JP2010092880A - Reed switch - Google Patents

Reed switch Download PDF

Info

Publication number
JP2010092880A
JP2010092880A JP2009287981A JP2009287981A JP2010092880A JP 2010092880 A JP2010092880 A JP 2010092880A JP 2009287981 A JP2009287981 A JP 2009287981A JP 2009287981 A JP2009287981 A JP 2009287981A JP 2010092880 A JP2010092880 A JP 2010092880A
Authority
JP
Japan
Prior art keywords
contact
layer
coating layer
thickness
contact coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009287981A
Other languages
Japanese (ja)
Inventor
Kazuya Yokoyama
和也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Sensor Device Corp
Original Assignee
Oki Sensor Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Sensor Device Corp filed Critical Oki Sensor Device Corp
Priority to JP2009287981A priority Critical patent/JP2010092880A/en
Publication of JP2010092880A publication Critical patent/JP2010092880A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable reed switch which prevents cracks of a contact coating layer and of which a contact life is long. <P>SOLUTION: A base coating layer formed of transition metal of which thicknesses are 0.2-1.0 μm (except for a thickness 0.5 μm or more) or at least one of alloys of them is formed on a contact surface of a reed piece by plating. Then, a second contact coating layer for stress relaxation, formed of a single layer mainly containing at least rhodium (Rh) and a plurality of layers including a layer mainly containing the rhodium (Rh), is arranged on an upper layer on a surface side of the base coating layer. In addition, a first contact coating layer, of which a thickness is 0.5-2.0 μm (except for a thickness of 1 μm or more) and which mainly contains iridium (Ir), is arranged on an upper layer on a surface side of the second contact coating layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はリード片を接点とするリードスイッチ、特にその接点の構成に関するものである。   The present invention relates to a reed switch having a lead piece as a contact, and more particularly to a configuration of the contact.

従来、リードスイッチは、図3に示すように、一対の細長いリード片1、2のそれぞれの一端を接点部として、この接点部10、20を真空状態、または不活性ガスを封じ込めた状態のガラス管よりなる容器3に、封入した構造になっている。上記リード片1、2は、例えば、鉄ニッケル合金のような金属磁性体で形成されており、それぞれの接点部10、20は互いに所定の重なりと間隔を保って配置されている。また、それぞれの接点部が対向する面である接点面には、金(Au)を下地被膜層11、21に配した後、イリジウム(Ir)を主成分とする接点被膜層12、22が形成されていた。(例えば、特許文献1参照)   Conventionally, as shown in FIG. 3, the reed switch is a glass in which one end of each of a pair of elongated lead pieces 1 and 2 is used as a contact portion, and the contact portions 10 and 20 are in a vacuum state or an inert gas is contained. It has a structure enclosed in a container 3 made of a tube. The lead pieces 1 and 2 are made of, for example, a metal magnetic material such as an iron-nickel alloy, and the contact portions 10 and 20 are arranged with a predetermined overlap and spacing therebetween. In addition, contact film layers 12 and 22 mainly composed of iridium (Ir) are formed after gold (Au) is disposed on the undercoat film layers 11 and 21 on the contact surfaces, which are contact surfaces of the respective contact portions. It had been. (For example, see Patent Document 1)

特開平5−186953号公報(段落007、図1)Japanese Patent Laid-Open No. 5-186533 (paragraph 007, FIG. 1)

しかし、上記のごとき従来のリードスイッチの接点構成では、接点部をガラスにより封止する際の熱によりリード片に熱膨張が発生し、リード片を構成する金属磁性体とイリジウム(Ir)を主成分とする接点被膜層間の熱膨張量の差による応力で、該イリジウム(Ir)を主成分とする接点被膜層に亀裂が生じ、これにより接点寿命が劣化するという問題点があった。従って、熱膨張差による接点被膜層の亀裂を防止し、接点寿命の永い、安定したリードスイッチの開発が望まれていた。   However, in the contact configuration of the conventional reed switch as described above, thermal expansion occurs in the lead piece due to heat generated when the contact portion is sealed with glass, and the metal magnetic material and iridium (Ir) constituting the lead piece are mainly used. The stress due to the difference in thermal expansion between the contact film layers as components causes cracks in the contact film layer containing iridium (Ir) as a main component, thereby deteriorating the contact life. Accordingly, there has been a demand for the development of a stable reed switch that prevents cracks in the contact coating layer due to a difference in thermal expansion and has a long contact life.

本発明のリードスイッチは、リード片を接点とするリードスイッチであって、該リード片の接点表面に、メッキにより厚さが0.2μm以上1.0μm以下(但し、0.5μm以上を除く)の遷移金属またはそれらの合金の少なくとも1種よりなる下地被膜層を設け、さらに、該下地被膜層表面側上層に、少なくともロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設し、さらにまた、該第2接点被膜層の表面側上層にイリジウム(Ir)を主成分とする厚さが0.5μm以上2.0μm以下(但し、1μm以上を除く)の第1接点被膜層を配設してなるものである。   The reed switch of the present invention is a reed switch having a reed piece as a contact, and the contact surface of the reed piece has a thickness of 0.2 μm or more and 1.0 μm or less (except 0.5 μm or more) by plating. An undercoating layer made of at least one of these transition metals or their alloys is provided, and the upper layer on the surface side of the undercoating layer is mainly composed of at least a single layer mainly composed of rhodium (Rh) or rhodium (Rh). A second contact coating layer for stress relaxation comprising a plurality of layers including a component layer is disposed, and the upper layer on the surface side of the second contact coating layer is mainly composed of iridium (Ir). A first contact coating layer having a thickness of 0.5 μm or more and 2.0 μm or less (excluding 1 μm or more) is provided.

また、本発明によるリードスイッチは、前記第2接点被膜層の厚さが0.5以上5.0μm以下(但し、2.5μm以上を除く)であるものである。   In the reed switch according to the present invention, the thickness of the second contact coating layer is 0.5 to 5.0 μm (excluding 2.5 μm or more).

本発明は、リード片の接点表面に、メッキにより厚さが0.2μm以上1.0μm以下(但し、0.5μm以上を除く)の遷移金属またはそれらの合金の少なくとも1種よりなる下地被膜層を設け、さらに、該下地被膜層表面側上層に、少なくともロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設し、さらにまた、該第2接点被膜層の表面側上層にイリジウム(Ir)を主成分とする厚さが0.5μm以上2.0μm以下(但し、1μm以上を除く)の第1接点被膜層を配設したことにより、接点被膜層の亀裂発生を防止し、接点寿命の永い、安定したリードスイッチを提供することができる。   The present invention provides an undercoat layer comprising a transition metal having a thickness of 0.2 μm or more and 1.0 μm or less (excluding 0.5 μm or more) by plating or at least one of their alloys on the contact surface of a lead piece. Further, for the purpose of stress relaxation, the upper layer on the surface side of the undercoat layer is composed of a single layer containing at least rhodium (Rh) as a main component or a plurality of layers including a layer containing rhodium (Rh) as a main component. The thickness of the second contact coating layer is 0.5 μm or more and 2.0 μm or less (however, 1 μm or more) on the upper surface layer of the second contact coating layer. The first contact coating layer (except for the above) is provided, so that the contact coating layer can be prevented from cracking, and a stable reed switch having a long contact life can be provided.

本発明の実施の形態1における、構成を示す説明図である。It is explanatory drawing which shows the structure in Embodiment 1 of this invention. 本発明の実施の形態2における、構成を示す説明図である。It is explanatory drawing which shows the structure in Embodiment 2 of this invention. 従来のリードスイッチの構成を示す説明図である。It is explanatory drawing which shows the structure of the conventional reed switch.

[実施の形態1]
図1は、本発明の実施の形態1における、構成を示す説明図である。
図において、1、2はリード片、10、20は接点部、11、21は下地被膜層、13、23は第2接点被膜層、14、24は第1接点被膜層である。
接点部10と接点部20とが対向する接点面には、リード片1、2を構成する金属磁性体の表面に、遷移金属、特に金、銀、銅、ニッケル等を用いた下地被膜層11、12を形成する。尚、下地被膜層11、12の厚さは、0.2〜1.0μm程度にする。
[Embodiment 1]
FIG. 1 is an explanatory diagram showing a configuration according to Embodiment 1 of the present invention.
In the figure, 1 and 2 are lead pieces, 10 and 20 are contact portions, 11 and 21 are base coating layers, 13 and 23 are second contact coating layers, and 14 and 24 are first contact coating layers.
On the contact surface where the contact portion 10 and the contact portion 20 face each other, a base coating layer 11 using a transition metal, particularly gold, silver, copper, nickel, or the like is used on the surface of the metal magnetic body constituting the lead pieces 1 and 2. , 12 are formed. The thickness of the base coating layers 11 and 12 is about 0.2 to 1.0 μm.

前記下地被膜層11、12の厚さは、第2接点被膜層13、23の金属磁性体への被膜の下地特性を有する範囲で成る可く薄い方が好ましい。ただ、0.2μm以下では下地特性が部分的にむら(主にメッキ法におけるピンホールなどによる)を生じることもあり、また、1.0μm以上であっても下地特性(密着性)に余り変化が無く、また負荷回路の開閉を行い接点損傷が進行した際に、損傷部の下地金属拡散濃度が上昇し、接点寿命を劣化させる粘着現象等の原因ともなる。従って、0.2〜1.0μm程度にするのが望ましい。   The thickness of the undercoat layers 11 and 12 is preferably as thin as possible as long as the second contact coat layers 13 and 23 have the undercoat characteristics of the coating on the metal magnetic material. However, if the thickness is 0.2 μm or less, the substrate characteristics may be partially uneven (mainly due to pinholes in the plating method). In addition, when contact damage progresses by opening and closing the load circuit, the base metal diffusion concentration in the damaged portion increases, which may cause an adhesive phenomenon that deteriorates the contact life. Therefore, it is desirable that the thickness is about 0.2 to 1.0 μm.

上記下地処理の後、リード片1、2の接点部10、20に、第2接点被膜層13、23をロジウム(Rh)を用いて形成する。第2接点被膜層13、23の厚さは、0.5〜5.0μm程度の膜厚にする。
次に、第2接点被膜層13、23上に、第1接点被膜層14、24をイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を用いて形成する。第1接点被膜層14、24の厚さは0.5〜2.0μm程度とする。
After the base treatment, second contact coating layers 13 and 23 are formed on the contact portions 10 and 20 of the lead pieces 1 and 2 using rhodium (Rh). The thickness of the second contact coating layers 13 and 23 is about 0.5 to 5.0 μm.
Next, the first contact coating layers 14 and 24 are formed on the second contact coating layers 13 and 23 using one of iridium (Ir), ruthenium (Ru), and rhodium (Rh). The thickness of the first contact coating layers 14 and 24 is about 0.5 to 2.0 μm.

上記により接点構成されたリード片を用いてガラス封止を行う。この場合、封止熱によりリード片接点部10、20に熱膨張が発生する。
この際、熱膨張量の差により、金属磁性体−下地被膜層11、12間、下地被膜層11、12−第2接点被膜層13、23間、第2接点被膜層13、23−第1接点被膜層14、24間のそれぞれに膨張量に応じた応力が発生するが、第2接点被膜層13、23のロジウム(Rh)は、材料的に前記封止熱に充分耐えうる耐応力性を有しており、また、イリジウム(Ir)の膨張係数は約8×10-6/℃であり、また、ルテニウム(Ru)の膨張係数も約6.7×10-6/℃であり、これはロジウム(Rh)の膨張係数とほぼ同程度であることから、第1接点被膜層14、24にかかる応力を抑制することができ、延性の乏しいイリジウム(Ir)やルテニウム(Ru)を接点被膜に使用しても、熱による亀裂の発生を防ぐことができる。
Glass sealing is performed using the lead piece configured as described above. In this case, thermal expansion occurs in the lead piece contact portions 10 and 20 due to sealing heat.
At this time, due to the difference in thermal expansion amount, between the metal magnetic material and the base coating layer 11, 12, between the base coating layer 11, 12 -the second contact coating layer 13, 23, the second contact coating layer 13, 23-1 Although stress corresponding to the amount of expansion is generated between the contact coating layers 14 and 24, the rhodium (Rh) of the second contact coating layers 13 and 23 is stress resistant enough to withstand the sealing heat in terms of material. The expansion coefficient of iridium (Ir) is about 8 × 10 −6 / ° C., and the expansion coefficient of ruthenium (Ru) is also about 6.7 × 10 −6 / ° C. Since this is approximately the same as the expansion coefficient of rhodium (Rh), the stress applied to the first contact coating layers 14 and 24 can be suppressed, and iridium (Ir) or ruthenium (Ru) having poor ductility can be contacted. Even if it uses for a film, generation | occurrence | production of the crack by a heat | fever can be prevented.

上記から、第1接点被膜層14、24の厚さは、使用頻度、要求寿命により1義的に決めることができ、通常の使用状態では0.5〜2.0μmの範囲で適宜選択することができる。   From the above, the thickness of the first contact coating layers 14 and 24 can be uniquely determined by the use frequency and the required life, and should be appropriately selected in the range of 0.5 to 2.0 μm in the normal use state. Can do.

また、第2接点被膜層層13、23の厚さは、熱応力を弛緩するための厚さを必要とし、第1接点被膜層14、24の境界面における剪断応力が許容応力内になるように選ばれなければならない。封止温度、各被膜層間の膨張係数の差、および第1接点被膜層14、24の許容剪断応力等により決められる。通常条件では第1接点被膜層14、24の厚さより厚く、0.5〜5.0μm程度の厚さとして選択される。   Further, the thickness of the second contact film layers 13 and 23 requires a thickness for relaxing the thermal stress so that the shear stress at the interface between the first contact film layers 14 and 24 is within the allowable stress. Must be chosen. It is determined by the sealing temperature, the difference in expansion coefficient between the coating layers, the allowable shear stress of the first contact coating layers 14 and 24, and the like. Under normal conditions, the thickness is selected to be greater than the thickness of the first contact coating layers 14 and 24 and about 0.5 to 5.0 μm.

以上のように、イリジウム(Ir)やルテニウム(Ru)のような延性の乏しい第1接点被膜層14、24の下層として、ロジウム等の熱応力を緩和するための予備接点被膜である第2接点被膜層13、23を形成することにより、封止熱などによる接点被膜の亀裂の発生が抑制される。このため、イリジウム(Ir)やルテニウム(Ru)の高融点・高硬度という物性を十分活かし、高負荷での用途や長寿命の用途に適したリードスイッチが得られる。   As described above, as a lower layer of the first contact coating layers 14 and 24 having poor ductility such as iridium (Ir) and ruthenium (Ru), the second contact is a preliminary contact coating for relieving thermal stress such as rhodium. By forming the coating layers 13 and 23, occurrence of cracks in the contact coating due to sealing heat or the like is suppressed. For this reason, a reed switch suitable for high load applications and long life applications can be obtained by fully utilizing the physical properties of iridium (Ir) and ruthenium (Ru), which have a high melting point and high hardness.

[実施の形態2]
図2は本発明の実施の形態2における、構成を示す説明図である。
図において、15、25は拡散層である。なお、図1と同一の構成部分については同じ符号を付し、説明を省略する。
[Embodiment 2]
FIG. 2 is an explanatory diagram showing a configuration according to the second embodiment of the present invention.
In the figure, 15 and 25 are diffusion layers. In addition, the same code | symbol is attached | subjected about the component same as FIG. 1, and description is abbreviate | omitted.

本実施の形態は、上述の実施の形態1においては応力緩和のためにロジウム(Rh)を使用するため、高コストになってしまう恐れがあるのに対し、ロジウム(Rh)を使用せずに、安価に同目的を達成せんとするものである。   In the present embodiment, rhodium (Rh) is used for stress relaxation in the above-described first embodiment, which may increase the cost, but without using rhodium (Rh). It is intended to achieve the same purpose at low cost.

図2において、鉄ニッケル合金等の金属磁性体で形成されたリード片1、2の接点部10、20の表面に、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種を使用して、1.0〜5.0μmの被膜を形成し、その後、800〜1000℃程度の高温水素雰囲気中で前記金属磁性体の表面に熱拡散し、拡散層15、25を形成する。   In FIG. 2, transition metal or their respective alloys, particularly gold, silver, copper, nickel, etc. Using at least one of these alloys, a film of 1.0 to 5.0 μm is formed, and then thermally diffused on the surface of the metal magnetic body in a high-temperature hydrogen atmosphere of about 800 to 1000 ° C. The diffusion layers 15 and 25 are formed.

次いで、後に施行される第1接点被膜層12、22の密着性を高めるために、前記被膜と同じ材質の遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種からなる、厚さ0.2〜0.5μm程度の下地被膜層11、21を形成する。該下地被膜層11、21の目的は、第1接点被膜層12、22の密着性を高めるところにあり、その厚さは厚い必要はなく、コスト的に均一に被覆される限界として0.2〜0.5μm程度が好ましい。
その後さらに、この下地被膜層11、21上に0.5〜2.0μm程度のイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分とする第1接点被膜層12、22が形成される。
Subsequently, in order to enhance the adhesion of the first contact coating layers 12 and 22 to be implemented later, the transition metal of the same material as the coating or their respective alloys, particularly gold, silver, copper, nickel, etc. or each of them Undercoat layers 11 and 21 having a thickness of about 0.2 to 0.5 μm and made of at least one kind of alloy are formed. The purpose of the underlying coating layers 11 and 21 is to improve the adhesion of the first contact coating layers 12 and 22, and the thickness does not need to be thick. About -0.5 micrometer is preferable.
Thereafter, a first contact coating layer mainly composed of one of iridium (Ir), ruthenium (Ru) and rhodium (Rh) of about 0.5 to 2.0 μm is formed on the base coating layers 11 and 21. 12 and 22 are formed.

前記のごとく、リード片1、2を用いてガラス封止を行うと、封止熱によりリード片接点部10、20に熱膨張が発生する。ここで、接点部10、20の表面には、あらかじめ、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種を使用した拡散層を形成し、それにより熱膨張量が変化することにより、金属磁性体−第1接点被膜間に発生する熱応力を緩和・吸収する。   As described above, when glass sealing is performed using the lead pieces 1 and 2, thermal expansion occurs in the lead piece contact portions 10 and 20 due to sealing heat. Here, a diffusion layer using at least one of transition metals or their respective alloys, particularly gold, silver, copper, nickel, or their respective alloys is formed in advance on the surfaces of the contact portions 10 and 20. As a result, the amount of thermal expansion changes, so that the thermal stress generated between the metal magnetic body and the first contact film is relaxed and absorbed.

以上のように、本実施の形態2によれば、イリジウム(Ir)やルテニウム(Ru)のような延性の乏しい第1接点被膜層12、22の下層に、遷移金属又はそれらの各合金、特には金、銀、銅、ニッケル等またはそれらの各合金、の少なくとも1種からなる下地被膜層11、21と、金属磁性体の拡散層を形成することにより、更に低コストで接点被膜の亀裂の発生を抑制することができる。   As described above, according to the second embodiment, the transition metal or their respective alloys, in particular, under the first contact coating layers 12 and 22 having poor ductility such as iridium (Ir) and ruthenium (Ru). By forming the base coating layers 11 and 21 made of at least one of gold, silver, copper, nickel, etc., or their respective alloys, and the diffusion layer of the metal magnetic material, the cracks of the contact coating can be reduced at a lower cost. Occurrence can be suppressed.

[実施の形態3]
上記実施の形態1、2において、その接点構成は、第1接点被膜層12、22にイリジウム(Ir)、ルテニウム(Ru)またはロジウム(Rh)の内の1種を主成分として適用した場合について詳述されているが、同一目的をもってこれらに代わり、同じ白金系金属に属する接点材料を用いた場合にも適用することが可能である。
[Embodiment 3]
In the first and second embodiments, the contact configuration is the case where one of iridium (Ir), ruthenium (Ru), and rhodium (Rh) is applied as the main component to the first contact coating layers 12 and 22. Although described in detail, the present invention can be applied to the case where contact materials belonging to the same platinum metal are used instead of these for the same purpose.

1、2 リード片、10、20 接点部、11、21 下地被膜層、13、23 第2接点被膜層、14、24 第1接点被膜層、 15、25 拡散層。   1, 2 Lead piece, 10, 20 Contact part, 11, 21 Undercoat layer, 13, 23 Second contact layer, 14, 24 First contact layer, 15, 25 Diffusion layer.

Claims (2)

リード片を接点とするリードスイッチであって、該リード片の接点表面に、
メッキにより厚さが0.2μm以上1.0μm以下(但し、0.5μm以上を除く)の遷移金属またはそれらの合金の少なくとも1種よりなる下地被膜層を設け、さらに、該下地被膜層表面側上層に、
少なくともロジウム(Rh)を主成分とする単層、またはロジウム(Rh)を主成分とした層を含む複数の層からなる、応力緩和のための第2接点被膜層を配設し、
さらにまた、該第2接点被膜層の表面側上層にイリジウム(Ir)を主成分とする厚さが0.5μm以上2.0μm以下(但し、1μm以上を除く)の第1接点被膜層を配設してなることを特徴とするリードスイッチ。
A lead switch having a lead piece as a contact, and on the contact surface of the lead piece,
An undercoat layer made of at least one transition metal or an alloy thereof having a thickness of 0.2 μm or more and 1.0 μm or less (excluding 0.5 μm or more) is provided by plating, and further, the undercoat layer surface side In the upper layer,
A second contact coating layer for stress relaxation comprising at least a single layer containing rhodium (Rh) as a main component or a plurality of layers including a layer containing rhodium (Rh) as a main component;
Furthermore, a first contact coating layer having a thickness of 0.5 μm or more and 2.0 μm or less (excluding 1 μm or more) having iridium (Ir) as a main component is disposed on the upper surface of the second contact coating layer. A reed switch characterized by being provided.
前記第2接点被膜層の厚さが0.5以上5.0μm以下(但し、2.5μm以上を除く)であることを特徴とする請求項1に記載のリードスイッチ。   2. The reed switch according to claim 1, wherein the thickness of the second contact coating layer is 0.5 to 5.0 μm (excluding 2.5 μm or more).
JP2009287981A 2009-12-18 2009-12-18 Reed switch Pending JP2010092880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287981A JP2010092880A (en) 2009-12-18 2009-12-18 Reed switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287981A JP2010092880A (en) 2009-12-18 2009-12-18 Reed switch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003081727A Division JP4450561B2 (en) 2003-03-25 2003-03-25 Reed switch

Publications (1)

Publication Number Publication Date
JP2010092880A true JP2010092880A (en) 2010-04-22

Family

ID=42255359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287981A Pending JP2010092880A (en) 2009-12-18 2009-12-18 Reed switch

Country Status (1)

Country Link
JP (1) JP2010092880A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137874A (en) * 1975-05-23 1976-11-29 Nippon Electric Co Electric contacts
JPS5352044Y1 (en) * 1969-05-14 1978-12-12
JPS63298927A (en) * 1987-05-28 1988-12-06 Nec Corp Electric contact
JPH04322016A (en) * 1991-04-22 1992-11-12 Furukawa Electric Co Ltd:The Sealed contact material
JPH0589742A (en) * 1991-09-30 1993-04-09 Furukawa Electric Co Ltd:The Manufacture of reed switch
JPH0721867A (en) * 1993-06-29 1995-01-24 Oki Electric Ind Co Ltd Reed switch
JPH08298039A (en) * 1995-02-10 1996-11-12 Furukawa Electric Co Ltd:The Sealed contact material and its manufacture, and manufacture of sealed contact and its use
JP2002299005A (en) * 2001-03-28 2002-10-11 Ngk Spark Plug Co Ltd Spark plug and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352044Y1 (en) * 1969-05-14 1978-12-12
JPS51137874A (en) * 1975-05-23 1976-11-29 Nippon Electric Co Electric contacts
JPS63298927A (en) * 1987-05-28 1988-12-06 Nec Corp Electric contact
JPH04322016A (en) * 1991-04-22 1992-11-12 Furukawa Electric Co Ltd:The Sealed contact material
JPH0589742A (en) * 1991-09-30 1993-04-09 Furukawa Electric Co Ltd:The Manufacture of reed switch
JPH0721867A (en) * 1993-06-29 1995-01-24 Oki Electric Ind Co Ltd Reed switch
JPH08298039A (en) * 1995-02-10 1996-11-12 Furukawa Electric Co Ltd:The Sealed contact material and its manufacture, and manufacture of sealed contact and its use
JP2002299005A (en) * 2001-03-28 2002-10-11 Ngk Spark Plug Co Ltd Spark plug and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6906662B2 (en) Circuit boards and semiconductor devices
JP5705506B2 (en) Clad material for insulating substrate
US7758970B2 (en) Different materials bonded member and production method thereof
TWI479612B (en) Hermetic sealing cap
US6881499B2 (en) Bonded member comprising different materials and production method thereof
CN108604569A (en) Electrostatic chuck apparatus
JP4450561B2 (en) Reed switch
JP2011181846A (en) Substrate for power module, method of manufacturing the same, substrate for power module with heat sink, and power module
JP2008135482A (en) Through-hole wiring structure and formation method therefor
JP2009170835A (en) Ceramic electronic component
JP2010092880A (en) Reed switch
JP2009099760A (en) Membrane structure element, and manufacturing method thereof
TWI380545B (en) Surge absorber and manufacturing method thereof
US20190267504A1 (en) New Materials For Solar Cell Connectors
CN103921500B (en) A kind of thin film strain takes into account its preparation method
JP2003347487A (en) Semiconductor device
JP2007123371A (en) Electronic device in multiple pattern and its manufacturing method
JP2006313790A (en) Through-hole structure of substrate
JP5240021B2 (en) Semiconductor device and manufacturing method thereof
JP2010204029A (en) Hollow structure element
JP2008294021A (en) Electronic component module and manufacturing method thereof
JP6129980B2 (en) Mechanical quantity measuring apparatus and manufacturing method thereof
JP2010114132A5 (en)
JP2005171341A (en) Ni alloy target and thin ni alloy film
JP6940401B2 (en) heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110603

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120104

Free format text: JAPANESE INTERMEDIATE CODE: A02