生じても迅速、かつ
確実に標準電圧波形をトレースすることができる
と共に、電源電圧が大きく変動した場合、あるい
は標準電圧波形とその後の溶接時に検出した電極
間電圧との差が大きい場合においても、同じよう
に標準電圧波形をトレースすることができる。
第13図は、この発明における電極交換時期表
示部の一実施例の構成をブロツク図により示した
ものである。この表示部は、前述のとおり、電極
間抵抗Rと通電路径(面積)の逆数1/Sが比例
関係にあることと、通電路径が電極チツプ径とほ
ぼ等しいこととから、電極間抵抗Rを検出するこ
とによつて電極チツプ径を検知し、これを表示す
るようにしたものである。図において、32は、
通電路径演算回路であり、第7図、第9図および
第10図に示した実施例の抵抗値演算回路10、
または10′に接続される。そして、これらの演
算回路10、または10′から出力される電極間
抵抗値をもとに、通電路径演算回路32において
通電路径が検出される。33は基準通電路径発生
回路であり、電極チツプ2aおよび2bが圧潰し
て交換時期に至つた時の予め定めた電極チツプ径
に相当する信号を通電開始後の特定の時点、例え
ば通電初期の1時点で出力する。通電路径演算回
路32および基準通電径発生回路33の出力は、
共に通電路径比較回路34において比較される。
そして、通電路径が基準通電路径の値を超えた場
合に、例えばランプ、ブザー等の表示器35に与
えられ、表示される。これによつて、操作員等に
電極交換時期の到来を知らせることができる。
なお、上記各実施例の説明は交流を用いて溶接
した場合であり、そのため、波形をその半波の最
大値をもつて代表点とし、そのサンプリング値を
もつて制御を行なうサンプル値制御を行なつてい
るが、直流を用いて溶接する場合は連続的制御も
可能となる。また、いずれもこの発明をスポツト
溶接に適用した場合について説明したが、同様に
して他の抵抗溶接、すなわち、プロジエクシヨン
溶接、シーム溶接、フラツシユ溶接、アプセツト
溶接等の抵抗溶接に適用し得るものである。さら
に、マルチスポツト溶接、シリーズ・スポツト溶
接など、一個の溶接装置で多数の電極を有する場
合においては、各溶接点毎の電極加圧力を個別に
電極間抵抗を検出して制御することにより、各溶
接部の品質を要求に応じて独立に容易に制御する
ことができる。
以上の説明により明らかなように、本発明の適
応制御装置によれば、溶接過程中において電極間
の抵抗、あるいは抵抗と電圧を検出して、確実に
所望の抵抗溶接部の品質が得られるように、被溶
接材を挾む電極間の加圧力、又は加圧力及び溶接
電流を制御するから、溶接個所の不良による手直
しや、不良品の廃棄が殆んど解消され、製品の不
良率を大幅に低減し、しかも作業能率を向上させ
ることができる。加うるに、電極間の加圧力の制
御はチリおよびバリの防止に特に有効であり、そ
れによつて安全性が向上すると共に、外観品質の
損傷を防止し得る。
また、電源電圧が大きく変動した場合、あるい
は標準電圧波形とその後の溶接時に検出した電極
間電圧との差が大きい場合においても、同じよう
に標準電圧波形をトレースすることができ、極め
て良好な溶接品質を保証することができる。
さらに、被溶接材を最適溶接条件で溶接した際
の電気量を検出して自動的に記憶させておくか
ら、多種少量生産においても実際の溶接にかかる
までの準備が非常に簡単であるし、通電中半波ご
との電気量について制御しているので、比較的通
電時間の長い材質の抵抗溶接はもちろん、電子部
品等の非常に通電時間の短かいものの場合におい
ても、溶接品質に対する確実な保障が得られる。
さらにまた、、通電路径が基準通電路径の値を
超えた場合に、ランプ、ブザー等の表示手段にて
電極交換時期の到来を知らせて電極の交換を促す
ので、常に適切な先端形状の溶接電極の使用が可
能となり、被溶接材の外観を損うこともない。
【図面の簡単な説明】
第1図は軟鋼板をスポツト溶接した場合の電極
間電圧−時間曲線の代表例を示す線図、第2図は
同じく電極間抵抗−時間曲線の代表例を示す線
図、第3図は同じく被溶接材間の通電路径及びナ
ゲツト径と溶接時間との関係を示す線図、第4図
は溶接電流通電初期における通電路面積の逆数及
び通電路径と電極加圧力との関係を示す図、第5
図は種々の異なる溶接条件下での溶接中における
電極間抵抗と通電路面積の逆数との関係の時間的
変化を示す線図、第6図は種々の異なる溶接条件
下での通電初期の電極間抵抗と通電路面積の逆数
との関係を示す図、第7図はこの発明による第1
の実施例の構成を示すブロツク図、第8図は第7
図における加圧力制御回路14の具体例を示す構
成図、第9図はこの発明による第2の実施例の構
成を示すブロツク図、第10図はこの発明による
第3の実施例の構成を示すブロツク図、第11図
は、第10図における位相変換データ出力回路の
データバンクに記憶させた位相変換データテーブ
ルを模式化して示した図、第12図は、第11図
における位相変換データテーブルの表番号の選択
を説明するためのさらに具体的に示された構成
図、第13図はこの発明における電極交換時期表
示部の一実施例の構成を示すブロツク図である。 図において、1a,1bは被溶接材、2a,2
bは電極、3はピストン、4は変圧器、5は微弱
電流発生電源、6は電圧検出回路、7,9,20
は波形代表点保持回路、8a,8bは電流検出回
路、10,10′は抵抗値演算回路、11,1
1′は基準抵抗値発生回路、12,12′,22,
22′は差動増幅器(電圧比較回路)、13は増幅
器、14は加圧力制御回路、15は交流電源、1
6は電流制御回路、17は通電時間制御回路、1
8は演算回路、19は記憶回路、21,21′は
基準電圧発生回路、23,23′は積分・加算回
路、24,24′は積分値比較回路、25,2
5′は基準設定積分値発生回路、26,26′は水
準電圧設定回路、27,28,29はA/D変換
器、30は位相変換データ出力回路、31は電源
電圧監視器、32は通電路径演算回路、33は基
準通電路径発生回路、34は通電路径比較回路、
35は表示器である。

Claims (1)

  1. 【特許請求の範囲】 1 抵抗溶接において;溶接電流の通電開始前に
    溶接に必要な電流よりも小さい電流を被溶接材を
    挾む溶接電極間に流して該溶接電極間の抵抗値を
    検出し、その検出した抵抗値を予め定めた基準抵
    抗値と比較して、その抵抗値の差に応じて前記溶
    接電極間の加圧力を制御し、溶接電流通電中前記
    溶接電極間の抵抗値を検出し、その検出した抵抗
    値を予め定めた基準低抗値と比較して、その抵抗
    値の差に応じて前記溶接電極間の加圧力を制御す
    る手段と;溶接電流通電中前記溶接電極間の電圧
    を検出し、その検出した電圧値を予め定めた基準
    電圧値と比較して、その電圧値の差に応じて溶接
    電流値を制御する手段と;予め設定した通電時間
    を経過した時点で溶接電流を遮断して通電時間を
    制御する手段と;前記溶接電極間の抵抗値をもと
    に通電路径を検出し、その検出した通電路径より
    求めた溶接電極先端径が予め定めた溶接電極先端
    の径に到達した時点で溶接電極交換時期の到来を
    表示する手段と;を有することを特徴とする抵抗
    溶接における適応制御装置。 2 抵抗溶接において;溶接電流の通電開始前に
    溶接に必要な電流よりも小さい電流を被溶接材を
    挾む溶接電極間に流して該溶接電極間の抵抗値を
    検出し、その検出した抵抗値を予め定めた基準抵
    抗値と比較して、その抵抗値の差に応じて前記溶
    接電極間の加圧力を制御し、溶接電流通電中前記
    溶接電極間の抵抗値を検出し、その検出した抵抗
    値を予め定めた基準抵抗値と比較して、その抵抗
    値の差に応じて前記溶接電極間の加圧力を制御す
    る手段と;溶接電流通電中前記溶接電極間の電圧
    を検出し、その検出した電圧値を予め定めた基準
    電圧値と比較して、その電圧値の差に応じて溶接
    電流値を制御する手段と;前記検出した溶接電極
    間電圧の時間積分値を検出し、その検出した積分
    値が予め定めた基準電圧積分値に到達した時点で
    溶接電流を遮断して通電時間を制御する手段と;
    前記溶接電極間の抵抗値をもとに通電路径を検出
    し、その検出した通電路径より求めた溶接電極先
    端径が予め定めた溶接電極先端の径に到達した時
    点で溶接電極交換時期の到来を表示する手段と;
    を有することを特徴とする抵抗溶接における適応
    制御装置。 3 抵抗溶接において;溶接電流の通電開始前に
    溶接に必要な電流よりも小さい電流を被溶接材を
    挾む溶接電極間に流して該溶接電極間の抵抗値を
    検出し、その検出した抵抗値を予め定めた基準抵
    抗値と比較して、その抵抗値の差に応じて前記溶
    接電極間の加圧力を制御し、溶接電流通電中前記
    溶接電極間の抵抗値を検出し、その検出した抵抗
    値を予め定めた基準抵抗値と比較して、その抵抗
    値の差に応じて前記溶接電極間の加圧力を制御す
    る手段と;溶接電流通電中前記溶接電極間の電圧
    を検出し、その検出した電圧値を予め定めた基準
    電圧値と比較して、その電圧値の差に応じて溶接
    電流値を制御する手段と;前記検出した溶接電極
    間電圧が予め定めた水準電圧値を越えた時の差電
    圧を時間積分し、その積分値が予め定めた基準積
    分値に到達した時点で溶接電流を遮断して通電時
    間を制御する手段と;前記溶接電極間の抵抗値を
    もとに通電路径を検出し、その検出した通電路径
    より求めた溶接電極先端径が予め定めた溶接電極
    先端の径に到達した時点で溶接電極交換時期の到
    来を表示する手段と;を有することを特徴とする
    抵抗溶接における適応制御装置。
JP56088009A 1981-06-10 1981-06-10 Accommodation controlling device for resistance welding Granted JPS57202988A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56088009A JPS57202988A (en) 1981-06-10 1981-06-10 Accommodation controlling device for resistance welding
EP82901790A EP0080514B1 (en) 1981-06-10 1982-06-09 Method and apparatus for controlling resistance welding
DE8282901790T DE3268006D1 (en) 1981-06-10 1982-06-09 Method and apparatus for controlling resistance welding
US06/466,348 US4503312A (en) 1981-06-10 1982-06-09 Method and apparatus for controlling resistance welding
PCT/JP1982/000222 WO1982004413A1 (en) 1981-06-10 1982-06-09 Method and apparatus for controlling resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088009A JPS57202988A (en) 1981-06-10 1981-06-10 Accommodation controlling device for resistance welding

Publications (2)

Publication Number Publication Date
JPS57202988A JPS57202988A (en) 1982-12-13
JPH0130595B2 true JPH0130595B2 (ja) 1989-06-21

Family

ID=13930816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088009A Granted JPS57202988A (en) 1981-06-10 1981-06-10 Accommodation controlling device for resistance welding

Country Status (5)

Country Link
US (1) US4503312A (ja)
EP (1) EP0080514B1 (ja)
JP (1) JPS57202988A (ja)
DE (1) DE3268006D1 (ja)
WO (1) WO1982004413A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680441A (en) * 1984-06-29 1987-07-14 Mckendrick Lorne Pressure regulator control system
IT1179830B (it) * 1984-11-26 1987-09-16 Fiat Auto Spa Dispositivo di controllo per apparecchiature per saldatura elettrica a resistenza particolarmente per il controllo di apparecchiature per la saldatura di parti di carrozzerie di autoveicoli
DE3504159A1 (de) * 1985-02-07 1986-08-07 Accumulatorenfabrik Sonnenschein GmbH, 6470 Büdingen Steuerschaltung fuer den strom eines schweisstransformators
US4694135A (en) * 1986-07-09 1987-09-15 General Motors Corporation Method and apparatus for monitoring and controlling resistance spot welding
JPH0644533Y2 (ja) * 1986-07-28 1994-11-16 トヨタ自動車株式会社 抵抗点溶接機用加圧力制御装置
JPH0644534Y2 (ja) * 1986-07-28 1994-11-16 トヨタ自動車株式会社 抵抗点溶接機用加圧力制御装置
JPH0815669B2 (ja) * 1988-07-06 1996-02-21 日本電装株式会社 抵抗溶接用制御装置
JP2747375B2 (ja) * 1991-03-06 1998-05-06 三菱電機株式会社 抵抗溶接装置
US5349151A (en) * 1993-02-08 1994-09-20 Savair Inc. Low impact flow control device
US5484976A (en) * 1993-10-01 1996-01-16 Axis Usa, Inc. Fusing methods and apparatus for use in making dynamo-electric machines
US6359249B1 (en) 1995-04-19 2002-03-19 Dct, Inc. No wat welding system
US6018729A (en) * 1997-09-17 2000-01-25 Lockheed Martin Energy Research Corporation Neural network control of spot welding
WO2000073011A1 (en) * 1998-08-05 2000-12-07 Dct Inc. Welding system
US6573470B1 (en) 1998-08-05 2003-06-03 Dct, Inc. Weld gun heat removal
AU1771601A (en) 1999-11-19 2001-05-30 Dct, Inc. Multi-arm weld gun
US8445809B2 (en) * 2005-08-05 2013-05-21 Chrysler Group Llc Method and apparatus for resistance spot welding
WO2007079041A2 (en) * 2005-12-30 2007-07-12 Roger Hirsch Resistance welding machine pinch point safety sensor
DE102006038786A1 (de) * 2006-08-18 2008-02-21 Robert Bosch Gmbh Steuerung einer Schweißvorrichtung
US9085044B2 (en) * 2008-04-17 2015-07-21 Soudronic Ag Method and welding apparatus for the determination of the strength of the welding current to be used in the welding of container bodies
AT506744B1 (de) * 2008-04-21 2012-06-15 Fronius Int Gmbh Verfahren zum regeln eines schweissgerätes
JP5205246B2 (ja) * 2008-12-09 2013-06-05 プライムアースEvエナジー株式会社 抵抗溶接良否判断方法、及び、抵抗溶接良否判断装置
DE102009016798A1 (de) * 2009-04-07 2010-10-14 Daimler Ag Verfahren und Steuergerät zum Überwachen einer Qualität von Schweißpunkten einer Widerstandsschweißzange
DE102009056234B4 (de) * 2009-11-28 2017-08-10 Volkswagen Ag Verfahren zum Überwachen und/oder Steuern einer Vorrichtung zum Anbringen eines Schweißpunktes
EP2851152B1 (en) * 2012-05-18 2018-04-25 Honda Motor Co., Ltd. Spot welding device and spot welding method
DE102012025200A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Schweißverfahren zum Verschweißen von Aluminium
CN105073326B (zh) * 2013-03-29 2018-01-30 杰富意钢铁株式会社 电阻点焊系统
US9314878B2 (en) * 2013-09-12 2016-04-19 Ford Global Technologies, Llc Non-destructive aluminum weld quality estimator
US10625365B2 (en) * 2014-12-01 2020-04-21 Jfe Steel Corporation Resistance spot welding method
JP6572281B2 (ja) * 2017-10-06 2019-09-04 ファナック株式会社 スポット溶接システム
JP7006388B2 (ja) * 2018-03-09 2022-01-24 トヨタ自動車株式会社 抵抗スポット溶接方法および抵抗スポット溶接装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148481A (en) * 1980-04-21 1981-11-17 Nissan Motor Co Ltd Adaptation controlling method in resistance welding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654424A (en) * 1970-03-23 1972-04-04 Robotron Corp Quotient circuit
DE2555792A1 (de) * 1975-12-11 1977-06-23 Eichhorn Friedrich Prof Dr Verfahren zur qualitaetssicherung der schweissverbindungen beim elektrischen widerstandspunktschweissen
FR2426529A1 (fr) * 1978-05-25 1979-12-21 Carel Fouche Languepin Procede de commande et de controle d'une operation de soudage par resistance et dispositif de mise en oeuvre
JPS55114478A (en) * 1979-02-27 1980-09-03 Nissan Motor Co Ltd Adaptive controlling method in resistance welding
JPS55147482A (en) * 1979-05-02 1980-11-17 Nippon Abionikusu Kk Method and apparatus for resistance welding
FR2480651B1 (fr) * 1980-04-21 1985-09-06 Nissan Motor Procede et systeme pour commander un soudage electrique par resistance
JPS5921274B2 (ja) * 1980-05-14 1984-05-18 日本アビオニクス株式会社 抵抗溶接装置
JPS571582A (en) * 1980-06-02 1982-01-06 Nissan Motor Co Ltd Method for assessing quality of weld zone in resistance welding
FR2488173A1 (fr) * 1980-08-08 1982-02-12 Nissan Motor Systeme et procede de commande pour soudure par resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148481A (en) * 1980-04-21 1981-11-17 Nissan Motor Co Ltd Adaptation controlling method in resistance welding

Also Published As

Publication number Publication date
DE3268006D1 (en) 1986-01-30
EP0080514A1 (en) 1983-06-08
US4503312A (en) 1985-03-05
EP0080514B1 (en) 1985-12-18
WO1982004413A1 (en) 1982-12-23
EP0080514A4 (en) 1983-09-26
JPS57202988A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
JPH0130595B2 (ja)
EP2979806A1 (en) Resistance spot welding system
KR100306366B1 (ko) 점용접방법
US4408114A (en) Resistance welding with pressure control in response to deviation between welding voltage and time varying reference values therefor
US4442337A (en) Method and system for dual control of resistance welding
CA2279372A1 (en) Plasma arc welding apparatus and method
US4678887A (en) Method and apparatus for resistance welding
US4387289A (en) Control system for resistance welding
JPS6325876B2 (ja)
JPH0130593B2 (ja)
JPH0130594B2 (ja)
JP2734092B2 (ja) スポット溶接装置の溶接電流制御装置
JPS5841952B2 (ja) 抵抗溶接における適応制御方法
GB2081925A (en) Resistance welding control
KR100226319B1 (ko) 스폿 용접 장치
GB2065925A (en) Controlling the Welding Time in Resistance Spot Welding
JPS622913B2 (ja)
JPH06344155A (ja) スポット溶接機用制御装置
JPS622915B2 (ja)
JPS5914312B2 (ja) 抵抗溶接部の品質保証及びチエツク方法
JPH05192772A (ja) 溶接肉盛装置
JPH0212673B2 (ja)
JPS594229B2 (ja) タングステン電極溶着防止制御装置
JPS5940551B2 (ja) 抵抗溶接制御方法
JPS6044075B2 (ja) フラツシユバツト溶接電圧制御法