JPH01303743A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01303743A
JPH01303743A JP13466988A JP13466988A JPH01303743A JP H01303743 A JPH01303743 A JP H01303743A JP 13466988 A JP13466988 A JP 13466988A JP 13466988 A JP13466988 A JP 13466988A JP H01303743 A JPH01303743 A JP H01303743A
Authority
JP
Japan
Prior art keywords
film
wiring
substrate
pure
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13466988A
Other languages
Japanese (ja)
Inventor
Toshiharu Akimoto
秋元 利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13466988A priority Critical patent/JPH01303743A/en
Publication of JPH01303743A publication Critical patent/JPH01303743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To inhibit precipitation of Si at a contact part and to contrive a reduction in Si residues at the time or etching on a wiring pattern in the forming process of a metal film for wiring by a method wherein a pure Al film of a desired film thickness is adhered by a sputtering deposition method and ions are implanted in the Al film in such a way that the film has a specified content of Si. CONSTITUTION:A pure Al film 3 is formed by a sputtering deposition method and thereafter, Si ions are implanted in the whole surface of the film 3 to form an Al-Si alloy film for wiring which has a mean Si concentration of 1 to 2% in the vicinity of the lower interface of the film 3. Thereby, etching residues at the time of formation of a wiring pattern subsequent to the formation of the alloy film are reduced and at the same time, an increase in a contact resistance at a contact part due to precipitation of excessive Si subsequent to a heat treatment is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム・けい素合金膜によって配線を
形成した半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device in which wiring is formed using an aluminum-silicon alloy film.

〔従来の技術〕[Conventional technology]

半導体装置のシリコン基板とコンタクト部で接触し、基
板を被覆する絶縁膜の上を通る配線にM−St合金膜を
多く用いることはよく知られている。
It is well known that an M-St alloy film is often used for wiring that comes into contact with a silicon substrate of a semiconductor device at a contact portion and passes over an insulating film that covers the substrate.

これは純Mを配線に使用するとコンタクト部のようにM
配線と基板Stが接触している領域ではその後のシンタ
ー等の熱処理によりMと基板S+が相互拡散し、特に基
板SiがM中にその熱処理温度における固溶限、すなわ
ち400℃で0.25重量%、450℃で0.5重量%
、500℃で0.8重量%まで供給され、Stが消費さ
れた基板に合金化したMがスパイク状に侵入し、pn接
合の浅い場合にはpn接合を貫通して接合破壊が起こり
、短絡、リーク等を招く。
If pure M is used for wiring, M
In the area where the wiring and the substrate St are in contact, the subsequent heat treatment such as sintering causes M and the substrate S+ to interdiffuse, and in particular, the substrate Si has a solid solubility limit in M at the heat treatment temperature, that is, 0.25 weight at 400°C. %, 0.5% by weight at 450°C
, M is supplied to 0.8% by weight at 500°C, and alloyed M enters the substrate where St is consumed in the form of a spike, and if the pn junction is shallow, it penetrates the pn junction and causes junction breakdown, causing a short circuit. , leading to leaks, etc.

そこでMを1〜2重量%、すなわち約1〜2原子%添加
したA7−Si合金を微量添加することによりアロイス
パイクによる接合破壊を抑制することができる。また、
Siの添加によりエレクトロマイグレーシランによる平
均故障時間(MTF)が大きくなり、配線としての信頼
性が増すという利点もある。
Therefore, by adding a small amount of A7-Si alloy containing 1 to 2% by weight of M, that is, about 1 to 2 atomic%, it is possible to suppress the bond failure due to alloy spikes. Also,
The addition of Si increases the mean time to failure (MTF) due to electromigration silane, which also has the advantage of increasing reliability as a wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、MにSiを添加することの欠点としては、溶解度
より多い過剰のSiは、通常Mの粒界に析出しているが
、熱処理の条件に応じて固相エピタキシャル成長により
塊状Si析出物として、特に配線の段差部やコンタクト
部に析出することが多くなる、配線部に出来ると配線の
段切れ等を起こす。
On the other hand, the disadvantage of adding Si to M is that excess Si, which exceeds the solubility, usually precipitates at the grain boundaries of M, but depending on the heat treatment conditions, it can be formed as bulk Si precipitates by solid phase epitaxial growth. Particularly, it often precipitates on the stepped portions and contact portions of wiring, and if it forms on the wiring portions, it may cause disconnection of the wiring.

これは、Siが析出した所に局所的に応力が加わり転位
が発生し易くなるためである。コンタクト部に析出した
場合、StはMを含みp形S+になっていることから特
にn゛拡散層とのオーミック性が悪化しやすくコンタク
ト抵抗の増大を引き起こす。
This is because stress is locally applied to the place where Si is precipitated, making dislocations more likely to occur. When deposited on the contact portion, since St contains M and is p-type S+, the ohmic properties with the n diffusion layer are likely to deteriorate, causing an increase in contact resistance.

さらに、コンタクトホールが1−角取下になると、析出
したSiがコンタクトを覆う割合が増えるので抵抗は急
激に増大し、最悪の場合は10にΩ程度になるコンタク
ト不良を引き起こす、Si析出の粒径は大きいもので1
−くらいになるからである。その他、Si析出がエレク
トロマイグレーションによるMTFへ悪影響を及ぼすこ
とも知られており、M並のエレクトロマイグレーシラン
耐性に戻ってしまうという報告もある。
Furthermore, when the contact hole becomes 1-square reduction, the ratio of precipitated Si covering the contact increases, so the resistance increases rapidly, and in the worst case, the Si precipitated grains cause a contact failure of about 10Ω. The diameter is large and 1
This is because it will be about -. In addition, it is known that Si precipitation has a negative effect on MTF due to electromigration, and there are reports that the electromigration silane resistance returns to the same level as M.

次に実例として、スパッタリング直後のA7−S+合金
膜のSiの深さ方向の分布を第2図に示す。スパッタリ
ングはA7−1.2%Si合金ターゲットを用い、基板
を加熱して行い、膜厚は1μであった。
Next, as an example, FIG. 2 shows the distribution of Si in the depth direction of the A7-S+ alloy film immediately after sputtering. Sputtering was performed by heating the substrate using an A7-1.2% Si alloy target, and the film thickness was 1 μm.

図示されているようにSiは基板との界面で局部的に高
濃度となっている。これは、基板温度が高くなるほどS
iが膜の表面および界面に偏析しやすくなっているため
である。基板加熱を行わなければ、Stは膜中にほぼ均
一に分布する。しかし、その場合は、段差部でオーバー
ハングの被覆形状となり、ステップカバレージの低下を
招くという問題が生じるので実施できない、このように
基板加熱の行われる通常の状態では、基板との界面で局
所的にStの含有率が増大しているので、配線パターン
のエツチング後に残滓として残るという問題と、上述し
たSi析出物がより濶刻化するという問題とがあった。
As shown in the figure, Si is locally highly concentrated at the interface with the substrate. This increases as the substrate temperature increases.
This is because i tends to segregate on the surface and interface of the film. If the substrate is not heated, St is distributed almost uniformly in the film. However, in this case, it cannot be carried out because the problem arises that an overhanging covering shape occurs at the step part, resulting in a reduction in step coverage. Since the content of St has increased in the etching process, there have been problems in that it remains as a residue after etching the wiring pattern and that the Si precipitates described above become more agglomerated.

本発明の課題は、上記の欠点を除き、配線金属として用
いられるりとSi基板との間にアロイスパイクが生ずる
ことなく、同時に配線金属膜エツチングで除去した際S
tの残滓が残ることがなく、またn4拡散層とのコンタ
クト部でのコンタクト抵抗の増加を生じない半導体装置
の製造方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, to prevent the formation of alloy spikes between the Si substrate and the wiring metal film, and to prevent the formation of alloy spikes between the wiring metal film and the Si substrate.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that does not leave any residue of t and does not cause an increase in contact resistance at a contact portion with an n4 diffusion layer.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、アルミニウム・
けい素合金膜よりなる配線を有する半導体装置の製造の
際に、スパッタ蒸着法にて純アルミニウム膜を形成した
後、けい素イオンをアルミニウム膜全面に注入し、下部
界面近傍で1〜2c/Gの平均けい素濃度を有する配線
用アルミニウム・けい素合金膜を形成するものとする。
In order to solve the above problems, the present invention
When manufacturing a semiconductor device having wiring made of a silicon alloy film, after forming a pure aluminum film by sputter deposition, silicon ions are implanted into the entire surface of the aluminum film to form a 1 to 2 c/G near the lower interface. It is assumed that an aluminum-silicon alloy film for wiring is formed having an average silicon concentration of .

〔作用〕[Effect]

kl−Si合金配線の下部界面でのけい素濃度をイオン
注入により所期の1〜2%にすることができるので、そ
の後の配線パターン形成時のエツチング残滓を低減する
とともに熱処理後の過剰Siの析出に起因するコンタク
ト部でのコンタクト抵抗の増大を低減する。そのほかに
Siイオン注入時の照射損傷によりA111Iを非晶質
化してMの粒径の成長を押さえ、ヒロックの発生を抑制
する。
The silicon concentration at the lower interface of the kl-Si alloy wiring can be increased to the desired 1 to 2% by ion implantation, which reduces etching residue during subsequent wiring pattern formation and eliminates excess Si after heat treatment. Reduces increase in contact resistance at the contact portion due to precipitation. In addition, A111I is made amorphous due to irradiation damage during Si ion implantation, thereby suppressing the growth of M grain size and suppressing the formation of hillocks.

〔実施例〕〔Example〕

第1図fat〜[0)は本発明の一実施例の配線形成工
程を順次示す、Si基板1上に形成された5iOz膜2
にはコンタクト部に開口部4が明けられており、まず通
常のマグネトロンスバフタ装置にて膜厚10000人の
純M膜3を被着する (図a)。基板1の裏面の加熱は
約200℃程度にすることで高アスペクト比を持つコン
タクト部でのりの段差被覆性は向上させることが出来る
。次ぎに、イオンソースガスとしてSlFmを用い、S
l” 5を加速電圧500〜600kV、ドーズI3〜
4X10”(J−”の条件でイオン注入をする (図b
)。この場合、大電流イオン注入装置を用いることで、
冷却効率を高めることができるので処理中のウェハ温度
は100℃以内に押さえられる。さらに、回転イオン注
入法で行えば、コンタクト部等の段差でシャドー効果を
低減することができ、段差に依存せず面内で均一なドー
ズが可能となる。上記注入条件では、イオンの投影飛程
(RP ) #kJ0.65u、標準段差(ΔRP)約
0.35μであるので、図(C)に示す注入後のり膜3
1のSi基板1あるいはSin、膜2との界面付近はS
i濃度が1%程度、Si原子数密度では約6 X IQ
” ell −”となり、ピーク値はR1−において1
.6%程度となる。このようにして界面における異常な
偏析も低滅でき、その結果、Si析出によるコンタクト
抵抗の増大を防止し、また、エツチング時のSi残滓を
低減することが可能となる。さらに、イオン注入時の照
射損傷によりM膜31は非晶質化されグレインの成長を
抑止することが可能となりヒロックの低減も可能となる
。上記実施例は1層配線時の場合に生じる利点を特に挙
げたが、それと共にMの2層配線等の多層配線時のスル
ーホール抵抗も低減できるという顕著な利点も持つ8通
常2N目の配線は鈍りなので1層目のusi配線との接
触面ではSiの析出が問題となる。通常のスパッタ蒸着
によるA7−3iでは、第2図に示すようにMの上部表
面にもSiの偏析がある。ところが上記イオン注入によ
るA7−5i合金膜31の上部表面のSi濃度はガウス
分布の裾にあたり非常に低いのでStの析出がおこりに
りく、良好なスルーホール抵抗を得ることができる。
FIG. 1 fat to [0] sequentially shows the wiring forming process of an embodiment of the present invention, and shows a 5iOz film 2 formed on a Si substrate 1.
An opening 4 is made in the contact part, and first a pure M film 3 with a thickness of 10,000 is deposited using a normal magnetron baffter device (Figure a). By heating the back surface of the substrate 1 to about 200° C., it is possible to improve the step coverage of the adhesive at the contact portion having a high aspect ratio. Next, using SlFm as the ion source gas, S
Acceleration voltage 500~600kV, dose I3~
Ion implantation is performed under the condition of 4X10” (J-”) (Figure b
). In this case, by using a high current ion implanter,
Since the cooling efficiency can be increased, the wafer temperature during processing can be kept within 100°C. Furthermore, if the rotational ion implantation method is used, it is possible to reduce the shadow effect due to the step difference in the contact portion, etc., and it is possible to achieve a uniform dose within the plane without depending on the step difference. Under the above implantation conditions, the projected range (RP) of ions is #kJ0.65u and the standard step difference (ΔRP) is approximately 0.35μ, so the film 3 after implantation shown in Figure (C)
The area near the interface with the Si substrate 1 or the Si film 2 of 1 is S.
i concentration is about 1%, Si atomic number density is about 6 X IQ
“ell −” and the peak value is 1 at R1−.
.. It will be about 6%. In this way, abnormal segregation at the interface can be reduced, and as a result, it is possible to prevent an increase in contact resistance due to Si precipitation and to reduce Si residue during etching. Furthermore, the M film 31 becomes amorphous due to irradiation damage during ion implantation, making it possible to suppress grain growth and reducing hillocks. Although the above embodiments particularly focus on the advantages that arise in the case of one-layer wiring, it also has the remarkable advantage of reducing through-hole resistance in multi-layer wiring such as M two-layer wiring. Since it is dull, Si precipitation becomes a problem at the contact surface with the first layer USI wiring. In A7-3i produced by ordinary sputter deposition, there is segregation of Si also on the upper surface of M, as shown in FIG. However, since the Si concentration on the upper surface of the A7-5i alloy film 31 formed by the ion implantation is very low and falls at the foot of the Gaussian distribution, precipitation of St is unlikely to occur, and good through-hole resistance can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配線用金属膜形成過程において、まず
スパッタ蒸着法にて所望の膜厚の純M膜を被着し、その
&siイオンをA7膜の下部界面近傍におけるSt含有
率が平均1〜2%程度になるようイオン注入することに
より、特にコンタクト部でのSiの異常な偏析が抑止さ
れ、コンタクト抵抗の増大及び配線パターンエツチング
時のSi残滓が低減する。さらに、イオン注入時の照射
損傷にょるりの非晶質化にともないMの結晶粒成長が阻
害され、ヒロックを低減することも可能となる。また、
M多層配線時においては、下JiAJ−3i配腺の上部
表面部におけるSi濃度が非常に低いため上層鈍り膜と
の接続部であるスルーホール内でのSiの析出が無視で
きるので良好なコンタクト抵抗を得ることも可能になる
という利点も生じる。
According to the present invention, in the process of forming a metal film for wiring, a pure M film of a desired thickness is first deposited by sputter deposition, and the &si ions are added to the A7 film so that the average St content near the lower interface is 1. By implanting ions to a concentration of about 2%, abnormal segregation of Si is suppressed, especially in the contact portion, and an increase in contact resistance and Si residue during wiring pattern etching are reduced. Furthermore, the crystal grain growth of M is inhibited due to the slight amorphization caused by radiation damage during ion implantation, making it possible to reduce hillocks. Also,
In M multilayer wiring, the Si concentration at the upper surface of the lower JiAJ-3i wiring is very low, so the precipitation of Si in the through holes that connect with the upper layer dull film can be ignored, resulting in good contact resistance. There is also the advantage that it becomes possible to obtain

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+al〜(C1は本発明の一実施例の配線形成工
程を順次示す断面図、第2図はA7−1.2%Si合金
膜のスパッタ蒸着直後における厚さ方向のS i f1
4度分布図である。 1:Si基板、2 : 5ift膜、3:純M膜、31
:A77層図 第2図
Figure 1 + al ~ (C1 is a cross-sectional view sequentially showing the wiring forming process of one embodiment of the present invention, Figure 2 is S i f1 in the thickness direction immediately after sputter deposition of an A7-1.2% Si alloy film
It is a 4 degree distribution map. 1: Si substrate, 2: 5ift film, 3: Pure M film, 31
:A77 layer diagram Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)アルミニウム・けい素合金膜よりなる配線を有する
半導体装置の製造の際に、スパッタ蒸着法にて純アルミ
ニウム膜を形成したのち、けい素イオンを該アルミニウ
ム膜全面に注入し、下部界面近傍で1〜2%の平均けい
素濃度を有する配線用アルミニウム・けい素合金膜を形
成することを特徴とする半導体装置の製造方法。
1) When manufacturing a semiconductor device having wiring made of an aluminum-silicon alloy film, a pure aluminum film is formed by sputter deposition, and then silicon ions are implanted into the entire surface of the aluminum film to form a layer near the lower interface. A method for manufacturing a semiconductor device, comprising forming an aluminum-silicon alloy film for wiring having an average silicon concentration of 1 to 2%.
JP13466988A 1988-06-01 1988-06-01 Manufacture of semiconductor device Pending JPH01303743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13466988A JPH01303743A (en) 1988-06-01 1988-06-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13466988A JPH01303743A (en) 1988-06-01 1988-06-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01303743A true JPH01303743A (en) 1989-12-07

Family

ID=15133792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13466988A Pending JPH01303743A (en) 1988-06-01 1988-06-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01303743A (en)

Similar Documents

Publication Publication Date Title
KR100243286B1 (en) Method for manufacturing a semiconductor device
US6291344B1 (en) Integrated circuit with improved contact barrier
KR950009934B1 (en) Metalizing method of semiconductor device
US8324044B2 (en) Method of producing a semiconductor device with an aluminum or aluminum alloy electrode
JP4221012B2 (en) Semiconductor device and manufacturing method thereof
JPS59210642A (en) Manufacture of semiconductor device
US4135292A (en) Integrated circuit contact and method for fabricating the same
CA1238429A (en) Low resistivity hillock free conductors in vlsi devices
JP3252397B2 (en) Wiring formation method
JPH01303743A (en) Manufacture of semiconductor device
JP3072544B2 (en) Semiconductor device wiring method
KR100333358B1 (en) A method of forming contact in semiconductor device
JP3337758B2 (en) Method for manufacturing semiconductor device
US5461006A (en) Method for forming contacts with anomalously low resistance
US5854116A (en) Semiconductor apparatus
JPH07193025A (en) Manufacture of semiconductor device
JPS59100565A (en) Semiconductor device
JPH0795539B2 (en) Integrated circuit and manufacturing method thereof
JPH04196420A (en) Structure of semiconductor device and method of manufacturing the same
AU608042B2 (en) Chip contacts without oxide discontinuities
JPS61140133A (en) Manufacture of semiconductor device
JPS61156837A (en) Manufacture of semiconductor device
JP2961840B2 (en) Manufacturing method of Al wiring structure
EP0609501A2 (en) Aluminium based metallization for semiconductor device
KR960015494B1 (en) Metal wiring method of semiconductor device