JPH01287250A - Super fine crystal soft magnetic alloy having excellent heat resistance - Google Patents

Super fine crystal soft magnetic alloy having excellent heat resistance

Info

Publication number
JPH01287250A
JPH01287250A JP63113966A JP11396688A JPH01287250A JP H01287250 A JPH01287250 A JP H01287250A JP 63113966 A JP63113966 A JP 63113966A JP 11396688 A JP11396688 A JP 11396688A JP H01287250 A JPH01287250 A JP H01287250A
Authority
JP
Japan
Prior art keywords
alloy
soft magnetic
heat resistance
formula
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63113966A
Other languages
Japanese (ja)
Other versions
JP2713364B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63113966A priority Critical patent/JP2713364B2/en
Publication of JPH01287250A publication Critical patent/JPH01287250A/en
Application granted granted Critical
Publication of JP2713364B2 publication Critical patent/JP2713364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Abstract

PURPOSE:To drastically improve the heat resistance of the title alloy by suppressing the content of C, P, O, S, N, etc., in a super fine crystal soft magnetic alloy of Fe-Cu-Nb-Si-B system having specific compsn. to specific trace amounts. CONSTITUTION:As the magnetic core material for a high-frequency transformer, choke coil, magnetic coil, etc., a super fine crystal soft magnetic alloy having the compsn. expressed by Formula I and Formula II, in which at least 50% of the structure is constituted of extremely fine grains, having <=1,000Angstrom average grain size measured by the maximum size, having less deterioration of soft magnetic characteristics even if reheated and having excellent heat resistance is manufactured. In Formula I and II, M denotes Co or Ni, M' denotes one kind among Nb, W, Ta, Zr, Hf, Ti and Mo, and in the Formula II, M'' denotes at least one kind among V, Cr, Mn, Al, platinum metals, Zn, Sn, Ge and Ga. As for the quantitative index, 0<=a<=0.1, 0.1<=x<=3, 0<=y<=30, 0<=z<=25, 5<=y+z<=30, 0.1<=alpha<=30, beta<=10 and delta<=0.15 are regulated. delta expressing the amounts of C, P, O, S, N, etc., is extremely trace amounts of <=0.15.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、各種トランス、チョークコイル、磁気ヘッド
等各種磁心に用いられる耐熱性に優れた超微結晶軟磁性
合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrafine crystalline soft magnetic alloy with excellent heat resistance and used in various magnetic cores such as various transformers, choke coils, and magnetic heads.

[従来の技術] 近年、高周波1−ランス、チョークコイル、磁気ヘッド
等の磁心材料として飽和磁束密度がiく、高周波特性に
優れた材料として、非晶質合金が注目を集め一部実用化
されている。
[Prior Art] In recent years, amorphous alloys have attracted attention as magnetic core materials for high-frequency lances, choke coils, magnetic heads, etc., and have a high saturation magnetic flux density and excellent high-frequency characteristics, and some of them have been put into practical use. ing.

非晶質合金は主としてFe系とCO系に大別され、Fe
系の非晶質合金は飽和磁束密度が高く、材料コス1〜が
CO系に比べて安くつくという利点がある反面、−船釣
に高周波においてCO系非晶質合金よりコア損失が大き
く、透磁率も低いという問題がある。また、Fe系非晶
質合金は磁歪か著しく大きく、磁心として使用する場合
、磁心がうなりを生じたり含浸やコーティング等を行な
うと著しく特性が劣化する欠点がある。
Amorphous alloys are mainly divided into Fe-based and CO-based.
Although the amorphous alloys have the advantage of having a high saturation magnetic flux density and a lower material cost than the CO-based alloys, they have a higher core loss than the CO-based amorphous alloys at high frequencies for boat fishing, and are less transparent. There is also the problem of low magnetic flux. In addition, Fe-based amorphous alloys have extremely high magnetostriction, and when used as a magnetic core, they have the disadvantage that the magnetic core generates beats and its characteristics deteriorate significantly when impregnated or coated.

これに対してCO系非晶質合金は高周波のコア損失が小
さく、透磁率も高いが、コア損失や透磁率の経時変化が
大きく、飽和磁束密度も十分ではない欠点がある。更に
は、高価なCOを主原料とするため価格的な不利は免れ
ない。
On the other hand, CO-based amorphous alloys have small core loss at high frequencies and high magnetic permeability, but have the drawbacks of large changes in core loss and magnetic permeability over time, and insufficient saturation magnetic flux density. Furthermore, since expensive CO is used as the main raw material, a cost disadvantage is inevitable.

このような状況下てFe基非品j6合金について種々の
提案かなされた。
Under these circumstances, various proposals have been made regarding Fe-based non-product j6 alloys.

特公昭60−1.7019号には、74−84原子%の
Feと、8〜24原子%のBと、16原子%以下のSi
及び3原子%以下のCの内の少なくとも1つとからなる
組成を有し、その構造の少なくとも85%が非晶質金属
素地の形を有し、且つ非晶質金属素地の全体にわたって
不連続に分布された結晶質粒子群の析出物を有しており
、結晶質粒子群は0.05〜1μmの平均粒度及び1〜
10μmの平均粒子間距離を有しており、粒子群は全体
の0.01〜0.3の平均容積分率を占めていることを
特徴とする鉄暴含硼素磁性非晶質合金が開示ぎれでいる
。この合金の結晶質粒子群は磁壁のピンニング点として
作用する不連続な分布のα−(Fe、Si)粒子群であ
るとされている。
Japanese Patent Publication No. 60-1.7019 states that Fe of 74-84 atomic%, B of 8-24 atomic%, and Si of 16 atomic% or less
and 3 atomic % or less of C, and at least 85% of its structure has the form of an amorphous metal matrix, and the structure is discontinuous throughout the amorphous metal matrix. It has a precipitate of distributed crystalline particles, the crystalline particles have an average particle size of 0.05 to 1 μm and a particle size of 1 to 1 μm.
A magnetic amorphous alloy containing iron and boron is disclosed, which is characterized in that the average interparticle distance is 10 μm, and the particle groups occupy an average volume fraction of 0.01 to 0.3 of the whole. I'm here. The crystalline particles of this alloy are said to be discontinuously distributed α-(Fe, Si) particles that act as pinning points of the domain wall.

また、特開昭60−52557号にはF e、 Cub
 B c’s id(但し、75≦a≦85.0<b≦
0.5.10≦C≦20゜d≦10かつc+d≦30)
からなる低損失非晶質磁性合金が開示されている。この
非晶質合金は結晶化i’!iH度以下でかつギュリー温
度以上で熱処理される。
Also, in JP-A No. 60-52557, F e, Cub
B c's id (75≦a≦85.0<b≦
0.5.10≦C≦20゜d≦10 and c+d≦30)
A low-loss amorphous magnetic alloy is disclosed. This amorphous alloy crystallizes i'! Heat treated at temperatures below iH degrees and above Gurie temperature.

[発明が解決しようとする問題点] 特公昭60−17019号のFe基基磁磁性合金らなる
磁心は不連続な結晶質粒子群の存在によりコア損失は減
少するが、それでもコア損失は依然大きく、特に磁歪が
大きいためうなりを生じたり、含浸コーティングを行な
うことによりコア損失、透磁率の著しい劣化を招く問題
があり、カットコア等では高特性のものが得られていな
い。
[Problems to be solved by the invention] Although the core loss of the magnetic core made of the Fe-based magnetomagnetic alloy disclosed in Japanese Patent Publication No. 60-17019 is reduced due to the presence of discontinuous crystal grain groups, the core loss is still large. In particular, there are problems in that magnetostriction is large, which causes beats, and impregnation coating causes core loss and significant deterioration of magnetic permeability, and high characteristics cannot be obtained with cut cores or the like.

一方、i開明60−52557号のFe基非晶質合金は
Cuを含有しこれを用いた磁心のコア損失は低下してい
るが、上記結晶粒子含有Fe基磁性合金を用いた磁心と
同様に満足ではない。更にはコア損失の経時変化、透磁
率に関しても十分でないという問題点がある。
On the other hand, the Fe-based amorphous alloy of I-Kaimei No. 60-52557 contains Cu, and the core loss of the magnetic core using it is reduced, but it is similar to the core loss of the magnetic core using the Fe-based magnetic alloy containing crystal grains. Not satisfied. Furthermore, there are problems in that changes in core loss over time and magnetic permeability are not sufficient.

このような問題点を解決するべく検討の結果、本発明者
等は、Fe−Cu−Nb  S’i−B系合金が超微細
な結晶粒組織からなり、優れた軟磁気特性を示すことを
見出し、特願昭6z−317+、g9号等で出願した。
As a result of studies to solve these problems, the present inventors discovered that the Fe-Cu-Nb S'i-B alloy consists of an ultrafine grain structure and exhibits excellent soft magnetic properties. The application was filed under the heading, patent application No. 1986-317+, No. g9, etc.

=4− しかし、これらの合金に上記元素以外の不純物元素が存
在すると、比較的低い温度で軟磁気特性が劣化するよう
になる。
=4- However, if impurity elements other than the above-mentioned elements are present in these alloys, the soft magnetic properties will deteriorate at relatively low temperatures.

このような合金では熱処理温度をあまり高くできず製造
上制約を受けるだけでなく、磁気ヘッドのようにボンデ
ィングのため再加熱するような場合、工程上大きな制約
を受けることになる。
With such an alloy, the heat treatment temperature cannot be raised too high, which imposes manufacturing restrictions, and when reheating is required for bonding, such as in the case of magnetic heads, there are significant manufacturing restrictions.

本発明の目的は、耐熱性に優れた超微結晶軟磁性合金を
提供することを目的とする。
An object of the present invention is to provide an ultrafine-crystalline soft magnetic alloy with excellent heat resistance.

[問題点を解決するための手段] 上記目的を達成するために鋭意検討の結果、本発明者等
は、超微結晶軟磁性合金中のC,P、○。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have discovered that C, P, and O in an ultrafine crystal soft magnetic alloy.

S、Nの元素をある一定量以下にすることにより、特に
高温熱処理が可能で、再加熱しても軟磁気特性の劣化が
小さい耐熱性に優れた超微結晶軟磁性合金が得られるこ
とを見出し本発明に想到した。
By keeping the S and N elements below a certain level, it is possible to obtain an ultrafine-crystalline soft magnetic alloy with excellent heat resistance, which is particularly capable of high-temperature heat treatment and whose soft magnetic properties show little deterioration even when reheated. Heading: The present invention has been conceived.

即ち、本願第1の発明は、 一般式: %式% (但し、MはCO及び/又はNiでありM′はNb、W
、Ta、Zr、T(f、Ti及びM、 oからなる群か
ら選ばれた少なくとも1種の元素、YはC9P、○、S
、Nからなる群の1種以上の元素、a。
That is, the first invention of the present application has the general formula: % formula % (where M is CO and/or Ni, and M' is Nb, W
, Ta, Zr, T (f, Ti and M, at least one element selected from the group consisting of o, Y is C9P, ○, S
, one or more elements of the group consisting of N, a.

X+ 、YI Zlαl及びδはそれぞれO≦a≦0.
1゜0.1≦X≦3,0≦y≦30,0≦Z≦25.5
≦y + z≦30.0.1≦α≦30、及びδ≦O,
1,5)により表わされる組成を有し、組織の少なくと
も50%が微細な結晶粒であり、該結晶粒の最大寸法で
測定した粒径の平均が1000Å以下であることを特徴
とする耐熱性に優れた超微結晶軟磁性合金である。
X+, YI Zlαl and δ are O≦a≦0.
1゜0.1≦X≦3, 0≦y≦30, 0≦Z≦25.5
≦y + z≦30.0.1≦α≦30, and δ≦O,
1, 5), at least 50% of the structure is fine crystal grains, and the average grain size measured at the largest dimension of the crystal grains is 1000 Å or less. It is an ultrafine-crystalline soft magnetic alloy with excellent properties.

また、本願節2の発明は、 一般式: %式% M ”B Y 6 (但し、MはCo及び/又はNj、
M’はN))、W、Ta、Zr、Hf、Tコ及びMOか
らなる群から選はれた少なくとも1種の元素、M II
はV、Cr、Mn、A]、、白金属元素、Zn。
In addition, the invention of Section 2 of the present application is based on the following: General formula: % formula % M "B Y 6 (However, M is Co and/or Nj,
M' is at least one element selected from the group consisting of N)), W, Ta, Zr, Hf, T and MO;
is V, Cr, Mn, A], white metal element, Zn.

Sn、Ge、Gaからなる群から選ばれた少なくとも]
種の元素、Yはc、p、○、S、Nからなる群の1種以
−十一の元素、an X+ y+ Z+ α、β及びδ
はそれぞれ0≦a≦0.1.、0.1≦X≦3.0.0
≦y≦30,0≦Z≦25,5≦y 十z≦30.0.
1≦α≦30.β≦10、及びδ≦O,i5)により表
わされる組成を有し、組織の少なくとも50%が微細な
結晶粒であり、該結晶粒の最大寸法で測定した粒径の平
均が1000Å以下であることを特徴とする耐熱性に優
れた超微結晶軟磁性合金である。
at least selected from the group consisting of Sn, Ge, and Ga]
Species element, Y is one or more elements of the group consisting of c, p, ○, S, N, an X+ y+ Z+ α, β and δ
are 0≦a≦0.1, respectively. , 0.1≦X≦3.0.0
≦y≦30, 0≦Z≦25, 5≦y 1z≦30.0.
1≦α≦30. β≦10 and δ≦O, i5), at least 50% of the structure is fine crystal grains, and the average grain size measured at the largest dimension of the crystal grains is 1000 Å or less It is an ultrafine crystalline soft magnetic alloy with excellent heat resistance.

より好ましい軟磁気特性は粒径の平均が500Å以下の
場合であり、特に好ましくは20〜200Å以下の場合
で得られる。
More preferable soft magnetic properties are obtained when the average particle size is 500 Å or less, particularly preferably from 20 to 200 Å.

本発明のFe基基磁磁性合金おいて、Feは0〜0.1
の範囲でCo及び/又はN1で置換し耐食性を向上する
ことができる。
In the Fe-based magnetomagnetic alloy of the present invention, Fe is 0 to 0.1
Corrosion resistance can be improved by substituting with Co and/or N1 within the range.

しかし、良好な磁気特性(低コア損失、低磁歪)とする
ためにα″は0〜0,1に限定される。
However, in order to obtain good magnetic properties (low core loss, low magnetostriction), α'' is limited to 0 to 0.1.

本発明において、Cuは必須元素であり、その含有fi
(xは0.1〜3原子%の範囲である。0 、 ] J
!il子%より少ないとCuの添加によるコア損失低下
、透磁率士昇の効果がほとんどなく、一方、:3原子%
より多いとコア損失が未添加のものよりかえって大きく
なることがあり、透磁率も劣化する。本発明において好
ましいCuの含有量Xは0.5〜2原子%てあり、この
範囲ではコア損失が特に小さく透磁率が高い。また、C
uはbccFe固溶体結晶の核を形成する効果があり、
化合物相形成を抑制する効果もある。
In the present invention, Cu is an essential element, and its content fi
(x is in the range of 0.1 to 3 atomic%. 0, ] J
! If it is less than 3 atomic %, the effect of reducing core loss and increasing magnetic permeability due to the addition of Cu is almost negligible;
If the amount is larger, the core loss may become larger than that without the addition, and the magnetic permeability will also deteriorate. In the present invention, the preferable Cu content X is 0.5 to 2 atomic %, and within this range, the core loss is particularly small and the magnetic permeability is high. Also, C
u has the effect of forming the nucleus of the bccFe solid solution crystal,
It also has the effect of suppressing compound phase formation.

本発明においてM′はCuとの複合添加により析出する
結晶粒を微細化する作用を有するものであり、Nb、W
、Ta、Zr、Hf、Ti及びMOからなる群から選ば
れた少なくとも1種の元素である。Nb等は合金の結晶
化温度を−1−昇させる作用を有するが、クラスターを
形成し結晶化温度を低下させる作用を有するCuとの相
互作用により、結晶粒の成長を押え、析出する結晶粒が
微細化するものと考えられる。
In the present invention, M' has the effect of refining precipitated crystal grains by being added in combination with Cu, and Nb, W
, Ta, Zr, Hf, Ti, and MO. Nb etc. have the effect of raising the crystallization temperature of the alloy by -1-, but due to their interaction with Cu, which has the effect of forming clusters and lowering the crystallization temperature, they suppress the growth of crystal grains and reduce the crystal grains that precipitate. It is thought that the particles will become finer.

M′の含有量αは0.1〜30原子%であり、0.1原
子%未満だと結晶粒微細化の効果が不十分であり、30
原子%を越えると飽和磁束密度の著しい低下を招く。
The content α of M' is 0.1 to 30 at%, and if it is less than 0.1 at%, the effect of grain refinement is insufficient;
Exceeding atomic % causes a significant decrease in saturation magnetic flux density.

好ましいM′の添加量は2〜8原子%である。The preferred amount of M' added is 2 to 8 atomic percent.

=8− 8j及びBは、合金組成の微細化に特に有用な元素であ
る。本発明のFe基基磁磁性合金、好ましくは一旦Sj
、、Bの添加効果により非晶質合金とした後て熱処理に
より微細結晶粒を形成させることにより得られる。Sj
及びBの含有量y及びZの限定理由は、yが30原子%
以下、Zが25原子%以下、y −1−zが5〜30原
子%でないと、合金の飽和磁束密度の著しい減少がある
ことである。
=8-8j and B are elements particularly useful for refining the alloy composition. The Fe-based magnetomagnetic alloy of the present invention, preferably once Sj
, , B can be obtained by forming an amorphous alloy by adding B and then forming fine crystal grains by heat treatment. Sj
The reason for limiting the contents y and Z of B is that y is 30 at%
Hereinafter, if Z is not 25 atomic % or less and y -1-z is not 5 to 30 atomic %, the saturation magnetic flux density of the alloy will be significantly reduced.

V 、 Cr + M n r A、 ]、 +白金属
元素I Z n 。
V, Cr + M n r A, ], + platinum metal element I Z n .

Sn、Ge、Gaからなる群から選ばれた少なくとも1
種の元素であるM″′は耐食性を改善したり、磁気特性
を改善したり、磁歪を調整したりする目的のために添加
することができるものであるが、その含有量はせいせい
]0原子%以下である。それは含有量か10原子%を越
えると著しい飽和磁束密度の低下を招くためである。
At least one selected from the group consisting of Sn, Ge, and Ga
The seed element M'' can be added for the purpose of improving corrosion resistance, improving magnetic properties, or adjusting magnetostriction, but its content is limited to 0 atoms. This is because if the content exceeds 10 atomic %, the saturation magnetic flux density will drop significantly.

本発明の特徴である、C,P、○、S、Nは原料に不純
物として入り易い元素でありフェロアロイ等を原料とし
た場合、合金中に多く含まれる可能性がある。
C, P, O, S, and N, which are the characteristics of the present invention, are elements that easily enter raw materials as impurities, and when a ferroalloy or the like is used as a raw material, there is a possibility that they are contained in large amounts in the alloy.

鋭意検討の結果、これらの元素がFe−Cu−Nb−3
i−B系合金の加熱時の軟磁気特性の劣化の原因である
ことがわかり、これら元素が総量で0.15原子%以下
であり、特にC;0.2原子%以下、P;0.05原子
%以下、o;o、os原子%以下。
As a result of intensive study, these elements were determined to be Fe-Cu-Nb-3.
It has been found that these elements are the cause of the deterioration of the soft magnetic properties during heating of i-B alloys, and the total amount of these elements is 0.15 atomic % or less, and in particular, C: 0.2 atomic % or less, P: 0. 05 atomic % or less, o; o, os atomic % or less.

S;0.02原子%以下、N;0.02原子%以下とし
た場合、これらの元素の影響がなく特に耐熱性に優れた
超微結晶軟磁性合金が得られることがわかった。
It has been found that when the S content is 0.02 atomic % or less and the N content is 0.02 atomic % or less, an ultrafine-crystalline soft magnetic alloy with particularly excellent heat resistance can be obtained without the influence of these elements.

これらの元素は化合物相を作り易かったり、偏析し易い
ため温度を上げると軟磁気特性が劣化し易いと考えられ
る。
These elements tend to form compound phases or segregate, so it is thought that increasing the temperature tends to deteriorate the soft magnetic properties.

[実施例コ 以下本発明を実施例に従′つて説明するが、本発明はこ
れら実施例の範囲に限定されるものではなし)。
[Example] The present invention will be explained below with reference to Examples, but the present invention is not limited to the scope of these Examples.)

実施例1 純度99.5%以上のB、純度99.99%以上のSi
Example 1 B with a purity of 99.5% or more, Si with a purity of 99.99% or more
.

純度99.5%以上のNb、純度99.9%以上のCu
Nb with a purity of 99.5% or more, Cu with a purity of 99.9% or more
.

純度99.9%以上のFeを用い、真空溶解を行い母合
金を作製した。次にこの母合金を用い単ロール法により
、幅5mm厚さ19μmの合金薄帯を作製した。
Using Fe with a purity of 99.9% or more, vacuum melting was performed to produce a master alloy. Next, an alloy ribbon having a width of 5 mm and a thickness of 19 μm was produced using this master alloy by a single roll method.

X線回折及び透過電子顕微鏡による組織観察の結果、こ
の合金薄帯は非晶質合金であることが確認された。
As a result of structural observation using X-ray diffraction and transmission electron microscopy, it was confirmed that this alloy ribbon was an amorphous alloy.

次に、この合金薄帯をロール接触面を内側にして巻回し
トロイダル磁心を作製し、Arガス雰囲気中で熱処理し
た。第1図に本発明合金Aとしてその磁気特性の熱処理
温度依存性を示す。なお、熱処理時間は1時間である。
Next, this alloy ribbon was wound with the roll contact surface inside to prepare a toroidal magnetic core, and heat treated in an Ar gas atmosphere. FIG. 1 shows the heat treatment temperature dependence of the magnetic properties of alloy A of the present invention. Note that the heat treatment time was 1 hour.

次に、この合金Aを分析した。その結果、B;7.21
at%、 S i ; 13.61at%、 N b 
; 2.61at%。
Next, this alloy A was analyzed. As a result, B; 7.21
at%, S i ; 13.61 at%, N b
; 2.61 at%.

Cu ; 1.01at%、 C; 0.022at%
、 P ; O,0O1at%。
Cu: 1.01 at%, C: 0.022 at%
, P; O,0O1 at%.

0 ; 0.005at%、 S ;O,0O1at%
、 N ; 0.001at%であった。(各値は重量
%の分析値をFebal。
0; 0.005 at%, S; O,0O1 at%
, N; 0.001 at%. (Each value is an analytical value of weight%.

として、原子%に換算した値である。)比較例1 比較例として、分析値がB ; 7.51at%、Si
;13.22at%、 N b ; 2.41at%、
 Cu ; 0.99at%。
This is the value converted to atomic %. ) Comparative Example 1 As a comparative example, the analysis value is B; 7.51 at%, Si
; 13.22 at%, N b ; 2.41 at%,
Cu: 0.99at%.

C; 0.53at%、 P Ho、8at%、 O;
 0.06at%、S;0.03at%、 N ; 0
.03at%、残部実質的にFeからなる合金Bを合金
Aと同様の方法により作製し、磁心とした後、合金Aと
同様の熱処理を行なった。
C; 0.53 at%, P Ho, 8 at%, O;
0.06at%, S; 0.03at%, N; 0
.. Alloy B consisting of 0.3 at% and the remainder substantially Fe was prepared in the same manner as Alloy A, and after being made into a magnetic core, it was subjected to the same heat treatment as Alloy A.

この比較合金Bの磁気特性の熱処理温度依存性も第1図
に示す。
The dependence of the magnetic properties of this comparative alloy B on the heat treatment temperature is also shown in FIG.

なお、510℃以上の温度で熱処理後は合金A及び合金
Bともに粒径200人前後の超微細結晶粒が組成の大部
分を占めていた。
In addition, after heat treatment at a temperature of 510° C. or higher, ultrafine crystal grains with a grain size of about 200 grains accounted for most of the composition of both Alloy A and Alloy B.

図かられかるようにC,P、O,S、N量が少ない本発
明合金の場合、熱処理をより高温で行なえることがわか
る。
As can be seen from the figure, in the case of the alloy of the present invention with small amounts of C, P, O, S, and N, heat treatment can be performed at a higher temperature.

次に、550℃1時間熱処理した前記本発明合金Aと比
較合金Bを570℃に加熱し50分保持し室温まで冷却
し1kHzにおける実効透磁率μelkを測定した。
Next, the invention alloy A and comparative alloy B, which had been heat treated at 550°C for 1 hour, were heated to 570°C, held for 50 minutes, cooled to room temperature, and the effective magnetic permeability μelk at 1kHz was measured.

1 k Hzにおける実効透磁率μelkの加熱前後の
値の比μa/μ5を比較した結果、本発明合金Aは0.
97.C,P、O,S、N量の多い比較合金Bは0.0
9であり、本発明の方が加熱による軟磁気特性の劣化が
少なく、耐熱性に優れていることが確認−12= された。ここで、μ。は加熱後のμelkであり、μ5
は加熱前のμelkである。
As a result of comparing the ratio μa/μ5 of the effective magnetic permeability μelk before and after heating at 1 kHz, the alloy A of the present invention has a value of 0.
97. Comparative alloy B with large amounts of C, P, O, S, and N is 0.0
9, it was confirmed that the present invention has less deterioration of soft magnetic properties due to heating and is superior in heat resistance. Here, μ. is μelk after heating, μ5
is μelk before heating.

実施例2 第1表に示す分析組成の超微細結晶軟磁性合金からなる
巻磁心を作製し、実施例1と同様に570℃の加熱処理
を行い、実施例1と同様に加熱前後の1kHzにおける
実効透磁率μelkの値の比、μa/μ5を求めた。得
られた結果を第1表に示す。
Example 2 A wound magnetic core made of an ultrafine crystal soft magnetic alloy having the analytical composition shown in Table 1 was prepared, and heat treated at 570°C in the same manner as in Example 1. The ratio of the values of effective magnetic permeability μelk, μa/μ5, was determined. The results obtained are shown in Table 1.

(以下、余白) 第1表かられかるように本発明合金はμ、l/μわが0
.90以上であり、実質」二問題ない劣化であって、耐
熱性に優れた合金であることが確認された。
(Hereinafter, blank space) As can be seen from Table 1, the alloy of the present invention has μ, l/μ of 0
.. It was confirmed that the alloy had an excellent heat resistance of 90 or higher, and there was virtually no problem with deterioration.

一方、本発明で規定したC9○、P、S、Nの範囲を越
える比較合金は、いずれもμm/μ5は0.90未満で
あって、更にこの規定した範囲を越えると急激にμa/
μ5の値が小さくなり、耐熱性が低下することが確認さ
れた。
On the other hand, comparative alloys that exceed the C9○, P, S, and N ranges specified in the present invention all have μm/μ5 of less than 0.90, and furthermore, beyond this specified range, μa/μ5 suddenly increases.
It was confirmed that the value of μ5 became smaller and the heat resistance decreased.

[発明の効果コ 本発明によれば、耐熱性に優れた超微結晶軟磁性合金を
得ることができるためその効果は著しいものがある。
[Effects of the Invention] According to the present invention, it is possible to obtain an ultrafine-crystalline soft magnetic alloy with excellent heat resistance, so the effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第」。図は本発明に係る合金及び比較合金の磁気特性の
熱処理温度依存性を示した図である。 第1図 熱み(11度(°C) 手続補正書(帥) 事件の表示 昭和63年 特許願 第113966 号発明の名称 耐熱性に優れた超微結晶軟磁性合金 補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目1番2号名称(5
08)旧立金属株式会社 電話 東京284−4642 補正の内容 別紙の通り 特許請求の範囲 (1)一般式: %式% (但し、MはCo及び/又はNi、M’はNb。 W、Ta、Zr、Hf、Ti及びMoからなる群から選
ばれた少なくとも1種の元素、Yはc、p。 0、S、Nからなる群から選ばれた1種以上の元素a+
X+ y+Z+ α及びδはそれぞれO≦a≦0.1.
、0.1≦X≦3,0≦y≦30.0≦2≦25,5≦
y+Z≦30.0.1≦α≦30及びδ≦0.15)に
より表わされる組成を有し、組織の少なくとも50%が
微細な結晶粒であり、該結晶粒の最大寸法で測定した粒
径の平均が1000Å以下であることを特徴とする耐熱
性に優れた超微結晶軟磁性合金。 (2)一般式: %式% (但し、MはCo及び/又はNi、M’はNb。 W、Ta、Zr、Hf、Ti及びMoからなる群−1= から選ばれた少なくとも1種の元素、M rrは■。 Cr、Mn、Al、白金属元素、Zn、Sn。 Ge、Gaからなる群から選ばれた1種以上の元素、Y
はC,P、O,S、Nからなる群から選ばれた少なくと
も1種以上の元素、an X+ Y+ Z+α、β、及
びδはそれぞれ0≦a≦0.1.0.1≦X≦3.0.
 O≦y≦30,0≦2≦25,5≦y十z≦30゜0
.1≦α≦30.β≦10及びδ≦0.15)により表
わ  ゛される組成を有し、組織の少なくとも50%が
微細な結晶粒であり、該結晶粒の最大寸法で測定した粒
径の平均が1000Å以下であることを特徴とする耐熱
性に優れた超微結晶軟磁性合金。
``No.'' The figure shows the dependence of the magnetic properties of the alloy according to the present invention and the comparative alloy on heat treatment temperature. Figure 1 Heat (11 degrees (°C) Procedural amendment (shu) Display of the case 1988 Patent application No. 113966 Name of the invention Related Patent Applicant Address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Name (5
08) Former Ritsu Metals Co., Ltd. Telephone: Tokyo 284-4642 Contents of the amendment As shown in the attached sheet, Claims (1) General formula: % formula % (However, M is Co and/or Ni, M' is Nb. W, Ta , Zr, Hf, Ti, and Mo; Y is c, p; one or more elements a+ selected from the group consisting of 0, S, and N;
X+ y+Z+ α and δ are each O≦a≦0.1.
, 0.1≦X≦3, 0≦y≦30.0≦2≦25, 5≦
y + Z≦30. An ultrafine-crystalline soft magnetic alloy with excellent heat resistance, characterized by an average of 1000 Å or less. (2) General formula: % formula % (where M is Co and/or Ni, M' is Nb. At least one member selected from the group -1= consisting of W, Ta, Zr, Hf, Ti and Mo) Element, M rr is ■. Cr, Mn, Al, platinum metal element, Zn, Sn. One or more elements selected from the group consisting of Ge, Ga, Y
is at least one element selected from the group consisting of C, P, O, S, and N, an X+ Y+ Z+ α, β, and δ are each 0≦a≦0.1.0.1≦X≦3 .0.
O≦y≦30, 0≦2≦25, 5≦y1z≦30゜0
.. 1≦α≦30. β≦10 and δ≦0.15), at least 50% of the structure is fine crystal grains, and the average grain size measured at the largest dimension of the crystal grains is 1000 Å or less An ultrafine crystalline soft magnetic alloy with excellent heat resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_−_α_−_δCu_xSi_yB_z
M’_αY_δ (但し、MはCo及び/又はNi、M’はNb,W,T
a,Zr,Hf,Ti及びMoからなる群から選ばれた
少なくとも1種の元素、YはC,P,O,S,Nからな
る群から選ばれた1種以上の元素a,x,y,z,α及
びδはそれぞれ0≦a≦0.1,0.1≦x≦3,0≦
y≦30,0≦z≦25,5≦y+z≦30及び0.1
≦α≦30)により表わされる組成を有し、組織の少な
くとも50%が微細な結晶粒であり、該結晶粒の最大寸
法で測定した粒径の平均が1000Å以下であることを
特徴とする耐熱性に優れた超微結晶軟磁性合金。
(1) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_δCu_xSi_yB_z
M'_αY_δ (However, M is Co and/or Ni, M' is Nb, W, T
at least one element selected from the group consisting of a, Zr, Hf, Ti, and Mo; Y is one or more elements a, x, y selected from the group consisting of C, P, O, S, N; , z, α and δ are respectively 0≦a≦0.1, 0.1≦x≦3, 0≦
y≦30, 0≦z≦25, 5≦y+z≦30 and 0.1
≦α≦30), at least 50% of the structure is fine crystal grains, and the average grain size measured at the largest dimension of the crystal grains is 1000 Å or less. Ultrafine crystalline soft magnetic alloy with excellent properties.
(2)一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_−_α_−_β_−_δCu_xSi_
yB_zM’_αM”_βY_δ (但し、MはCo及び/又はNi、M’はNb,W,T
a,Zr,Hf,Ti及びMoからなる群から選ばれた
少なくとも1種の元素、M”はV,Cr,Mn,Al,
白金属元素,Zn,Sn,Ge,Gaからなる群から選
ばれた少なくとも1種の元素、YはC,P,O,S,N
からなる群から選ばれた1種以上の元素、a,x,y,
z,α,β,及びδはそれぞれ0≦a≦0.1,0.1
≦x≦3.0,0≦y≦30,0≦z≦25,5≦y+
z≦30,0.1≦α≦30,β≦10及びδ≦0.1
5)により表わされる組成を有し、組織の少なくとも5
0%が微細な結晶粒であり、該結晶粒の最大寸法で測定
した粒径の平均が1000Å以下であることを特徴とす
る耐熱性に優れた超微結晶軟磁性合金。
(2) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_β_−_δCu_xSi_
yB_zM'_αM"_βY_δ (However, M is Co and/or Ni, M' is Nb, W, T
at least one element selected from the group consisting of a, Zr, Hf, Ti and Mo, M'' is V, Cr, Mn, Al,
At least one element selected from the group consisting of platinum metal element, Zn, Sn, Ge, and Ga, Y is C, P, O, S, N
one or more elements selected from the group consisting of a, x, y,
z, α, β, and δ are 0≦a≦0.1, 0.1, respectively
≦x≦3.0, 0≦y≦30, 0≦z≦25, 5≦y+
z≦30, 0.1≦α≦30, β≦10 and δ≦0.1
5), and at least 5 of the tissues have a composition represented by
An ultrafine-crystalline soft magnetic alloy with excellent heat resistance, characterized in that 0% of the crystal grains are fine crystal grains, and the average grain size measured at the maximum dimension of the crystal grains is 1000 Å or less.
JP63113966A 1988-05-11 1988-05-11 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance Expired - Lifetime JP2713364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113966A JP2713364B2 (en) 1988-05-11 1988-05-11 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113966A JP2713364B2 (en) 1988-05-11 1988-05-11 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance

Publications (2)

Publication Number Publication Date
JPH01287250A true JPH01287250A (en) 1989-11-17
JP2713364B2 JP2713364B2 (en) 1998-02-16

Family

ID=14625673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113966A Expired - Lifetime JP2713364B2 (en) 1988-05-11 1988-05-11 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP2713364B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290746A (en) * 1988-05-17 1989-11-22 Toshiba Corp Soft-magnetic alloy
JPH01290747A (en) * 1988-05-17 1989-11-22 Toshiba Corp Fe-base soft-magnetic alloy
JPH01290744A (en) * 1988-05-17 1989-11-22 Toshiba Corp Fe-base soft-magnetic alloy
JPH0277555A (en) * 1988-06-13 1990-03-16 Toshiba Corp Fe-base soft-magnetic alloy
JPH0653051A (en) * 1992-06-17 1994-02-25 Okaya Electric Ind Co Ltd Noise filter
JPH0718388A (en) * 1993-06-18 1995-01-20 Hitachi Metals Ltd Nanocrystal alloy thin strip improved in asymmetry of b-h loop, magnetic core and production of nanocrystal alloy thin strip
WO1997022978A1 (en) * 1995-12-18 1997-06-26 Telcon Limited Soft magnetic alloys
US6638596B1 (en) * 1999-06-22 2003-10-28 Alps Electric Co., Ltd. Thin film magnetic head using soft magnetic film having soft magnetic characteristics of high resistivity, low coercive force, and high saturation magnetic flux density
EP1805772B1 (en) * 2004-10-29 2014-04-30 Aperam Alloys Imphy Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439347A (en) * 1987-08-06 1989-02-09 Hitachi Metals Ltd Fe-based soft magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439347A (en) * 1987-08-06 1989-02-09 Hitachi Metals Ltd Fe-based soft magnetic alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290746A (en) * 1988-05-17 1989-11-22 Toshiba Corp Soft-magnetic alloy
JPH01290747A (en) * 1988-05-17 1989-11-22 Toshiba Corp Fe-base soft-magnetic alloy
JPH01290744A (en) * 1988-05-17 1989-11-22 Toshiba Corp Fe-base soft-magnetic alloy
JPH0277555A (en) * 1988-06-13 1990-03-16 Toshiba Corp Fe-base soft-magnetic alloy
JPH0653051A (en) * 1992-06-17 1994-02-25 Okaya Electric Ind Co Ltd Noise filter
JPH0718388A (en) * 1993-06-18 1995-01-20 Hitachi Metals Ltd Nanocrystal alloy thin strip improved in asymmetry of b-h loop, magnetic core and production of nanocrystal alloy thin strip
WO1997022978A1 (en) * 1995-12-18 1997-06-26 Telcon Limited Soft magnetic alloys
US6638596B1 (en) * 1999-06-22 2003-10-28 Alps Electric Co., Ltd. Thin film magnetic head using soft magnetic film having soft magnetic characteristics of high resistivity, low coercive force, and high saturation magnetic flux density
EP1805772B1 (en) * 2004-10-29 2014-04-30 Aperam Alloys Imphy Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing same

Also Published As

Publication number Publication date
JP2713364B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
JP2672306B2 (en) Fe-based amorphous alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
JP3231149B2 (en) Noise filter
JPH01287250A (en) Super fine crystal soft magnetic alloy having excellent heat resistance
JP2667402B2 (en) Fe-based soft magnetic alloy
WO2020024870A1 (en) Alloy composition, fe-based nanocrystalline alloy and manufacturing method therefor, and magnetic component
JP2006291234A (en) Microcrystalline alloy ribbon
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2812574B2 (en) Low frequency transformer
JPH03177545A (en) Magnetic alloy material
JP2713714B2 (en) Fe-based magnetic alloy
JPH0499253A (en) Iron-based soft magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0610105A (en) Fe base soft magnetic alloy
JP2812569B2 (en) Low frequency transformer
JPH0570901A (en) Fe base soft magnetic alloy
JPH07145455A (en) Ferrous soft magnetic alloy
JPH01142049A (en) Fe-based magnetic alloy
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH108224A (en) High saturation magnetic flux density and high perrmiability magnetic alloy, and magnetic core using the alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11