JP2004288557A - Reed switch - Google Patents

Reed switch Download PDF

Info

Publication number
JP2004288557A
JP2004288557A JP2003081727A JP2003081727A JP2004288557A JP 2004288557 A JP2004288557 A JP 2004288557A JP 2003081727 A JP2003081727 A JP 2003081727A JP 2003081727 A JP2003081727 A JP 2003081727A JP 2004288557 A JP2004288557 A JP 2004288557A
Authority
JP
Japan
Prior art keywords
contact
layer
reed switch
rhodium
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081727A
Other languages
Japanese (ja)
Other versions
JP4450561B2 (en
Inventor
Kazuya Yokoyama
和也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Sensor Device Corp
Original Assignee
Oki Sensor Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Sensor Device Corp filed Critical Oki Sensor Device Corp
Priority to JP2003081727A priority Critical patent/JP4450561B2/en
Publication of JP2004288557A publication Critical patent/JP2004288557A/en
Application granted granted Critical
Publication of JP4450561B2 publication Critical patent/JP4450561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Contacts (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable reed switch preventing cracks in a contact film layer and having a long contact life. <P>SOLUTION: The reed switch is formed by arranging a first contact film layer containing one kind of element out of iridium (Ir), ruthenium (Ru) and rhodium (Rh) as a main component on a contact surface of a reed piece, and arranging a second contact film layer composed of a plurality of layers including a single layer containing at least rhodium (Rh) as a main component, or a plurality of layers containing rhodium (Rh) as a main component, or a diffusion layer of a metallic magnetic material made of gold, silver, copper, nickel, etc., on the lower layer at a contact surface side of the first contact film layer for relaxing the stress. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はリード片を接点とするリードスイッチ、特にその接点の構成に関するものである。
【0002】
【従来の技術】
従来、リードスイッチは、図3に示すように、一対の細長いリード片1、2のそれぞれの一端を接点部として、この接点部10、20を真空状態、または不活性ガスを封じ込めた状態のガラス管よりなる容器3に、封入した構造になっている。上記リード片1、2は、例えば、鉄ニッケル合金のような金属磁性体で形成されており、それぞれの接点部10、20は互いに所定の重なりと間隔を保って配置されている。また、それぞれの接点部が対向する面である接点面には、金(Au)を下地被膜層11、21に配した後、イリジウム(Ir)を主成分とする接点被膜層12、22が形成されていた。(例えば、特許文献1参照)
【0003】
【特許文献1】
特開平5−186953号公報(段落007、図1)
【0004】
【発明が解決しようとする課題】
しかし、上記のごとき従来のリードスイッチの接点構成では、接点部をガラスにより封止する際の熱によりリード片に熱膨張が発生し、リード片を構成する金属磁性体とイリジウム(Ir)を主成分とする接点被膜層間の熱膨張量の差による応力で、該イリジウム(Ir)を主成分とする接点被膜層に亀裂が生じ、これにより接点寿命が劣化するという問題点があった。従って、熱膨張差による接点被膜層の亀裂を防止し、接点寿命の永い、安定したリードスイッチの開発が望まれていた。
【0005】
【課題を解決するための手段】
本発明のリードスイッチは、リード片を接点とするリードスイッチであって、該リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分を主成分とする第1接点被膜層を配設し、該第1接点被膜層の前記接点表面側下層にロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設してなるものである。
【0006】
また、本発明によるリードスイッチは、リード片を有するリードスイッチであって、該リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1接点被膜層を配設し、該第1接点被膜層の前記接点表面側下層に遷移金属又はそれらの各合金の少なくとも1種よりなる下地被膜層と、さらにリード片を構成する金属磁性体の前記下地被膜層と同一金属によるによる拡散層を順次に配設したものである。
【0007】
【発明の実施の形態】
[実施の形態1]
図1は、本発明の実施の形態1における、構成を示す説明図である。
図において、1、2はリード片、10、20は接点部、11、21は下地被膜層、13、23は第2接点被膜層、14、24は第1接点被膜層である。
接点部10と接点部20とが対向する接点面には、リード片1、2を構成する金属磁性体の表面に、遷移金属、特に金、銀、銅、ニッケル等を用いた下地被膜層11、12を形成する。尚、下地被膜層11、12の厚さは、0.2〜1.0μm程度にする。
【0008】
前記下地被膜層11、12の厚さは、第2接点被膜層13、23の金属磁性体への被膜の下地特性を有する範囲で成る可く薄い方が好ましい。ただ、0.2μm以下では下地特性が部分的にむら(主にメッキ法におけるピンホールなどによる)を生じることもあり、また、1.0μm以上であっても下地特性(密着性)に余り変化が無く、また負荷回路の開閉を行い接点損傷が進行した際に、損傷部の下地金属拡散濃度が上昇し、接点寿命を劣化させる粘着現象等の原因ともなる。従って、0.2〜1.0μm程度にするのが望ましい。
【0009】
上記下地処理の後、リード片1、2の接点部10、20に、第2接点被膜層13、23をロジウム(Rh)を用いて形成する。第2接点被膜層13、23の厚さは、0.5〜5.0μm程度の膜厚にする。
次に、第2接点被膜層13、23上に、第1接点被膜層14、24をイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を用いて形成する。第1接点被膜層14、24の厚さは0.5〜2.0μm程度とする。
【0010】
上記により接点構成されたリード片を用いてガラス封止を行う。この場合、封止熱によりリード片接点部10、20に熱膨張が発生する。
この際、熱膨張量の差により、金属磁性体−下地被膜層11、12間、下地被膜層11、12−第2接点被膜層13、23間、第2接点被膜層13、23−第1接点被膜層14、24間のそれぞれに膨張量に応じた応力が発生するが、第2接点被膜層13、23のロジウム(Rh)は、材料的に前記封止熱に充分耐えうる耐応力性を有しており、また、イリジウム(Ir)の膨張係数は約8×10−6/℃であり、また、ルテニウム(Ru)の膨張係数も約6.7×10−6/℃であり、これはロジウム(Rh)の膨張係数とほぼ同程度であることから、第1接点被膜層14、24にかかる応力を抑制することができ、延性の乏しいイリジウム(Ir)やルテニウム(Ru)を接点被膜に使用しても、熱による亀裂の発生を防ぐことができる。
【0011】
上記から、第1接点被膜層14、24の厚さは、使用頻度、要求寿命により1義的に決めることができ、通常の使用状態では0.5〜2.0μmの範囲で適宜選択することができる。
【0012】
また、第2接点被膜層層13、23の厚さは、熱応力を弛緩するための厚さを必要とし、第1接点被膜層14、24の境界面における剪断応力が許容応力内になるように選ばれなければならない。封止温度、各被膜層間の膨張係数の差、および第1接点被膜層14、24の許容剪断応力等により決められる。通常条件では第1接点被膜層14、24の厚さより厚く、0.5〜5.0μm程度の厚さとして選択される。
【0013】
以上のように、イリジウム(Ir)やルテニウム(Ru)のような延性の乏しい第1接点被膜層14、24の下層として、ロジウム等の熱応力を緩和するための予備接点被膜である第2接点被膜層13、23を形成することにより、封止熱などによる接点被膜の亀裂の発生が抑制される。このため、イリジウム(Ir)やルテニウム(Ru)の高融点・高硬度という物性を十分活かし、高負荷での用途や長寿命の用途に適したリードスイッチが得られる。
【0014】
[実施の形態2]
図2は本発明の実施の形態2における、構成を示す説明図である。
図において、15、25は拡散層である。なお、図1と同一の構成部分については同じ符号を付し、説明を省略する。
【0015】
本実施の形態は、上述の実施の形態1においては応力緩和のためにロジウム(Rh)を使用するため、高コストになってしまう恐れがあるのに対し、ロジウム(Rh)を使用せずに、安価に同目的を達成せんとするものである。
【0016】
図2において、鉄ニッケル合金等の金属磁性体で形成されたリード片1、2の接点部10、20の表面に、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種を使用して、1.0〜5.0μmの被膜を形成し、その後、800〜1000℃程度の高温水素雰囲気中で前記金属磁性体の表面に熱拡散し、拡散層15、25を形成する。
【0017】
次いで、後に施行される第1接点被膜層12、22の密着性を高めるために、前記被膜と同じ材質の遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種からなる、厚さ0.2〜0.5μm程度の下地被膜層11、21を形成する。該下地被膜層11、21の目的は、第1接点被膜層12、22の密着性を高めるところにあり、その厚さは厚い必要はなく、コスト的に均一に被覆される限界として0.2〜0.5μm程度が好ましい。
その後さらに、この下地被膜層11、21上に0.5〜2.0μm程度のイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1接点被膜層12、22が形成される。
【0018】
前記のごとく、リード片1、2を用いてガラス封止を行うと、封止熱によりリード片接点部10、20に熱膨張が発生する。ここで、接点部10、20の表面には、あらかじめ、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種を使用した拡散層を形成し、それにより熱膨張量が変化することにより、金属磁性体−第1接点被膜間に発生する熱応力を緩和・吸収する。
【0019】
以上のように、本実施の形態2によれば、イリジウム(Ir)やルテニウム(Ru)のような延性の乏しい第1接点被膜層12、22の下層に、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種からなる下地被膜層11、21と、金属磁性体の拡散層を形成することにより、更に低コストで接点被膜の亀裂の発生を抑制することができる。
【0020】
[実施の形態3]
上記実施の形態1、2において、その接点構成は、第1接点被膜層12、22にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分として適用した場合について詳述されているが、同一目的をもってこれらに代わり、同じ白金系金属に属する接点材料を用いた場合にも適用することが可能である。
【0021】
【発明の効果】
本発明は、リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1接点被膜層を配設し、該第1接点被膜層の前記接点表面側下層に少なくともロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設したことにより、接点被膜層の亀裂発生を防止し、接点寿命の永い、安定したリードスイッチを提供することができる。
【0022】
また、本発明は、該リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1被膜層を配設し、該第1接点層の前記接点表面側下層に遷移金属又はそれらの各合金、特には金、銀、銅、ニッケルまたはそれらの各合金、の少なくとも1種よりなる下地被膜層と、さらにリード片を構成する金属磁性体の前記下地被膜層による拡散層を順次配設したことにより、接点被膜層の亀裂発生を防止し、接点寿命の永い、安定した、より安価なリードスイッチを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における、構成を示す説明図である。
【図2】本発明の実施の形態2における、構成を示す説明図である。
【図3】従来のリードスイッチの構成を示す説明図である。
【符号の説明】
1、2 リード片、10、20 接点部、11、21 下地被膜層、13、23 第2接点被膜層、14、24 第1接点被膜層、 15、25 拡散層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reed switch having a reed piece as a contact, and more particularly to a configuration of the contact.
[0002]
[Prior art]
Conventionally, as shown in FIG. 3, a reed switch has a pair of elongated lead pieces 1 and 2 each having one end as a contact portion, and having these contact portions 10 and 20 in a vacuum state or a state in which an inert gas is sealed. It has a structure sealed in a container 3 consisting of a tube. The lead pieces 1 and 2 are formed of a metal magnetic material such as an iron-nickel alloy, for example, and the respective contact portions 10 and 20 are arranged with a predetermined overlap and an interval therebetween. In addition, on the contact surfaces where the respective contact portions oppose each other, gold (Au) is disposed on the base coat layers 11 and 21, and then contact coat layers 12 and 22 containing iridium (Ir) as a main component are formed. It had been. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP-A-5-186953 (paragraph 007, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the contact configuration of the conventional reed switch as described above, thermal expansion occurs in the lead piece due to heat when the contact portion is sealed with glass, and the metal magnetic material and iridium (Ir) that constitute the lead piece are mainly used. The stress caused by the difference in the amount of thermal expansion between the contact coating layers as components causes cracks in the contact coating layer containing iridium (Ir) as a main component, thereby deteriorating the contact life. Therefore, it has been desired to develop a stable reed switch having a long contact life and preventing a contact coating layer from being cracked due to a difference in thermal expansion.
[0005]
[Means for Solving the Problems]
The reed switch of the present invention is a reed switch having a reed piece as a contact, wherein one of iridium (Ir), ruthenium (Ru) or rhodium (Rh) is mainly provided on the contact surface of the reed piece. A first contact coating layer as a component is disposed, and a single layer containing rhodium (Rh) as a main component or a layer containing rhodium (Rh) as a main component is provided below the first contact coating layer on the contact surface side. And a second contact coating layer for stress relaxation consisting of a plurality of layers.
[0006]
Further, a reed switch according to the present invention is a reed switch having a reed piece, and one of iridium (Ir), ruthenium (Ru), and rhodium (Rh) is mainly provided on a contact surface of the reed piece. A first contact coating layer, an undercoating layer made of at least one kind of transition metal or an alloy of each of them as a lower layer on the contact surface side of the first contact coating layer, and a metal magnetic material constituting a lead piece And a diffusion layer made of the same metal as that of the undercoat layer.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
FIG. 1 is an explanatory diagram illustrating a configuration according to the first embodiment of the present invention.
In the figures, reference numerals 1 and 2 denote lead pieces, 10 and 20 denote contact portions, 11 and 21 denote undercoat layers, 13 and 23 denote second contact coating layers, and 14 and 24 denote first contact coating layers.
On the contact surface where the contact portion 10 and the contact portion 20 face each other, on the surface of the metal magnetic material constituting the lead pieces 1 and 2, an undercoating layer 11 using a transition metal, particularly gold, silver, copper, nickel, or the like is provided. , 12 are formed. The thickness of the undercoat layers 11 and 12 is set to about 0.2 to 1.0 μm.
[0008]
The thickness of the undercoat layers 11 and 12 is preferably as thin as possible within a range having the underlayer characteristics of the coating of the second contact coating layers 13 and 23 on the metallic magnetic material. However, if the thickness is less than 0.2 μm, the underlayer characteristics may be partially uneven (mainly due to pinholes in the plating method), and even if the thickness is more than 1.0 μm, the underlayer characteristics (adhesion) change little. When the contact is damaged by opening / closing the load circuit, the diffusion density of the underlying metal in the damaged portion increases, which causes a sticking phenomenon or the like that deteriorates the contact life. Therefore, it is desirable to set the thickness to about 0.2 to 1.0 μm.
[0009]
After the above base treatment, the second contact coating layers 13 and 23 are formed on the contact portions 10 and 20 of the lead pieces 1 and 2 using rhodium (Rh). The thickness of the second contact coating layers 13 and 23 is about 0.5 to 5.0 μm.
Next, the first contact coating layers 14 and 24 are formed on the second contact coating layers 13 and 23 using one of iridium (Ir), ruthenium (Ru) and rhodium (Rh). The thickness of the first contact coating layers 14, 24 is about 0.5 to 2.0 μm.
[0010]
Glass sealing is performed using the lead piece having the above-described contact configuration. In this case, thermal expansion occurs in the reed contact portions 10 and 20 due to sealing heat.
At this time, the difference in the amount of thermal expansion causes a difference between the metal magnetic material and the base coat layers 11 and 12, between the base coat layers 11 and 12 and the second contact coat layers 13 and 23, and between the second contact coat layers 13 and 23-first. Although a stress corresponding to the amount of expansion is generated between the contact coating layers 14 and 24, the rhodium (Rh) of the second contact coating layers 13 and 23 is materially resistant to stress that can sufficiently withstand the sealing heat. And the expansion coefficient of iridium (Ir) is about 8 × 10 −6 / ° C., and the expansion coefficient of ruthenium (Ru) is also about 6.7 × 10 −6 / ° C. Since this is almost the same as the expansion coefficient of rhodium (Rh), the stress applied to the first contact coating layers 14 and 24 can be suppressed, and iridium (Ir) or ruthenium (Ru) having poor ductility can be used as a contact. Even when used for coating, it can prevent cracks due to heat .
[0011]
From the above, the thickness of the first contact coating layers 14 and 24 can be uniquely determined depending on the frequency of use and the required life, and should be appropriately selected in the range of 0.5 to 2.0 μm in a normal use state. Can be.
[0012]
Further, the thickness of the second contact coating layers 13 and 23 needs a thickness for relaxing the thermal stress, and the shear stress at the interface between the first contact coating layers 14 and 24 is within the allowable stress. Must be chosen. It is determined by the sealing temperature, the difference between the coefficients of expansion between the coating layers, the allowable shear stress of the first contact coating layers 14, 24, and the like. Under normal conditions, the thickness is selected to be thicker than the thickness of the first contact coating layers 14 and 24 and about 0.5 to 5.0 μm.
[0013]
As described above, as the lower layer of the first contact coating layers 14 and 24 having poor ductility such as iridium (Ir) and ruthenium (Ru), the second contact which is a preliminary contact coating for relaxing thermal stress of rhodium or the like. By forming the coating layers 13 and 23, generation of cracks in the contact coating due to sealing heat or the like is suppressed. For this reason, a reed switch suitable for a high load application or a long life application can be obtained by fully utilizing the physical properties of iridium (Ir) and ruthenium (Ru) such as high melting point and high hardness.
[0014]
[Embodiment 2]
FIG. 2 is an explanatory diagram showing a configuration according to the second embodiment of the present invention.
In the figure, 15 and 25 are diffusion layers. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0015]
In the present embodiment, rhodium (Rh) is used for relaxing the stress in the first embodiment, which may increase the cost. On the other hand, rhodium (Rh) is not used. , At a low cost.
[0016]
In FIG. 2, transition metals or their alloys, particularly gold, silver, copper, nickel, etc., are formed on the surfaces of the contact portions 10, 20 of the lead pieces 1, 2 formed of a metal magnetic material such as an iron-nickel alloy. Using at least one of these alloys, a coating of 1.0 to 5.0 μm is formed, and then thermally diffused to the surface of the metal magnetic material in a high-temperature hydrogen atmosphere of about 800 to 1000 ° C. , Diffusion layers 15 and 25 are formed.
[0017]
Next, in order to enhance the adhesion of the first contact coating layers 12 and 22 to be performed later, a transition metal of the same material as the coating or an alloy thereof, particularly gold, silver, copper, nickel or the like, or each of them. The undercoat layers 11 and 21 are formed of at least one kind of alloy and having a thickness of about 0.2 to 0.5 μm. The purpose of the undercoat layers 11 and 21 is to enhance the adhesion of the first contact coat layers 12 and 22. The thickness of the undercoat layers 11 and 21 does not need to be large, and the limit of uniform coating in terms of cost is 0.2. About 0.5 μm is preferable.
Thereafter, a first contact coating layer mainly composed of one of iridium (Ir), ruthenium (Ru) and rhodium (Rh) having a thickness of about 0.5 to 2.0 μm is formed on the base coating layers 11 and 21. 12 and 22 are formed.
[0018]
As described above, when glass sealing is performed using the lead pieces 1 and 2, thermal expansion occurs in the lead piece contact portions 10 and 20 due to sealing heat. Here, a diffusion layer using at least one of transition metals or their alloys, particularly gold, silver, copper, nickel, or their alloys, is formed on the surfaces of the contact portions 10 and 20 in advance. This changes the amount of thermal expansion, thereby relaxing and absorbing the thermal stress generated between the metal magnetic body and the first contact coating.
[0019]
As described above, according to the second embodiment, a transition metal or each alloy thereof, particularly, a transition metal, is formed under the first contact coating layers 12 and 22 having poor ductility such as iridium (Ir) and ruthenium (Ru). By forming undercoating layers 11 and 21 made of at least one of gold, silver, copper, nickel and the like and their alloys and a diffusion layer of a metal magnetic material, cracks in the contact coating can be further reduced at low cost. Generation can be suppressed.
[0020]
[Embodiment 3]
In the first and second embodiments, the contact structure is such that one of iridium (Ir), ruthenium (Ru) or rhodium (Rh) is applied to the first contact coating layers 12 and 22 as a main component. Although described in detail, the present invention can be applied to a case where a contact material belonging to the same platinum-based metal is used instead of these for the same purpose.
[0021]
【The invention's effect】
According to the present invention, a first contact coating layer mainly composed of one of iridium (Ir), ruthenium (Ru) and rhodium (Rh) is provided on a contact surface of a lead piece, and the first contact coating layer is provided. A second contact coating layer for stress relaxation, comprising a single layer containing at least rhodium (Rh) as a main component or a plurality of layers including a layer containing rhodium (Rh) as a main component as the lower layer on the contact surface side. The arrangement prevents cracks in the contact coating layer and provides a stable reed switch with a long contact life.
[0022]
The present invention also provides a first coating layer containing one of iridium (Ir), ruthenium (Ru) and rhodium (Rh) as a main component on a contact surface of the lead piece. An undercoat layer made of at least one of a transition metal or an alloy thereof, in particular, gold, silver, copper, nickel or an alloy thereof, and a metal magnetic layer forming a lead piece. By arranging the diffusion layer by the base coat layer of the body in order, it is possible to prevent the occurrence of cracks in the contact coat layer, and to provide a stable and inexpensive reed switch having a long contact life.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a configuration according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating a configuration according to a second embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a configuration of a conventional reed switch.
[Explanation of symbols]
1, 2 lead pieces, 10, 20 contact portions, 11, 21 base coat layer, 13, 23 second contact coat layer, 14, 24 first contact coat layer, 15, 25 diffusion layer.

Claims (5)

リード片を接点とするリードスイッチであって、該リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1接点被膜層を配設し、該第1接点被膜層の前記接点表面側下層に、少なくともロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設してなることを特徴とするリードスイッチ。A reed switch having a reed piece as a contact, wherein a first contact coating layer mainly composed of one of iridium (Ir), ruthenium (Ru) and rhodium (Rh) is provided on the contact surface of the reed piece. A stress layer consisting of at least a single layer containing rhodium (Rh) as a main component or a plurality of layers containing a layer containing rhodium (Rh) as a main component, as a lower layer on the contact surface side of the first contact coating layer. A reed switch comprising a second contact coating layer for relaxation. リード片を接点とするリードスイッチであって、該リード片の接点表面にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1被膜層を配設し、該第1接点層の前記接点表面側下層に、遷移金属又はそれらの各合金の少なくとも1種よりなる下地被膜層と、さらにリード片を構成する金属磁性体の前記下地被膜層と同一金属による拡散層を順次に配設したことを特徴とするリードスイッチ。A reed switch having a reed piece as a contact, wherein a first coating layer containing one of iridium (Ir), ruthenium (Ru), and rhodium (Rh) as a main component is provided on a contact surface of the reed piece. An undercoat layer made of at least one of a transition metal or an alloy thereof, and an undercoat layer made of at least one kind of an alloy of the transition metal and each of their alloys, which are the same metal as the undercoat layer of the metal magnetic material constituting the lead piece. A reed switch characterized by sequentially disposing diffusion layers according to (1). 前記遷移金属が、金、銀、銅、ニッケルより選ばれたものであることを特徴とする請求項2に記載のリードスイッチ。The reed switch according to claim 2, wherein the transition metal is selected from gold, silver, copper, and nickel. 前記第1接点被膜層の厚さが0.5〜2.0μmであり、前記第2接点被膜層の厚さが0.5〜5.0μmであることを特徴とする請求項1に記載のリードスイッチ。The thickness of the said 1st contact coating layer is 0.5-2.0 micrometers, and the thickness of the said 2nd contact coating layer is 0.5-5.0 micrometers, The claim of Claim 1 characterized by the above-mentioned. Reed switch. 前記第1接点被膜層の厚さが0.5〜2.0μm、前記拡散層の厚さが0.5〜2.0μm、前記下地被膜層の厚さが0.5〜2.0μmであることを特徴とする請求項2または3に記載のリードスイッチ。The thickness of the first contact coating layer is 0.5 to 2.0 μm, the thickness of the diffusion layer is 0.5 to 2.0 μm, and the thickness of the base coating layer is 0.5 to 2.0 μm. The reed switch according to claim 2 or 3, wherein:
JP2003081727A 2003-03-25 2003-03-25 Reed switch Expired - Lifetime JP4450561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081727A JP4450561B2 (en) 2003-03-25 2003-03-25 Reed switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081727A JP4450561B2 (en) 2003-03-25 2003-03-25 Reed switch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009287981A Division JP2010092880A (en) 2009-12-18 2009-12-18 Reed switch

Publications (2)

Publication Number Publication Date
JP2004288557A true JP2004288557A (en) 2004-10-14
JP4450561B2 JP4450561B2 (en) 2010-04-14

Family

ID=33295178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081727A Expired - Lifetime JP4450561B2 (en) 2003-03-25 2003-03-25 Reed switch

Country Status (1)

Country Link
JP (1) JP4450561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130461A1 (en) * 2007-04-18 2008-10-30 Key Safety Systems, Inc. Reed switch contact coating
JP2010223852A (en) * 2009-03-25 2010-10-07 Toshiba Corp Electric inspection probe, manufacturing method of the same and manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130461A1 (en) * 2007-04-18 2008-10-30 Key Safety Systems, Inc. Reed switch contact coating
US7564330B2 (en) 2007-04-18 2009-07-21 Key Safety Systems, Inc. Reed switch contact coating
JP2010223852A (en) * 2009-03-25 2010-10-07 Toshiba Corp Electric inspection probe, manufacturing method of the same and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP4450561B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US7758970B2 (en) Different materials bonded member and production method thereof
JP3144328B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP5051243B2 (en) Manufacturing method of semiconductor device
US20030157360A1 (en) Bonded member comprising different materials and production method thereof
JPH06232538A (en) Formation method of corrosion- resisting multilayer metal structure
JP2004288557A (en) Reed switch
JP4888908B2 (en) Membrane structure element and manufacturing method thereof
JP3312752B2 (en) Thin film thermistor
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
WO2005093118A1 (en) Method for producing high heat resistant conductive thin film, high heat resistant conductive thin film produced by that method, multilayer film, and device having multilayer film
JPH10107047A (en) Semiconductor substrate having brazing filler metal layer
JP2010092880A (en) Reed switch
JPS6149829B2 (en)
JP3001857B1 (en) Heat generation material mainly composed of MoSi2 having an electrode part excellent in low-temperature oxidation resistance
TWI733120B (en) Thin film resistor
JP2826650B2 (en) Lead frame for semiconductor device
JPH11238840A (en) Lead frame
JPH01290501A (en) Hydrogen storage element and gaseous hydrogen detecting element
JP2005136801A (en) Electrode structure for piezoelectric vibrator
JPS63296361A (en) Semiconductor device
JPS5917880B2 (en) Board for electrical equipment
JPH02348A (en) Semiconductor device
JPH08249966A (en) Electric contact
JPS6027152A (en) Dumet wire made of composite wire and manufacture thereof
JPH10190175A (en) Composite material for electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Ref document number: 4450561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term