JPH1173944A - Negative electrode for lithium ion secondary battery and its manufacture - Google Patents
Negative electrode for lithium ion secondary battery and its manufactureInfo
- Publication number
- JPH1173944A JPH1173944A JP9232294A JP23229497A JPH1173944A JP H1173944 A JPH1173944 A JP H1173944A JP 9232294 A JP9232294 A JP 9232294A JP 23229497 A JP23229497 A JP 23229497A JP H1173944 A JPH1173944 A JP H1173944A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- graphite
- tin
- carbon material
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、負極に黒鉛や炭
素を用いるリチウムイオン二次電池において、負極の放
電容量の向上に関する。The present invention relates to an improvement in the discharge capacity of a negative electrode in a lithium ion secondary battery using graphite or carbon for the negative electrode.
【0002】[0002]
【従来の技術】金属リチウムを負極活物質とする電池を
すべてリチウム電池とよぶ。正確には正極活物質と組み
合わせて“二酸化マンガン・リチウム電池”のようによ
ぶ。リチウム電池は、近年実用化された電池であるが、
電圧が通常の乾電池の約2倍と高く、容量が大きくしか
も貯蔵寿命も5年以上あるため、高価ではあるが、よく
利用されるようになった。特に近年、急速にエレクトロ
ニックス機器における小型化技術が発展してきた結果、
その電源として用いられる電池にも小型化が要求され、
高エネルギー密度、大容量、高起電力性の向上が必須と
なり、新しいリチウムイオン二次電池の研究開発が活発
化している。2. Description of the Related Art All batteries using metallic lithium as a negative electrode active material are called lithium batteries. To be precise, it is called "manganese dioxide lithium battery" in combination with the positive electrode active material. Lithium batteries are batteries that have been put into practical use in recent years,
Since the voltage is twice as high as that of a normal dry battery, the capacity is large, and the storage life is 5 years or more, the battery is widely used although it is expensive. Especially in recent years, as a result of the rapid development of miniaturization technology in electronic devices,
The battery used as the power source also needs to be downsized,
Improvements in high energy density, large capacity, and high electromotive force have become essential, and research and development of new lithium ion secondary batteries has been activated.
【0003】しかし、従来のリチウム二次電池では、負
極活物質として金属リチウム箔等を用いる場合が多いの
で、以下のような解決しなければならない課題を有して
いた。すなわち、金属リチウムは放電に伴って電解液中
に溶出するため、充電時にリチウムは再析出することに
なる。この時、リチウムがデンドライド(樹枝)状に析
出したり、微粒子化したりする。デンドライドはショー
トの原因となったり、脱落して容量低下をもたらすため
に、サイクル特性や安全性の低下につながる。デンドラ
イドは大電流時に生成し易いので、急速充電はサイクル
寿命を悪化させる。However, conventional lithium secondary batteries often use metallic lithium foil or the like as a negative electrode active material, and therefore have the following problems to be solved. That is, metallic lithium is eluted into the electrolytic solution with discharging, so that lithium is reprecipitated during charging. At this time, lithium precipitates in a dendritic (dendritic) state or becomes fine particles. Dendrites cause short-circuits or drop off, resulting in a reduction in capacity, leading to a decrease in cycle characteristics and safety. Since dendrites are easily generated at high currents, rapid charging deteriorates cycle life.
【0004】そこで、リチウム/アルミ合金、ウッド合
金等のようなリチウムを吸蔵することができる物質を負
極に用いる方法が提案されているが、電極としての加工
性が低下する、充放電に伴って合金が脆化・脱落するな
ど問題点を有している。Therefore, a method has been proposed in which a material capable of absorbing lithium, such as a lithium / aluminum alloy or a wood alloy, is used for the negative electrode. However, the processability as an electrode is reduced. The alloy has problems such as embrittlement and falling off.
【0005】リチウムを吸蔵できる物質の内、最も可能
性が高い負極材料は炭素で、近年、黒鉛を始めとする各
種の炭素材に担持させる研究が盛んに行われている。特
開昭57−208079号公報によれば、黒鉛を負極と
して充電を行うと、正極中のリチウムは電気化学的に負
極黒鉛の層間にインターカレーション(挿入)され、放
電にともなってリチウムは黒鉛層間から電解液中にイオ
ンとしてデインターカレーションされ正極中に戻ること
ができる。充電−放電の間リチウムは正極中に存在する
ときも負極中に存在するときも電解液中に存在するとき
も高いイオン性を保っている。このことから、これらの
機構を利用した二次電池を、一般にリチウムイオン二次
電池と呼ぶ様になった。[0005] Among the substances capable of storing lithium, the most probable negative electrode material is carbon. In recent years, studies on supporting carbon on various carbon materials such as graphite have been actively conducted. According to Japanese Patent Application Laid-Open No. 57-208079, when charging is performed using graphite as a negative electrode, lithium in the positive electrode is electrochemically intercalated (inserted) between layers of the negative electrode graphite, and lithium is replaced with graphite by discharging. The ions can be deintercalated into the electrolyte from the layers and returned to the positive electrode. During charge-discharge, lithium maintains high ionicity both when present in the positive electrode, in the negative electrode, and when present in the electrolytic solution. For this reason, a secondary battery utilizing these mechanisms has been generally called a lithium ion secondary battery.
【0006】黒鉛の充放電特性は定電流で対極に金属リ
チウムを使用して充放電した場合、合金負極と同様に、
0.2V付近に平坦で安定な部分を有し、機器の安定動
作という観点からは都合がよい。黒鉛の放電容量は理論
値で372 mAh/gであるが、高容量電池の要求に対し
てはこの理論値を越え、出来うる限り高容量の負極材が
望まれる。[0006] The charge and discharge characteristics of graphite are similar to those of an alloy negative electrode when charged and discharged at a constant current using metallic lithium as a counter electrode.
It has a flat and stable portion near 0.2 V, which is convenient from the viewpoint of stable operation of the device. The theoretical discharge capacity of graphite is 372 mAh / g. However, for a demand for a high-capacity battery, a negative electrode material exceeding this theoretical value and having the highest possible capacity is desired.
【0007】高容量の負極材として期待の高い材料のひ
とつに難黒鉛化性炭素がある。難黒鉛化性炭素は、La
=2〜5nmの黒鉛の層が3〜5層積み重なった程度の黒
鉛微結晶がランダムに集合した組織で構成され、焼成段
階で生成する10オングストローム程度の閉気孔にリチ
ウムイオンがクラスター化して吸蔵されると考えられて
いる。この難黒鉛化性炭素の充放電特性は定電流で対極
に金属リチウムを用いて充放電した場合、0〜3Vの各
電圧に平坦部を示さず、なだらかに変化する特徴を持っ
ている。この事は、電池に用いた場合電位の変化で電池
残量が分かるといった長所でもあるが、電圧が一定では
ないために機器の安定動作と言う観点からは、短所とな
るものである。また、リチウムの吸蔵機構がクラスター
化であるとすると、金属リチウムと同様に安全性の面で
の不安を拭いきれない。One of the promising materials as a high capacity negative electrode material is non-graphitizable carbon. The non-graphitizable carbon is La
It is composed of a structure in which graphite layers of about 2 to 5 nm of graphite are stacked at random in an amount of 3 to 5 layers, and lithium ions are clustered and occluded in closed pores of about 10 angstroms generated in the firing step. It is believed that. The charge and discharge characteristics of the non-graphitizable carbon have a characteristic that when charged and discharged at a constant current using metallic lithium as a counter electrode, each voltage of 0 to 3 V does not show a flat portion and changes smoothly. This has the advantage that the remaining amount of the battery can be determined by the change in potential when used in a battery, but is disadvantageous from the viewpoint of stable operation of the device because the voltage is not constant. In addition, if the lithium storage mechanism is a cluster, the safety concerns cannot be eliminated as in the case of metallic lithium.
【0008】難黒鉛化性炭素の放電容量は500〜80
0 mAh/gとも言われている。The discharge capacity of non-graphitizable carbon is 500-80.
It is also called 0 mAh / g.
【0009】もうひとつの高容量負極材として、スズの
複合酸化物がある。スズ複合酸化物を金属リチウムを対
極として定電流で充放電すると、500〜800 mAh/
gと言う高い放電容量が得られる事が知られているが、
不可逆容量が大きい事、深い充放電を繰り返すと極端に
容量が減少する事などが知られており、まだ改善の余地
を残している。As another high capacity negative electrode material, there is a tin composite oxide. When the tin composite oxide is charged and discharged with a constant current using lithium metal as a counter electrode, 500 to 800 mAh /
It is known that a high discharge capacity of g can be obtained,
It is known that the irreversible capacity is large, and that the capacity is extremely reduced when deep charge / discharge is repeated, and there is still room for improvement.
【0010】ます、スズ複合酸化物のリチウム吸蔵機構
は明らかにはなっていないが、その充放電特性は難黒鉛
化性炭素の充放電特性と同様であり、電圧が一定ではな
いために機器の安定動作と言う観点からは、難黒鉛化性
炭素と同様に短所となり得る。[0010] First, although the lithium occlusion mechanism of the tin composite oxide has not been clarified, the charge and discharge characteristics thereof are similar to those of the non-graphitizable carbon, and the voltage is not constant. From the standpoint of stable operation, it can be disadvantageous as with non-graphitizable carbon.
【0011】本発明者等は、上記スズ複合酸化物の充放
電機構の解明のために、さまざまな金属酸化物、硫化
物、硫酸化物などの充放電特性を調べた結果、リチウム
と合金を形成できる金属、特に、スズ、鉛、インジウ
ム、モリブデン、タングステン、アルミニウム、マンガ
ン、鉄および亜鉛の化合物がスズ複合酸化物と同様な充
放電特性を示す事を見いだした。The present inventors have investigated the charge / discharge characteristics of various metal oxides, sulfides, sulfates, etc. in order to elucidate the charge / discharge mechanism of the above-mentioned tin composite oxide. As a result, the inventors formed an alloy with lithium. It has been found that the resulting metals, in particular, compounds of tin, lead, indium, molybdenum, tungsten, aluminum, manganese, iron and zinc exhibit charge and discharge characteristics similar to those of the tin composite oxide.
【0012】さらに、その後の研究で次の事が判明し
た。 黒鉛を四塩化スズと水で処理すると、四塩化スズと
大量の水でSnCl(OH)(塩基性塩化スズ)および
/またはSnOが生成し、黒鉛表面に付着する。次に2
00℃の空気中乾燥で上記スズ化合物が固定化する。付
着するスズ化合物の量は極微で、充放電容量は若干の増
加に留まる。しかし、理由は定かでは無いが、黒鉛その
もののサイクル特性を大幅に改善できる。 黒鉛を四塩化スズと硫酸と水で処理すると、四塩化
スズと硫酸と大量の水でSnCl(OH)とSnSO4
の混合物が生成し、黒鉛表面に付着する。次に200℃
の空気中乾燥で上記スズ化合物が固定化するが、付着し
たスズ化合物の量が比較的多いので、サイクル特性が向
上するだけでなく、充放電容量が増加する。Further, the following research has revealed the following. When graphite is treated with tin tetrachloride and water, SnCl (OH) (basic tin chloride) and / or SnO are generated by the tin tetrachloride and a large amount of water and adhere to the graphite surface. Then 2
The tin compound is fixed by drying in the air at 00 ° C. The amount of the attached tin compound is extremely small, and the charge / discharge capacity is only slightly increased. However, although the reason is not clear, the cycle characteristics of graphite itself can be greatly improved. When graphite is treated with tin tetrachloride, sulfuric acid and water, SnCl (OH) and SnSO 4 are mixed with tin tetrachloride, sulfuric acid and a large amount of water.
Is formed and adheres to the graphite surface. Then 200 ° C
Although the tin compound is fixed by drying in air, the amount of the tin compound attached is relatively large, so that not only cycle characteristics are improved, but also the charge / discharge capacity is increased.
【0013】[0013]
【発明が解決しようとする課題】本発明の目的は、高容
量のリチウムイオン二次電池用負極炭素材料を提供する
ものであり、リチウムイオン二次電池の放電容量をさら
に向上することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a high capacity negative electrode carbon material for a lithium ion secondary battery, and to further improve the discharge capacity of the lithium ion secondary battery.
【0014】[0014]
【課題を解決するための手段】上記、とで示した四
塩化スズからの生成物が塩基性塩化スズSnCl(O
H)を含むものと分析されたことから、二塩化スズでの
可能性を調査した。四塩化スズが揮発性で有毒ガスを発
生するのに対して、二塩化スズは二水和物として市販さ
れ、揮発による有毒ガスの発生が無い。従って、取り扱
いが容易である。The products from tin tetrachloride shown in the above are basic tin chloride SnCl (O
H), the possibility of tin dichloride was investigated. Tin tetrachloride is volatile and generates toxic gases, whereas tin dichloride is commercially available as a dihydrate and does not generate toxic gases due to volatilization. Therefore, handling is easy.
【0015】二塩化スズ・二水和物はそのままでは電解
液であるEC+DECで膨潤、半溶融状態となるため、
負極材料としては適さないが、水に分散する事で塩基性
水酸基が導入され塩基性塩化スズになり、電解液に対し
て安定になるものと考えられる。黒鉛と二塩化スズ・二
水和物を重量比で1:1計量し、水に分散させた後、乾
燥。さらに200℃空気中で乾燥して負極材料を得た。
このものの放電容量は540 mAh/gであり、非常に高
容量であった。Since tin dichloride dihydrate swells and becomes semi-molten in the electrolyte solution EC + DEC as it is,
Although it is not suitable as a negative electrode material, it is considered that by dispersing in water, a basic hydroxyl group is introduced to form basic tin chloride, which becomes stable to an electrolytic solution. Graphite and tin dichloride dihydrate are weighed at a weight ratio of 1: 1, dispersed in water, and dried. Furthermore, it was dried in air at 200 ° C. to obtain a negative electrode material.
This had a discharge capacity of 540 mAh / g, which was a very high capacity.
【0016】次に、水での処理で得られた負極材料は粉
体の粒子形状が均一でなく、黒鉛と塩基性塩化物の単な
る混合物に過ぎない。そこで、二塩化スズ・二水和物を
エタノールで溶解し、黒鉛を分散させ、乾燥して処理す
ると、粒子形状が黒鉛粒子とほぼ変わらない、すなわち
二塩化スズ・二水和物が黒鉛にフィルム状に被覆した状
態となる。このエタノール処理黒鉛を水で処理して塩基
性基を導入することも考えられる。Next, the negative electrode material obtained by the treatment with water has a non-uniform powder particle shape and is merely a mixture of graphite and a basic chloride. Therefore, when tin dichloride dihydrate is dissolved in ethanol, graphite is dispersed, and dried and treated, the particle shape is almost the same as graphite particles, that is, tin dichloride dihydrate is converted to graphite film. It will be in the state covered in the shape. It is also conceivable to treat the ethanol-treated graphite with water to introduce a basic group.
【0017】上述の如く、本発明によれば、炭素材料と
塩基性塩化スズとを含むリチウムイオン二次電池用負極
が提供される。本発明によれば、炭素材料と二塩化スズ
・二水和物を水に分散させた後、乾燥するリチウムイオ
ン二次電池用負極の製造方法もまた提供される。本発明
によれば、二塩化スズ・二水和物をエタノールで溶解
し、炭素材料を分散させた後、乾燥するリチウムイオン
二次電池用負極の製造方法もまた提供される。As described above, according to the present invention, there is provided a negative electrode for a lithium ion secondary battery containing a carbon material and basic tin chloride. According to the present invention, there is also provided a method for producing a negative electrode for a lithium ion secondary battery, in which a carbon material and tin dichloride dihydrate are dispersed in water and then dried. According to the present invention, there is also provided a method for producing a negative electrode for a lithium ion secondary battery, in which tin dichloride dihydrate is dissolved in ethanol, a carbon material is dispersed, and then dried.
【0018】[0018]
【実施例】リチウムイオン二次電池用のテストセルの構
成を図1に示す。対極10には、過剰量の金属リチウム
を使い、セパレータ12には濾紙を3重にして用いた。
対極10及び作用極14は、スプリング15で付勢され
たステンレス棒16によって押さえ合わせた。ステンレ
ス棒16はガラス管18に入れOリング20によってセ
ルを密閉状態とした。22はマルロインドフィルム、2
4は導線である。電解液26として、重量比で1:1の
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)に過塩素酸リチウムを加えたものを用いた。 (実施例1)平均粒子径10μmの天然鱗片状黒鉛(ブ
ラジル産 中越黒鉛製BF−10A)0.5gと二塩化
スズ・二水和物(和光純薬 試薬特級)を0.5gを計
量し、水に分散させた後、自然乾燥し、次いで200℃
空気中で乾燥して負極用炭素材料を得た。FIG. 1 shows the configuration of a test cell for a lithium ion secondary battery. An excessive amount of metallic lithium was used for the counter electrode 10, and filter paper was used three times for the separator 12.
The counter electrode 10 and the working electrode 14 were pressed by a stainless steel bar 16 urged by a spring 15. The stainless steel rod 16 was placed in a glass tube 18 and the cell was sealed by an O-ring 20. 22 is a Marloind film, 2
4 is a conducting wire. As the electrolytic solution 26, a solution obtained by adding lithium perchlorate to ethylene carbonate (EC) and diethyl carbonate (DEC) at a weight ratio of 1: 1 was used. (Example 1) 0.5 g of natural flaky graphite (BF-10A made by Chuetsu graphite from Brazil) having an average particle diameter of 10 µm and 0.5 g of tin dichloride dihydrate (Wako Pure Chemicals reagent special grade) were weighed. , Dispersed in water, air dried, then 200 ° C
The resultant was dried in the air to obtain a carbon material for a negative electrode.
【0019】つぎに、この粉末状の負極用炭素材料を約
5重量%のPTFEと混合し、粉末成形を施してシート
状にし、これを直径6.0mmの円形に打ち抜き、負極電
極とした。作製した電極は、電極の実重量が、2〜3mg
前後であった。真空状態で120℃、1昼夜、乾燥して
絶乾状態とした。作製した負極電極を、図1に示すテス
トセルに組み込み、次に示す方法で充放電試験を行っ
た。Next, this powdery carbon material for a negative electrode was mixed with about 5% by weight of PTFE, powder-formed and formed into a sheet, which was punched into a circular shape having a diameter of 6.0 mm to obtain a negative electrode. The prepared electrode has an actual electrode weight of 2-3 mg.
Before and after. It was dried in a vacuum at 120 ° C. for one day and night to make it completely dry. The produced negative electrode was assembled in a test cell shown in FIG. 1 and a charge / discharge test was performed by the following method.
【0020】初回の充電(リチウムイオンが炭素極に入
っていく電流の方向を充電とする。)は、リチウムの持
つ電位差である3Vから、0Vに達するまで、電流密度
0.1,0.2,0.5,1.0mA/cm2 の定電流で行
い、これに対し放電は同じ電流密度で3.0V迄行っ
た。2回目以降の充放電は0Vから3.0Vの間でこれ
も電流密度を同じくして測定した。得られた充放電曲線
を図2に、放電容量のレート特性・サイクル特性を図3
に示す。 (実施例2)平均粒子径10μmの天然鱗片状黒鉛(ブ
ラジル産 中越黒鉛製BF−10A)0.5gと二塩化
スズ・二水和物(和光純薬 試薬特級)を0.5gを計
量し、エタノールを加えて二塩化スズ・二水和物を溶解
させ、50℃の真空乾燥機中でエタノールを乾燥させ
た。次いで200℃空気中で乾燥して負極用炭素材料を
得た。The initial charging (charging is the direction of the current in which lithium ions enter the carbon electrode) is performed by changing the current density from 0.1 V to 0.2 V from 3 V, which is the potential difference of lithium, until it reaches 0 V. , 0.5 and 1.0 mA / cm 2 , and the discharge was performed up to 3.0 V at the same current density. The charge / discharge after the second time was measured between 0 V and 3.0 V with the same current density. FIG. 2 shows the obtained charge / discharge curve, and FIG. 3 shows the rate characteristics and cycle characteristics of the discharge capacity.
Shown in (Example 2) 0.5 g of natural flaky graphite (BF-10A made by Chuetsu graphite from Brazil) having an average particle size of 10 µm and 0.5 g of tin dichloride dihydrate (Wako Pure Chemical Reagent Special Grade) were weighed. Then, ethanol was added to dissolve tin dichloride dihydrate, and the ethanol was dried in a vacuum dryer at 50 ° C. Next, it was dried in air at 200 ° C. to obtain a carbon material for a negative electrode.
【0021】得られた炭素材料について実施例1と同様
にして行った充放電試験の放電容量のレート特性・サイ
クル特性を図3に示す。また、充放電曲線は実施例1の
ものとほぼ同様の曲線であった。 (比較例1)実施例1〜2の黒鉛を未処理で用いて実施
例1と同様にして得た充放電試験の放電容量のサイクル
特性を図3に示す。FIG. 3 shows the rate characteristics and cycle characteristics of the discharge capacity of the obtained carbon material in the charge / discharge test conducted in the same manner as in Example 1. The charge and discharge curves were almost the same as those in Example 1. (Comparative Example 1) FIG. 3 shows the cycle characteristics of the discharge capacity in the charge / discharge test obtained in the same manner as in Example 1 by using the graphite of Examples 1 and 2 untreated.
【0022】実施例1・2と比較例1を比べると、スズ
担持処理によって、サイクル特性は不十分なものの同一
の電流密度においては明らかに放電容量が大きい事が分
かる。また、0.1mA/cm2 の電流密度での黒鉛単独の
場合と同程度の放電容量を示す電流密度は0.4mA/cm
2 程度と考えられ、このことは、充電容量においても同
様であるから、充電時間の短縮が可能となるばかりか、
大電流放電も可能である事を示している。更に、この試
験結果は結着剤として使用したPTFEのみを除いた重
量当たり容量で換算しているので、大量の導電材を必要
とする酸化物負極に匹敵する放電容量であると言える。Comparing Examples 1 and 2 with Comparative Example 1, it can be seen that although the cycle characteristics are insufficient due to the tin carrying treatment, the discharge capacity is clearly large at the same current density. The current density showing a discharge capacity comparable to that of graphite alone at a current density of 0.1 mA / cm 2 was 0.4 mA / cm 2.
It is considered to be about 2 and this is the same for the charging capacity, so not only can the charging time be shortened,
This indicates that a large current discharge is also possible. Furthermore, since this test result is converted by the capacity per weight excluding only PTFE used as a binder, it can be said that the discharge capacity is comparable to that of an oxide negative electrode requiring a large amount of a conductive material.
【0023】[0023]
【発明の効果】本願発明によれば、リチウムイオン二次
電池負極用の炭素材料を極めて容易な方法で高容量化出
来、更にレート特性に優れた負極材料を提供できる。こ
の負極材料を用いることにより、大電流充放電特性に優
れた大容量のリチウムイオン二次電池が製造できる。According to the present invention, the capacity of a carbon material for a negative electrode of a lithium ion secondary battery can be increased by an extremely easy method, and a negative electrode material having excellent rate characteristics can be provided. By using this negative electrode material, a large-capacity lithium-ion secondary battery having excellent large-current charge / discharge characteristics can be manufactured.
【図1】充放電試験に用いたテストセルの構造説明図で
ある。FIG. 1 is a structural explanatory view of a test cell used for a charge / discharge test.
【図2】本発明の実施例1のリチウムイオン二次電池用
負極材料のテストセルにおける充放電曲線図である。FIG. 2 is a charge / discharge curve diagram in a test cell of a negative electrode material for a lithium ion secondary battery of Example 1 of the present invention.
【図3】本発明の実施例1〜2及び比較例1の放電容量
のサイクル特性を示すグラフである。FIG. 3 is a graph showing cycle characteristics of discharge capacity in Examples 1 and 2 of the present invention and Comparative Example 1.
Claims (3)
ウムイオン二次電池用負極。1. A negative electrode for a lithium ion secondary battery comprising a carbon material and basic tin chloride.
分散させた後、乾燥するリチウムイオン二次電池用負極
の製造方法。2. A method for producing a negative electrode for a lithium ion secondary battery, comprising dispersing a carbon material and tin dichloride dihydrate in water and drying the dispersion.
解し、炭素材料を分散させた後、乾燥するリチウムイオ
ン二次電池用負極の製造方法。3. A method for producing a negative electrode for a lithium ion secondary battery, comprising dissolving tin dichloride dihydrate in ethanol, dispersing a carbon material, and drying.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9232294A JPH1173944A (en) | 1997-08-28 | 1997-08-28 | Negative electrode for lithium ion secondary battery and its manufacture |
FR9810766A FR2767968A1 (en) | 1997-08-28 | 1998-08-27 | NEGATIVE ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9232294A JPH1173944A (en) | 1997-08-28 | 1997-08-28 | Negative electrode for lithium ion secondary battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1173944A true JPH1173944A (en) | 1999-03-16 |
Family
ID=16936970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9232294A Withdrawn JPH1173944A (en) | 1997-08-28 | 1997-08-28 | Negative electrode for lithium ion secondary battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1173944A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025601A (en) * | 2000-07-13 | 2002-01-25 | Matsushita Battery Industrial Co Ltd | Sealed secondary battery |
JP2008277307A (en) * | 2001-10-16 | 2008-11-13 | Hanyang Hak Won Co Ltd | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same |
CN105390683A (en) * | 2015-12-22 | 2016-03-09 | 苏州大学 | Sulfur-based negative electrode material of lithium ion batteries and application thereof |
-
1997
- 1997-08-28 JP JP9232294A patent/JPH1173944A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002025601A (en) * | 2000-07-13 | 2002-01-25 | Matsushita Battery Industrial Co Ltd | Sealed secondary battery |
JP2008277307A (en) * | 2001-10-16 | 2008-11-13 | Hanyang Hak Won Co Ltd | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same |
CN105390683A (en) * | 2015-12-22 | 2016-03-09 | 苏州大学 | Sulfur-based negative electrode material of lithium ion batteries and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6203947B1 (en) | Long cycle-life alkali metal battery | |
US9437899B2 (en) | Solid-state rechargeable magnesium battery | |
US20030157407A1 (en) | Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery | |
US5658689A (en) | Rechargeable lithium battery having a specific electrolyte | |
JP2016042490A (en) | Cathode active material, electrode, and secondary battery improved in lithium ion mobility and battery capacity | |
US20090061315A1 (en) | Nonaqueous electrolyte battery | |
JPS6122577A (en) | Electrochemical generator with composite electrodes | |
JP4366222B2 (en) | Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure | |
JP2018125077A (en) | Negative electrode for lithium ion secondary battery | |
JP2000100429A (en) | Electrode structure and secondary battery | |
JPH10312811A (en) | Nonaqeous electrolyte secondary battery | |
JP6068247B2 (en) | Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material | |
JPH06295725A (en) | Nonaqueous secondary battery | |
US5079110A (en) | Alkaline storage cell | |
WO2007086264A1 (en) | Nonaqueous electrolyte secondary battery | |
JPH1173944A (en) | Negative electrode for lithium ion secondary battery and its manufacture | |
JPH10326612A (en) | Negative electrode for lithium ion secondary battery and its manufacture | |
JP3232953B2 (en) | Non-aqueous electrolyte secondary battery | |
KR101783316B1 (en) | Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same | |
JP2775754B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3198891B2 (en) | Positive electrode for alkaline storage battery | |
JPH0945328A (en) | Lithium secondary battery | |
JP3178815B2 (en) | Lithium secondary battery | |
JP2000159522A (en) | Magnesium-including lithium-manganese compound oxide having spinel structure, and production and use of the same compound oxide | |
JP3249668B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041102 |