JPH01289068A - Zinc active material for alkaline storage battery and its manufacture and zinc electrode using same active material - Google Patents

Zinc active material for alkaline storage battery and its manufacture and zinc electrode using same active material

Info

Publication number
JPH01289068A
JPH01289068A JP63118482A JP11848288A JPH01289068A JP H01289068 A JPH01289068 A JP H01289068A JP 63118482 A JP63118482 A JP 63118482A JP 11848288 A JP11848288 A JP 11848288A JP H01289068 A JPH01289068 A JP H01289068A
Authority
JP
Japan
Prior art keywords
zinc
additive
active material
electrode
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63118482A
Other languages
Japanese (ja)
Other versions
JP2557683B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Mikiaki Tadokoro
田所 幹朗
Mitsuzo Nogami
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63118482A priority Critical patent/JP2557683B2/en
Publication of JPH01289068A publication Critical patent/JPH01289068A/en
Application granted granted Critical
Publication of JP2557683B2 publication Critical patent/JP2557683B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make the zinc electrode for an alkaline storage battery and the charge-discharge reactions of the battery uniform so as to improve the cycle characteristics by covering the surface of metallic zinc grains of zinc active material with specified two kinds of additives effectively and uniformly, and producing a mixture layer with the both additives. CONSTITUTION:The 1st additive is selected from metals or their compounds nobler than zinc such as indium, thallium, gallium and cadmium, and the 2nd additive is composed of alkali earth metal hydroxides or oxides, and the both additives produce a mixture layer to cover the surface of metallic zinc powder. The 1st additive makes the electro-precipitation of zinc acid ions onto the zinc surface slow and uniform, and effectively prevents the growth of dendrite zinc or the growth of inactive oxide film. The 2nd additive prevents the enlargement or the dissolution of zinc grains and the deformation of the zinc electrode 1. By the synergistic effect of the two additives, a zinc electrode of little variation with time due to the progress of the number of cycles can be obtained to improve the cycle characteristics.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は二・7ケルー亜鉛蓄電池、銀−亜鉛蓄電池など
の負極活物質として用いられるアルカリ蓄電池用亜鉛活
物質及びその製造方法、並びにその活物質を用いた亜鉛
極に関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a zinc active material for alkaline storage batteries, which is used as a negative electrode active material in 2.7 keel zinc storage batteries, silver-zinc storage batteries, etc., and a method for producing the same. This invention relates to a zinc electrode using an active material.

(ロ)従来の技術 負極活物質として用いられる亜鉛活物質は、屯位!li
−あたりのエネルギー密度が大きく、安価であり、かつ
無公害であることから、研究開発が行なわれている。
(b) Conventional technology Zinc active materials used as negative electrode active materials are on the rise! li
- Research and development is being carried out because it has a high energy density per unit, is inexpensive, and is non-polluting.

そしてこの亜鉛極が可溶性電極であることに起因して、
次のような問題がある。すなわら放電時に亜鉛が、アル
カリ電解液に溶出して亜鉛酸イオンとなり、充電時にこ
の亜鉛酸イオンが亜鉛極表面に樹枝状あるいは海綿状に
電析する。充放電反応の繰り返しにより電析亜鉛がセパ
レータを貫通して内部短絡を生じた杓、金属亜鉛表面が
電気化学的に不活性な酸化被膜で覆われ、反応面精が減
少し、電池特性の劣化が生じる。
And because this zinc electrode is a soluble electrode,
There are the following problems. That is, during discharge, zinc is eluted into the alkaline electrolyte and becomes zincate ions, and during charging, these zincate ions are deposited on the surface of the zinc electrode in a dendritic or spongy form. Due to repeated charging and discharging reactions, the deposited zinc penetrates the separator and causes an internal short circuit.The metal zinc surface is covered with an electrochemically inactive oxide film, reducing the reaction surface quality and deteriorating the battery characteristics. occurs.

このため、この種電池のサイクル特性を改善する従来技
術として、特公昭54−9696号公報には、カドミウ
ム、鉛、インジウム、スズより選ばれる一種以上の金属
、あるいは酸化物2〜30重量%と、水酸化カルシウム
5〜20重量%を亜鉛活物質に添加することにより、サ
イクル特性の向上を計れることが開示されている。この
方法によれば、酸化カドミウム等の金属酸化物が充放電
サイクルの進行とともに還元され、多孔状骨格を形成し
電子伝導通路の役目を果たし、更に水酸化カルシウムの
添加は、電極より活物質が溶解遊離するのを堕ぐ効果が
あり、この結果、サイクル寿命を向上させることが可能
となる。
Therefore, as a conventional technique for improving the cycle characteristics of this type of battery, Japanese Patent Publication No. 54-9696 discloses that 2 to 30% by weight of one or more metals or oxides selected from cadmium, lead, indium, and tin. discloses that cycle characteristics can be improved by adding 5 to 20% by weight of calcium hydroxide to a zinc active material. According to this method, metal oxides such as cadmium oxide are reduced as the charge/discharge cycle progresses, forming a porous skeleton that serves as an electron conduction path, and the addition of calcium hydroxide allows the active material to be removed from the electrode. It has the effect of reducing dissolution and release, and as a result, it becomes possible to improve cycle life.

しかしながら、これらを単に添加するのみでは添加剤が
亜鉛極において偏在し、添加剤としての効果がト分に得
られない、また、これらの添加剤が還元されて、サイク
ル数が進行するに従い、金属亜鉛表面を覆うことにより
金属亜鉛が樹枝状亜鉛生成核となるのを抑制したり、電
気化学的に不活性な酸化被膜が生成するのを阻止する。
However, if these additives are simply added, they will be unevenly distributed in the zinc electrode, and the effect as an additive will not be obtained to a large extent.Additionally, these additives will be reduced, and as the number of cycles progresses, the metal By covering the zinc surface, metal zinc is inhibited from becoming a dendritic zinc generation nucleus, and an electrochemically inactive oxide film is prevented from being generated.

しかしながら充放電サイクルの初期には、金属亜鉛表面
がゐ加剤で覆われておらず、金属亜鉛が樹枝状亜鉛生成
の核となったり、電気化学的に不活性な亜鉛が生成する
。このような不活性な亜鉛が生成すると前記添加剤が存
在しても、電気化学的に不活性な亜鉛は反応せず、活物
質として作用しなくなりまた樹枝状亜鉛の生長も有効に
阻止できない。
However, at the beginning of the charge/discharge cycle, the surface of the metal zinc is not covered with the additive, and the metal zinc becomes a nucleus for the formation of dendritic zinc, or electrochemically inactive zinc is formed. If such inert zinc is produced, even if the additive is present, the electrochemically inert zinc will not react and will not function as an active material, and the growth of dendritic zinc cannot be effectively inhibited.

(ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、ア
ルカリ蓄電池用亜鉛極における添加剤の分散性を改善し
、充放電サイクル初期における金属亜鉛からの樹枝状亜
鉛の生長を抑制しろる亜鉛活物質、及びその製造方法並
びに亜鉛極を提案rるものである。そしてサイクル特性
に優れたアルカリ蓄電池を提供することを課題とする。
(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and aims to improve the dispersibility of additives in zinc electrodes for alkaline storage batteries, and to improve the dispersibility of additives in zinc electrodes for alkaline storage batteries. This paper proposes a zinc active material that can suppress the growth of dendritic zinc, a method for producing the same, and a zinc electrode. The objective is to provide an alkaline storage battery with excellent cycle characteristics.

(ニ)課題を解決するための手段 本発明のアルカリ蓄電池用亜鉛活物質は、第1の添加剤
と、第2の添加剤と、金属亜鉛粉末とからなり、前記第
1の添加剤は、インジウム、タリウム、ガリウム、カド
ミニウム等の亜鉛より貴な金属、もしくはその化合物よ
り選ばれたものからなり、前記第2の添加剤は、アルカ
リ土類金属水酸化物もしくはその酸化物からなり、前記
第1の添加剤と前記第2の添加剤とは、混合層を形成し
、前記混合層は、前記金属亜鉛粉末表面を覆うことを特
徴とするものである。
(d) Means for Solving the Problems The zinc active material for alkaline storage batteries of the present invention comprises a first additive, a second additive, and metal zinc powder, and the first additive comprises: The second additive is made of a metal nobler than zinc, such as indium, thallium, gallium, or cadmium, or a compound thereof, and the second additive is made of an alkaline earth metal hydroxide or an oxide thereof. The first additive and the second additive form a mixed layer, and the mixed layer covers the surface of the metal zinc powder.

そしてこの活物質は、前記第1の添加剤と、前記第2の
添加剤と、前記金属亜鉛粉末とを湿式混合するか、もし
くは、前記第1の添加剤及び前記第2の添加剤とは、ス
パッタリングあるいは蒸着により、前記金属亜鉛粉末に
付着させることにより製造することができる。
The active material is prepared by wet mixing the first additive, the second additive, and the metal zinc powder, or by mixing the first additive and the second additive by wet mixing. It can be manufactured by adhering it to the metal zinc powder by sputtering or vapor deposition.

また、かかるアルカリ蓄電池用亜鉛活物質と、酸化亜鉛
と、結着剤とで亜鉛極を構成するものである。
Further, a zinc electrode is constituted by the zinc active material for an alkaline storage battery, zinc oxide, and a binder.

(ホ)作用 前記表面を改質した金属亜鉛粉末を活物質として用いる
ことにより、サイクル特性の向上が計られる。これは金
属亜鉛表面が第2の添加剤であるアルカリ土類金属水酸
化物あるいは酸化物、および第1の添加剤が共存した混
合層により覆われているため、単に金属亜鉛と添加剤を
混合した場合に比べて、金属亜鉛表面での添加剤濃度が
高く、添加剤としての効果が、充放電サイクル初期から
効率良く出現してくる。
(E) Effect By using the surface-modified metal zinc powder as an active material, cycle characteristics can be improved. This is because the metal zinc surface is covered with a mixed layer in which the second additive, alkaline earth metal hydroxide or oxide, and the first additive coexist, so the metal zinc and the additive are simply mixed. The concentration of the additive on the metal zinc surface is higher than in the case where the zinc metal is used, and the effect as an additive appears efficiently from the beginning of the charge/discharge cycle.

前記第1の添加剤は亜鉛酸イオンの電析反応の過電圧を
増大させ、その結果、金属亜鉛表面への亜鉛酸イオンの
電析はゆるやかに、かつ均一に生じる。そのため金属亜
鉛は樹枝状亜鉛生長の核となり得す、亜鉛極からの樹枝
状亜鉛生長が有効に阻止される。更に金属亜鉛表面に、
電気化学的に不活性な醸化被膜が生成する事も防止する
。また、アルカリ土類金属水酸化物あるいは酸化物は、
亜鉛粒子の粗大化あるいは溶出を防止し、亜鉛極の変形
を紡ぐ。
The first additive increases the overvoltage of the zincate ion electrodeposition reaction, and as a result, the zincate ions are slowly and uniformly deposited on the metal zinc surface. Therefore, metallic zinc can serve as a nucleus for dendritic zinc growth, and dendritic zinc growth from the zinc electrode is effectively inhibited. Furthermore, on the metal zinc surface,
It also prevents the formation of an electrochemically inert fermentation film. In addition, alkaline earth metal hydroxides or oxides are
Prevents coarsening or elution of zinc particles and prevents deformation of zinc electrodes.

これら2つの相乗効果により、サイクル数が進行しても
、経時変化の少ない亜鉛極が得られ、サイクル特性が向
上する。
Due to the synergistic effect of these two, a zinc electrode with little change over time is obtained even as the number of cycles progresses, and the cycle characteristics are improved.

(へ)実施例 以下、本発明の実施例に言及し、詳述する。(f) Example Hereinafter, examples of the present invention will be referred to and explained in detail.

(実施例1) 金属亜鉛粉末(平均粒径3〜7鱗)と、この金属亜鉛粉
末に対して第1の添加剤としての水酸化インジウム10
重量%と、第2の添加剤としての水酸化バリウム10重
量%に、水501i量%を加え、湿式混合を行った。こ
の時の条件は、らいかい機を用い、室温で30分間混練
を行うというものであった。尚、この時添加した水の漁
加量としては種々検討したところ30〜200重量%場
度が適する。このようにして、本発明の亜鉛活物質(表
面改質亜鉛)を得た。
(Example 1) Metallic zinc powder (average particle size 3 to 7 scales) and indium hydroxide 10 as a first additive to the metal zinc powder
% by weight and 10% by weight of barium hydroxide as a second additive, 501i% by weight of water was added, and wet mixing was performed. The conditions at this time were to knead for 30 minutes at room temperature using a mulch machine. As for the amount of water added at this time, various studies have shown that 30 to 200% by weight is suitable. In this way, the zinc active material (surface-modified zinc) of the present invention was obtained.

ここで第1の添加剤として水酸化インジウム[In(O
H)sl、第2の添加剤として水酸化カルシウム(Ca
(OH)tlを用い湿式混合を行って得た亜鉛活物質(
本発明電池F、に用いたもの)、及び後述する乾式混合
により得た亜鉛活物質(比較電池f、に用いたもの)を
用い、X線回折分析を行った。この結果を、第1図及び
第2図に示す、尚、金属亜鉛、酸化亜鉛などのピークは
、第1の添加剤、第2の添加剤のピークよりもはるかに
大きいので、ここではその図示を省略している。この表
面改質亜鉛は、その表面にインジウムは金属状態で存在
するものであることが、第1図のX線回折分析により理
解される。このインジウムの被膜の重量は約3jl量%
である。詳述すると第1図の結果より、金3亜鉛粒子の
表面には第1の添加剤であるインジウム(図中・印)が
金属状態で存在しており、これは金属亜鉛とイオン交換
して生成したものである。又、金属亜鉛粒子の表面には
亜鉛酸カルシウムCa[Zn(0)1)ah ・2H*
O(図中O印)が生成しており、前記インジウム(In
)と共存していることがわかる。
Here, the first additive is indium hydroxide [In(O
H) sl, calcium hydroxide (Ca
Zinc active material obtained by wet mixing using (OH)tl (
X-ray diffraction analysis was performed using the zinc active material obtained by dry mixing (used in the battery F of the present invention) and the zinc active material obtained by dry mixing (used in the comparative battery F) described below. The results are shown in Figures 1 and 2. Note that the peaks of metal zinc, zinc oxide, etc. are much larger than the peaks of the first additive and the second additive, so their illustrations are not shown here. is omitted. It is understood from the X-ray diffraction analysis shown in FIG. 1 that this surface-modified zinc has indium present in a metallic state on its surface. The weight of this indium coating is approximately 3jl%
It is. In detail, from the results shown in Figure 1, the first additive, indium (marked in the figure), exists in a metallic state on the surface of the gold-zinc particles, and this is ion-exchanged with metallic zinc. It was generated. In addition, calcium zincate Ca[Zn(0)1)ah 2H* is present on the surface of the metal zinc particles.
O (O mark in the figure) is generated, and the indium (In
) can be seen to coexist.

これに対して、第2図の結果より、第1の添加剤である
水酸化インジウム[In(OH>=](図中口中)及び
第2の添加剤である水酸化カルシウム[Ca(OH)、
](図中△印)は、単に各々存在しているだけC1亜鉛
酸カルシウムが確認されず、金属亜鉛粒子表面が第1の
添加剤と、第2の添加剤とで混合層を形成していること
は確認できない。
On the other hand, from the results shown in Figure 2, the first additive, indium hydroxide [In(OH>=] (inside the figure), and the second additive, calcium hydroxide [Ca(OH)]. ,
] (marked with △ in the figure), C1 calcium zincate was not confirmed because each of them was simply present, and the surface of the metal zinc particles formed a mixed layer with the first additive and the second additive. I can't confirm that there is.

このようにして得た表面改質亜鉛35重量%、酸化亜鉛
60重量%、フッ素樹脂5重量%からなる混合粉末に水
を加え、混練し、ペーストを得、集電体上に比重して電
極とした。この様に作製した亜鉛極を、公知の煉結式二
ンケル極と組み合わせて、円筒密閉型ニッケルー亜鉛電
池を得、本発明電池A1とした。
To the thus obtained mixed powder consisting of 35% by weight of surface-modified zinc, 60% by weight of zinc oxide, and 5% by weight of fluororesin, water is added and kneaded to obtain a paste. And so. The thus produced zinc electrode was combined with a known bridle-type two-layer electrode to obtain a cylindrical sealed nickel-zinc battery, which was designated as the battery A1 of the present invention.

また同様にして、6表に示す添加剤を含有する本発明電
池B5、C+、D+、El、F+SG+、H2、■3、
Jlを得た。
Similarly, batteries of the present invention B5, C+, D+, El, F+SG+, H2, ■3, containing the additives shown in Table 6,
I got Jl.

第3図は、本発明電池の断面図を示し、図中、1は亜鉛
極、2はニッケル極、3はセパレータであり、これらを
巻きとり、熱収縮チューブ8を包んで外装缶4に挿入す
る。6は正極用導電タブであり、封口体5に接続されて
おり、7は負極用導電タブで外装缶4に接続されている
。そし工封ロ体5は、バッキング9を介して、外装缶4
の開口部に装着されている。
FIG. 3 shows a cross-sectional view of the battery of the present invention. In the figure, 1 is a zinc electrode, 2 is a nickel electrode, and 3 is a separator. These are wound up, wrapped around a heat shrink tube 8, and inserted into an outer can 4. do. 6 is a conductive tab for the positive electrode, which is connected to the sealing body 5; and 7 is a conductive tab for the negative electrode, which is connected to the outer can 4. Then, the sealing body 5 is attached to the outer can 4 via the backing 9.
is attached to the opening of the

(実施例2) 重量比で1=1の酸化バリウムと金属インジウムの混合
物をタングステンのボートに入れ、このボートを振動さ
せながら電子ビーム蒸着く加速電流200輪A、蒸R源
の距離8.0σ、蒸着速度700人/sin、 真空度
1G −’ Torr )により金属亜鉛粉末表面を、
酸化カルシウム(第2の添加剤)、およびインジウム(
第1の添加剤)で被覆し、表面改質亜鉛を得た。尚、こ
の時の被膜重量は亜鉛重量に対して約10!l量%であ
った。この表面改質亜鉛を、実施例1と同様にして亜鉛
極を作製し、同様に電池を組み立て、本発明電池A、と
した。
(Example 2) A mixture of barium oxide and metallic indium with a weight ratio of 1=1 was placed in a tungsten boat, and the boat was vibrated while electron beam evaporation was performed at an accelerating current of 200 A and a distance of evaporation R source of 8.0σ. , a deposition rate of 700 people/sin, and a vacuum level of 1 G-' Torr) to coat the surface of the metallic zinc powder.
Calcium oxide (second additive), and indium (
(first additive) to obtain surface-modified zinc. The weight of the film at this time is about 10% of the weight of zinc! It was 1%. A zinc electrode was prepared from this surface-modified zinc in the same manner as in Example 1, and a battery was assembled in the same manner to form a battery A of the present invention.

また同様の電子ビーム蒸着法により、6表に示す添加剤
を含有する本発明電池B、、C8、Dl、E*。
Batteries B, C8, Dl, and E* of the present invention containing the additives shown in Table 6 were also prepared using the same electron beam evaporation method.

Fl、G、、H8、Il、J、を得た。Fl,G,,H8,Il,J, were obtained.

尚、上記加速電流は100〜300mA、蒸着源の距離
は5〜10cm、真空度は10−1〜10−’程度の値
が好ましい。
Note that the acceleration current is preferably 100 to 300 mA, the distance to the vapor deposition source is 5 to 10 cm, and the degree of vacuum is preferably about 10-1 to 10-'.

(比較例1) 第2の添加剤であるアルカリ土類金属の水酸化物及び酸
化物を添加しないで、第1の添加剤のみを添加して航記
実施例1と同様の湿式混合を行い、活物質を得、同様に
電池を作製し、6表に示す比較電池a1、l)1.el
、d7、els fl、g3、hl。
(Comparative Example 1) Wet mixing was carried out in the same manner as in Example 1 by adding only the first additive without adding the second additive, the hydroxide and oxide of alkaline earth metal. , an active material was obtained, a battery was produced in the same manner, and comparative batteries a1, l)1. shown in Table 6 were obtained. el
, d7, els fl, g3, hl.

11、j+を得た。11, obtained j+.

(比較例2) 第1の添加剤及び第2の添加剤は使用するが、湿式混合
は行なわず、乾式混合で混合した活物質を得、6表(第
1表、第5表、第6表、第10表)に示す比較電池a8
、el、fl、j、を得た。
(Comparative Example 2) Although the first additive and the second additive were used, wet mixing was not performed and active materials mixed by dry mixing were obtained. Comparative battery a8 shown in Table 10)
,el,fl,j, were obtained.

これらの本発明電池A1〜J+、本発明電池A、〜J1
、比較電池@ t−j +、比較電池a3、C18、f
l、j8を用い、サイクル寿命を比較した。
These invention batteries A1 to J+, invention batteries A, to J1
, Comparative battery @ t-j +, Comparative battery a3, C18, f
The cycle life was compared using 1 and j8.

充放電サイクル条件は、1/4c電流で4.6時間充電
後、l/4cllj流で放電し、電池電圧が1.Ovに
達した時点で放電を終了するもので、電池容量が初期容
量の50%以下になったサイクル数をサイクル寿命とし
た。
The charging/discharging cycle conditions were as follows: After charging at 1/4c current for 4.6 hours, discharging at 1/4cllj current, and the battery voltage was 1. Discharging was terminated when Ov was reached, and the number of cycles at which the battery capacity became 50% or less of the initial capacity was defined as the cycle life.

この結果を、各添加開側に、表に示した。第1表乃至第
10表は、第1の添加剤、第2の添加剤及びサイクル寿
命を示すものである。
The results are shown in the table for each addition open side. Tables 1 through 10 show the first additive, second additive, and cycle life.

以下余白 表より明らかな様に、本発明の表面改質亜鉛を用いた方
が、岸に添加剤と乾式混合を行なった場合よりも優れて
いることがわかる。第4図は第5表に示す電池E3、E
l、e3、e、の充放電サイクル特性比較図である。第
1表乃至第10表の結果より、水酸化バリウム−インジ
ウム−タリウム−ガリウムにおいて効果が特に顕著であ
り、サイクル特性が優れている。これは金属亜鉛表面が
、充放電サイクル初期からインジウム、タリウム、ある
いはガリウムが効率良く、しかも分散性良く覆っている
ために、これら3金属元素の相乗効果により、亜鉛酸イ
オンの電析反応の過電圧が増大するため、亜鉛酸イオン
の電析反応は緩やかに且つ均一に起こり、樹枝状亜鉛生
長が生じにくい状態になるためであると考えられる。
As is clear from the margin table below, it can be seen that the use of the surface-modified zinc of the present invention is superior to the case of dry mixing with additives. Figure 4 shows batteries E3 and E shown in Table 5.
1, e3, and e are comparison diagrams of charge/discharge cycle characteristics. From the results shown in Tables 1 to 10, the effect is particularly remarkable in barium hydroxide-indium-thallium-gallium, and the cycle characteristics are excellent. This is because the surface of metallic zinc is covered with indium, thallium, or gallium efficiently and with good dispersion from the beginning of the charge/discharge cycle, and the synergistic effect of these three metal elements causes the overvoltage of the zincate ion electrodeposition reaction. It is thought that this is because the electrodeposition reaction of zincate ions occurs slowly and uniformly due to the increase in the number of zinc oxides, resulting in a state in which dendritic zinc growth is less likely to occur.

またこの表面改質亜鉛は、アルカリ土類金属水醸化物あ
るいは酸化物に均一に壇われているため、放電時の亜鉛
酸イオンの溶出を効果的に防ぎ、ナイクル数が進行して
も、亜鉛権の形状変化が阻止されると考えられる。尚、
実施例1では第2の添加剤であるアルカリ土類金属水酸
化物として水酸化バリウム、水酸化カルシウムを単独で
用いたが、第2の添加剤としては、他のアルカリ土類金
属水酸化物、あるいはこれらの2種以上の組み合わせで
も、同様の効果が得られる。また第2の添加剤としての
アルカリ土類金属水酸化物あるいは第1の添加剤の添加
量は全て10311%としたが、第2の添加剤としての
アルカリ土類金属水酸化物については1〜20重量%、
第1の添加剤については5〜201i量%の範囲内であ
れば、同様の効果が得られる。また実施例2においても
、第2の添加剤はアルカリ土類金属酸化物、他の形態、
あるいは211以上の組み合わせでも良く、被膜重量に
ついても2〜20重量%の範囲内であれば、同様の効果
が得られる。
In addition, since this surface-modified zinc is uniformly coated with alkaline earth metal aqueous substances or oxides, it effectively prevents the elution of zincate ions during discharge, and even as the Nicle number progresses, zinc It is thought that changes in the shape of rights will be prevented. still,
In Example 1, barium hydroxide and calcium hydroxide were used alone as the alkaline earth metal hydroxide as the second additive, but other alkaline earth metal hydroxides were used as the second additive. , or a combination of two or more of these, similar effects can be obtained. In addition, the amount of alkaline earth metal hydroxide as the second additive or the first additive was all 10311%, but the amount of alkaline earth metal hydroxide as the second additive was 1 to 1%. 20% by weight,
The same effect can be obtained as long as the amount of the first additive is within the range of 5 to 201i%. Also in Example 2, the second additive is an alkaline earth metal oxide, other forms,
Alternatively, a combination of 211 or more may be used, and the same effect can be obtained as long as the coating weight is within the range of 2 to 20% by weight.

(ト)発明の効果 本発明によれば、亜鉛活物質である金属亜鉛粒子表面が
、第1の添加剤により効率良く均一に覆われており、か
つ第2の漏加剤であるアルカリ土類金属水酸化物あるい
は酸化物に覆われ、第1の添加剤と第2の添加剤とが混
合層を形成しているので、充放電反応が均一となり、サ
イクル長期にわたり、形状変化の少ない、サイクル特性
の優れたアルカリ蓄電池用亜鉛極及び電池が得られ、そ
の工業的価値はきわめて大きい。
(G) Effects of the Invention According to the present invention, the surface of metal zinc particles, which is a zinc active material, is efficiently and uniformly covered with the first additive, and the alkaline earth particles, which are the second additive, Covered with metal hydroxide or oxide, the first additive and the second additive form a mixed layer, so the charge/discharge reaction is uniform, and the cycle is maintained over a long period of time with little change in shape. Zinc electrodes and batteries for alkaline storage batteries with excellent properties can be obtained, and their industrial value is extremely large.

4、  rxJ面の筒車な説明 第1150は本発明による亜鉛活物質のX線回折結果図
、第2図は比較例による亜鉛活物質のx!1回折結果図
、第3図は本発明電池の縦断面図、第4図は電池のサイ
クル特性比較図である。
4. An hour wheel explanation of rxJ plane No. 1150 is an X-ray diffraction result diagram of the zinc active material according to the present invention, and Fig. 2 is an x! 1 is a diffraction result diagram, FIG. 3 is a vertical cross-sectional view of the battery of the present invention, and FIG. 4 is a comparison diagram of cycle characteristics of the batteries.

1・・・亜鉛極(負極)、2・・・ニッケル極〈正極)
、3・・・セパレータ、4・・・外装缶、5・・・封口
体、6・・・正極用導電ダブ、7・・・負極用導電タブ
、8・・・熱収縮チューブ、9・・・バッキング E、 、 E、・・・本発明電池、e、 l am・・
・比較電池。
1... Zinc electrode (negative electrode), 2... Nickel electrode (positive electrode)
, 3... Separator, 4... Exterior can, 5... Sealing body, 6... Conductive dove for positive electrode, 7... Conductive tab for negative electrode, 8... Heat shrink tube, 9...・Backing E, , E,...Battery of the present invention, e, lam...
・Comparison battery.

Claims (4)

【特許請求の範囲】[Claims] (1)第1の添加剤と、第2の添加剤と、金属亜鉛粉末
とからなり、 前記第1の添加剤は、インジウム、タリウム、ガリウム
、カドミニウム等の亜鉛より貴な金属、もしくはその化
合物より選ばれたものからなり、 前記第2の添加剤は、アルカリ土類金属水酸化物もしく
はその酸化物からなり、 前記第1の添加剤と前記第2の添加剤とは、混合層を形
成し、 前記混合層は、前記金属亜鉛粉末表面を覆うことを特徴
とするアルカリ蓄電池用亜鉛活物質。
(1) Consists of a first additive, a second additive, and metal zinc powder, and the first additive is a metal nobler than zinc, such as indium, thallium, gallium, cadmium, or a compound thereof. The second additive is made of an alkaline earth metal hydroxide or an oxide thereof, and the first additive and the second additive form a mixed layer. A zinc active material for an alkaline storage battery, wherein the mixed layer covers the surface of the metal zinc powder.
(2)前記第1の添加剤と、前記第2の添加剤と、前記
金属亜鉛粉末とを湿式混合する ことを特徴とする請求項(1)記載のアルカリ蓄電池用
亜鉛活物質の製造方法。
(2) The method for producing a zinc active material for an alkaline storage battery according to claim (1), characterized in that the first additive, the second additive, and the metal zinc powder are wet-mixed.
(3)前記第1の添加剤及び前記第2の添加剤とは、ス
パッタリングあるいは蒸着により、前記金属亜鉛粉末に
付着させる ことを特徴とする請求項(1)記載のアルカリ蓄電池用
亜鉛活物質の製造方法。
(3) The first additive and the second additive are attached to the metal zinc powder by sputtering or vapor deposition, Production method.
(4)前記アルカリ蓄電池用亜鉛活物質と、酸化亜鉛と
、結着剤とからなることを特徴とするアルカリ蓄電池用
亜鉛極。
(4) A zinc electrode for an alkaline storage battery, comprising the zinc active material for an alkaline storage battery, zinc oxide, and a binder.
JP63118482A 1988-05-16 1988-05-16 Zinc active material for alkaline storage battery, method for producing the same, and zinc electrode using the active material Expired - Lifetime JP2557683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118482A JP2557683B2 (en) 1988-05-16 1988-05-16 Zinc active material for alkaline storage battery, method for producing the same, and zinc electrode using the active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118482A JP2557683B2 (en) 1988-05-16 1988-05-16 Zinc active material for alkaline storage battery, method for producing the same, and zinc electrode using the active material

Publications (2)

Publication Number Publication Date
JPH01289068A true JPH01289068A (en) 1989-11-21
JP2557683B2 JP2557683B2 (en) 1996-11-27

Family

ID=14737768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118482A Expired - Lifetime JP2557683B2 (en) 1988-05-16 1988-05-16 Zinc active material for alkaline storage battery, method for producing the same, and zinc electrode using the active material

Country Status (1)

Country Link
JP (1) JP2557683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020111A1 (en) * 1991-05-07 1992-11-12 Battery Technologies Inc. Recombination of evolved oxygen in galvanic cells using transfer anode materials
JP2004526286A (en) * 2001-03-15 2004-08-26 パワージェニックス・システムズ・インコーポレーテッド Method for producing zinc oxide electrode for alkaline battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020111A1 (en) * 1991-05-07 1992-11-12 Battery Technologies Inc. Recombination of evolved oxygen in galvanic cells using transfer anode materials
JP2004526286A (en) * 2001-03-15 2004-08-26 パワージェニックス・システムズ・インコーポレーテッド Method for producing zinc oxide electrode for alkaline battery

Also Published As

Publication number Publication date
JP2557683B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
EP0353837B1 (en) A nickel electrode for an alkaline battery
RU2208270C2 (en) Positive-plate composite material and its manufacturing process
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
US5620813A (en) Positive nickel electrode for alkaline storage battery
US5079110A (en) Alkaline storage cell
US20020098415A1 (en) Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP3490818B2 (en) Paste nickel electrode for alkaline storage batteries
JPH01289068A (en) Zinc active material for alkaline storage battery and its manufacture and zinc electrode using same active material
US4983477A (en) Cadmium non-sintered negative electrode for an alkaline storage cell and its manufacturing method
JP3744316B2 (en) Positive electrode active material for alkaline storage battery, nickel positive electrode, and alkaline storage battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPH10326612A (en) Negative electrode for lithium ion secondary battery and its manufacture
JP5116249B2 (en) Positive electrode for alkaline storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2002008649A (en) Nickel positive electrode for alkaline storage battery and alkaline storage battery using it
JPH11307091A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JPH0410181B2 (en)
JPH08203522A (en) Nickel active substance for alkaline battery and manufacture thereof
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH1173944A (en) Negative electrode for lithium ion secondary battery and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12