JPH01290501A - Hydrogen storage element and gaseous hydrogen detecting element - Google Patents

Hydrogen storage element and gaseous hydrogen detecting element

Info

Publication number
JPH01290501A
JPH01290501A JP63119663A JP11966388A JPH01290501A JP H01290501 A JPH01290501 A JP H01290501A JP 63119663 A JP63119663 A JP 63119663A JP 11966388 A JP11966388 A JP 11966388A JP H01290501 A JPH01290501 A JP H01290501A
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
hydrogen storage
substrate
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119663A
Other languages
Japanese (ja)
Inventor
Akio Furukawa
明男 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63119663A priority Critical patent/JPH01290501A/en
Publication of JPH01290501A publication Critical patent/JPH01290501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To prevent the release of a hydrogen occluding thin film due to the repeated occlusion and discharge of hydrogen by depositing a ductile metallic strip on at least a part of the hydrogen storage alloy thin film deposited on the surface of a substrate to cover the substrate and the thin film. CONSTITUTION:The thin film 3 of the hydrogen storage alloy such as a lanthanum-nickel alloy is formed on the surface of the insulating substrate having a flat surface such as a glass substrate 1 by sputtering, vapor deposition, etc. A thin strip 4 consisting of a good-conductivity metal having ductility such as copper, gold, silver, and aluminum is deposited on both ends, central part, etc., of the thin film 3 in the longitudinal direction to cover the surface of the thin film 3 and the surface of the glass substrate 1 by sputtering, etc., and a hydrogen storage element is obtained. The electric conductivity of the element is increased when hydrogen is occluded, and decreased when hydrogen is discharged. As a result, the element can also be utilized as a gaseous hydrogen detecting element.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素貯蔵に用いられる水素貯蔵素子、並びに
その素子を用いた水素ガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a hydrogen storage element used for hydrogen storage, and a hydrogen gas detection element using the element.

(ロ)従来の技術 近年、クリーンエネルギー源である水素の貯蔵材料とし
て水素貯蔵合金の利用に関する研究が為されている。水
素貯蔵方法としては、水素吸蔵合金の粉体を耐圧容器に
充填し、温度と水素圧力を変化させて水素の吸蔵、放出
を行なう方法が採られている。
(b) Prior art In recent years, research has been conducted on the use of hydrogen storage alloys as storage materials for hydrogen, which is a clean energy source. As a hydrogen storage method, a method is adopted in which a pressure container is filled with powder of a hydrogen storage alloy, and hydrogen is stored and released by changing the temperature and hydrogen pressure.

然し乍ら水素吸蔵合金の粉体は水素吸蔵、放出に伴い、
体積の膨張、収縮を起こす、その結果、水素吸蔵、放出
の繰り返しにより、次第に破砕し微粉化し、所望の合金
特性が長期間は得られないという欠点があった。このよ
うな問題点に鑑み、例えば、特開昭58−27976号
公報に示されているように、水素吸蔵合金を薄膜化して
、水素吸蔵、放出の繰り返しによる破砕を抑制する方法
が提案されている。
However, as hydrogen storage alloy powder absorbs and releases hydrogen,
The disadvantage is that the volume expands and contracts, and as a result, due to repeated hydrogen absorption and release, it gradually breaks down and becomes fine powder, making it impossible to obtain the desired alloy properties for a long period of time. In view of these problems, for example, as shown in Japanese Patent Application Laid-Open No. 58-27976, a method has been proposed in which the hydrogen storage alloy is made into a thin film to suppress fracture due to repeated hydrogen absorption and release. There is.

(ハ)発明が解決しようとする課題 ところが新しく提案された薄膜化法の場合、水素吸蔵合
金薄膜を作成する基板が、ガラスなどの非金属で、かつ
平坦性が悪い場合、水素吸蔵、放出の繰り返しにより、
該薄膜の微小な体積、膨張、収縮が原因で水素吸蔵合金
薄膜の一部が基板から剥離破壊するという問題点があっ
た。
(c) Problems to be solved by the invention However, in the case of the newly proposed thin film formation method, if the substrate on which the hydrogen storage alloy thin film is made is a non-metallic material such as glass and has poor flatness, hydrogen absorption and release may occur. Through repetition,
There is a problem in that a part of the hydrogen storage alloy thin film peels off from the substrate due to the small volume, expansion, and contraction of the thin film.

(ニ)課題を解決するための手段 本発明は、このような問題点を解決すべく為されたもの
であって、基板表面に被着された水素吸蔵合金薄膜と、
上記基板表面から少なくとも該薄膜表面の一部に跨って
形成された延展性を有する金属細条と、から構成されて
いる。
(d) Means for Solving the Problems The present invention has been made to solve these problems, and includes a hydrogen storage alloy thin film deposited on the surface of a substrate,
A metal strip having ductility is formed extending from the surface of the substrate to at least a part of the surface of the thin film.

(ホ) 作用 水素吸蔵合金薄膜表面の一部を延展性を有する金属細条
に依って被っているので、水素吸蔵合金薄膜の剥離現象
を抑制することができる。
(E) Function Since a part of the surface of the hydrogen storage alloy thin film is covered with the ductile metal strip, it is possible to suppress the peeling phenomenon of the hydrogen storage alloy thin film.

(へ)実施例 本発明の実施例を図面を参照しつつ詳細に説明する。(f) Example Embodiments of the present invention will be described in detail with reference to the drawings.

平坦面を有する絶縁性基板、例えばガラス基板(1)の
−表面(2)に代表的な水素吸蔵合金であるランタン・
二ンケル合金(LaNii)の薄膜(3)をスパッタ法
を用い約0.5μmの膜厚で帯状に形成Cる(第1図)
、この薄膜(3)のサイズは、長さ約2511111、
幅約5圓である。
Lanthanum, a typical hydrogen-absorbing alloy, is placed on the surface (2) of an insulating substrate having a flat surface, such as a glass substrate (1).
A thin film (3) of Ninkel alloy (LaNii) is formed into a band shape with a film thickness of approximately 0.5 μm using the sputtering method (Figure 1).
, the size of this thin film (3) is approximately 2511111111 in length,
It is about 5 circles wide.

次に、第2図に示すように、LaN1a薄膜(3)の長
さ方向の両端、並びにその中央部に夫々隔離された2個
所、合計4個所に、銅、金、銀、アルミニウム、ニッケ
ルなどの延展性を有する良導電性の金属から成る細条(
4)・・・をスパッタ法などを用いて被着して本発明に
係る水素吸蔵素子を完成する。尚、これらの細条(4)
・・・は、長さ約20圓、幅約3m、厚さ約50011
rnであり、LaNi1薄膜(3)の表面からガラス基
板(1)の表面にまで延在している。
Next, as shown in Figure 2, copper, gold, silver, aluminum, nickel, etc. A strip of highly conductive metal with a ductility of
4)... is deposited using a sputtering method or the like to complete the hydrogen storage element according to the present invention. Furthermore, these details (4)
...is about 20 mm long, about 3 m wide, and about 50011 mm thick.
rn and extends from the surface of the LaNi1 thin film (3) to the surface of the glass substrate (1).

斯して得た水素貯蔵素子を用いて100℃において水素
吸蔵時の水素圧力20atm、放出時のそれをI X 
10−’atmとして、水素吸蔵、放出操作を400サ
イクル繰り返したところ、LaN1a薄膜(3)の剥離
は全く起こらなかった。
Using the thus obtained hydrogen storage element, at 100°C, the hydrogen pressure during hydrogen absorption was 20 atm, and the hydrogen pressure during hydrogen release was IX
When hydrogen storage and release operations were repeated 400 cycles at 10-'atm, no peeling of the LaN1a thin film (3) occurred.

一方、L a N ii薄膜(3)の表面に夫々隔離し
て設けられた4個の細条(4)・・・を電極とし、直流
4端子法でLaNi5薄膜(3)の電気抵抗を測定して
電気伝導度を観察したところ、この1aNL薄膜(3)
は水素吸蔵時に電気伝導度が増加し、水−素放出時に減
少する現象が確認でき、水素ガス検知素子としての利用
も可能である。
On the other hand, the electrical resistance of the LaNi5 thin film (3) was measured using the DC four-probe method using four strips (4) separately provided on the surface of the LaNi thin film (3) as electrodes. When we observed the electrical conductivity of this 1aNL thin film (3)
It was confirmed that the electrical conductivity increases when hydrogen is absorbed and decreases when hydrogen is released, and it can also be used as a hydrogen gas detection element.

具体的には、上記したサイズの素子の場合、通常1個の
細条(4)とそれに隣接する細条(4)との間の電気抵
抗値は約100Ωであるが、l、aNia薄膜(3)が
水素を吸うとその抵抗値が約5%低下する。
Specifically, in the case of an element of the size described above, the electrical resistance value between one strip (4) and the adjacent strip (4) is usually about 100Ω, but the l, aNia thin film ( When 3) absorbs hydrogen, its resistance value decreases by about 5%.

ここで参考までに単に薄膜化しただけの従来品と、本発
明素子との性能比較を第3図にまとめている。この図か
ら明らかなように、200サイクルで剥離現象を起こし
ていたものが、本発明を採用することに依ってその倍の
400サイクルでも剥離は起こらず、また水素検知も可
能となり、本発明の優位性が確認された。
For reference, FIG. 3 summarizes the performance comparison between a conventional product simply made thinner and the device of the present invention. As is clear from this figure, by adopting the present invention, peeling phenomenon occurred after 200 cycles, but no peeling occurred even after 400 cycles, and hydrogen detection became possible. superiority was confirmed.

尚、上記の水素貯蔵素子の一連の製造工程を不活性ガス
中で行なうことで薄膜(3)や細条(4)・・・の酸化
が防止され、ガラス基板(1)との付着力を強めること
ができる。
Furthermore, by carrying out the series of manufacturing steps for the hydrogen storage element described above in an inert gas, oxidation of the thin film (3) and strips (4)... is prevented, and the adhesion to the glass substrate (1) is improved. It can be strengthened.

また、水素吸蔵合金として、LaNi@以外に、TiF
e系合金、T1Co系合金ZrMn系合金等についても
同様に用いることができ、薄膜作成方法としては、スパ
ッタ法以外の方法、例えば蒸着法やイオンブレーティン
グ法なども使用可能である。
In addition to LaNi@, TiF is also used as a hydrogen storage alloy.
E-based alloys, T1Co-based alloys, ZrMn-based alloys, etc. can also be used in the same way, and methods other than sputtering, such as vapor deposition and ion-blating methods, can also be used to form thin films.

更に水素吸蔵合金薄膜は、アモルファス構造にすること
で、膜強度を高めることができる。即ち、水素吸蔵合金
薄膜の成膜時に基板を極端に冷却させておくことに依っ
てその膜をアモルファス化させることができる。
Furthermore, the strength of the hydrogen storage alloy thin film can be increased by forming it into an amorphous structure. That is, by extremely cooling the substrate during the formation of a hydrogen-absorbing alloy thin film, the film can be made amorphous.

更にまた、絶縁性基板の種類としてガラス以外にもセラ
ミックや耐熱性高分子などが使用可能である。
Furthermore, as the type of insulating substrate, other than glass, ceramics, heat-resistant polymers, etc. can be used.

(ト)発明の効果 本発明は以上の説明から明らかな如く、基板表面に被着
された水素吸蔵合金薄膜と、上記基板表面から少なくと
も該薄膜表面の一部に跨って形成された延展性を有する
金属細条と、から構成されているので、水素吸蔵、放出
の繰り返しによっても水素吸蔵合金薄膜が基板から剥離
しにくく、水素貯蔵素子の信頼性の向上と長寿命化が期
待できると同時に、水素吸蔵、放出する際の水素吸蔵合
金薄膜の電気抵抗変化が検知できるため、水素ガス検知
素子としての利用も可能である。
(G) Effects of the Invention As is clear from the above description, the present invention provides a hydrogen storage alloy thin film deposited on the surface of a substrate, and a ductility formed over at least a part of the thin film surface from the substrate surface. Since the hydrogen storage alloy thin film is difficult to peel off from the substrate even after repeated hydrogen absorption and release, it is expected that the reliability and longevity of the hydrogen storage element will be improved. Since it is possible to detect changes in the electrical resistance of the hydrogen storage alloy thin film during hydrogen absorption and release, it can also be used as a hydrogen gas detection element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の水素貯蔵素子の製造工程を示
す斜視図、第3図は従来品と本発明素子の性能比較図で
ある。 (1)・・・・ガラス基板、 (3)・・・・LaN1a薄膜、 (4)・・・・金属細条。
1 and 2 are perspective views showing the manufacturing process of the hydrogen storage device of the present invention, and FIG. 3 is a performance comparison diagram of the conventional product and the device of the present invention. (1)...Glass substrate, (3)...LaN1a thin film, (4)...Metal strip.

Claims (2)

【特許請求の範囲】[Claims] (1)基板表面に被着された水素吸蔵合金薄膜と、上記
基板表面から少なくとも該薄膜表面の一部に跨って形成
された延展性を有する金属細条と、から成る水素貯蔵素
子。
(1) A hydrogen storage element comprising a hydrogen storage alloy thin film deposited on a substrate surface, and a ductile metal strip formed from the substrate surface over at least a part of the thin film surface.
(2)絶縁性基板表面に被着された帯状の水素吸蔵合金
薄膜と、該帯状水素吸蔵合金薄膜に対してその長さ方向
に隔離形成された複数の延展性を有する金属細条と、か
ら成る水素ガス検知素子。
(2) A strip-shaped hydrogen-absorbing alloy thin film deposited on the surface of an insulating substrate, and a plurality of ductile metal strips formed in isolation in the length direction of the strip-shaped hydrogen-absorbing alloy thin film. A hydrogen gas detection element consisting of
JP63119663A 1988-05-17 1988-05-17 Hydrogen storage element and gaseous hydrogen detecting element Pending JPH01290501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119663A JPH01290501A (en) 1988-05-17 1988-05-17 Hydrogen storage element and gaseous hydrogen detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119663A JPH01290501A (en) 1988-05-17 1988-05-17 Hydrogen storage element and gaseous hydrogen detecting element

Publications (1)

Publication Number Publication Date
JPH01290501A true JPH01290501A (en) 1989-11-22

Family

ID=14766988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119663A Pending JPH01290501A (en) 1988-05-17 1988-05-17 Hydrogen storage element and gaseous hydrogen detecting element

Country Status (1)

Country Link
JP (1) JPH01290501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317196A (en) * 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
US20110088456A1 (en) * 2009-10-16 2011-04-21 Fan Ren Normalized hydrogen sensing and methods of fabricating a normalized hydrogen sensor
CN106242571A (en) * 2016-08-29 2016-12-21 华北电力大学(保定) A kind of preparation method of titanium carbide hydrogen storage material
CN108602668A (en) * 2016-01-21 2018-09-28 艾合知识产权控股有限公司 The method for improving hydrogen load ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317196A (en) * 2005-05-10 2006-11-24 Akihisa Inoue Hydrogen gas sensor
US20110088456A1 (en) * 2009-10-16 2011-04-21 Fan Ren Normalized hydrogen sensing and methods of fabricating a normalized hydrogen sensor
CN108602668A (en) * 2016-01-21 2018-09-28 艾合知识产权控股有限公司 The method for improving hydrogen load ratio
CN106242571A (en) * 2016-08-29 2016-12-21 华北电力大学(保定) A kind of preparation method of titanium carbide hydrogen storage material

Similar Documents

Publication Publication Date Title
US3645785A (en) Ohmic contact system
JPH10190070A (en) Thermoelectric converter and manufacture thereof
US4166279A (en) Electromigration resistance in gold thin film conductors
Mueller et al. Superconducting aluminum heat switch and plated press‐contacts for use at ultralow temperatures
JPS59103216A (en) Electric contact
JPS59104184A (en) Solar battery
JPH01290501A (en) Hydrogen storage element and gaseous hydrogen detecting element
Kampwirth et al. Application of high rate magnetron sputtering to the fabrication of A-15 compounds
Maskell et al. Agglomeration of thin platinum films on a zirconia substrate
US3495959A (en) Electrical termination for a tantalum nitride film
JPH0193149A (en) Semiconductor device
WO2002073725A2 (en) Protective coating for fuel cell interconnects
US4295147A (en) Josephson devices of improved thermal cyclability and method
JPS58198884A (en) Surge absorbing element
JPH0423401B2 (en)
JPH0645141A (en) Electrode of oxide superconductor current lead
JP2721322B2 (en) Oxide superconducting compact
JPS61233968A (en) Manufacture of hydrogen occlusion electrode
Song et al. Reflective and Low-Resistance Zn∕ Rh Contacts to p-Type GaN for Flip-Chip Light-Emitting Diodes
JPS609341B2 (en) Manufacturing method of semiconductor device
JP2004288557A (en) Reed switch
Dean Effect of thermal aging on the electrical resistivity of thin alloy films
Yamashita et al. Barrier metal against Ga and Zn out‐diffusion in p‐GaP/Au: Zn contact system
JPH1129858A (en) Sputtering target
JP4295698B2 (en) Coherer using highly functional material, lightning detector and lightning ground fault detector using the same