JPH01287249A - Austenitic stainless steel tube and its manufacture - Google Patents

Austenitic stainless steel tube and its manufacture

Info

Publication number
JPH01287249A
JPH01287249A JP32798488A JP32798488A JPH01287249A JP H01287249 A JPH01287249 A JP H01287249A JP 32798488 A JP32798488 A JP 32798488A JP 32798488 A JP32798488 A JP 32798488A JP H01287249 A JPH01287249 A JP H01287249A
Authority
JP
Japan
Prior art keywords
steel pipe
fine
grain size
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32798488A
Other languages
Japanese (ja)
Other versions
JPH0453943B2 (en
Inventor
Kazuhiro Kanero
加根魯 和宏
Takashi Shiraishi
隆 白石
Isao Minegishi
功 峯岸
Yusuke Minami
雄介 南
Shunei Kodera
小寺 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32798488A priority Critical patent/JPH01287249A/en
Publication of JPH01287249A publication Critical patent/JPH01287249A/en
Publication of JPH0453943B2 publication Critical patent/JPH0453943B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title steel tube combining excellent steam oxidizing resistance and high temp. strength by specifying the coarse-grained structure and the fine-grained layer in an austenitic stainless steel tube consisting of specific compsn. CONSTITUTION:The austenitic stainless tube contg. 0.05-0.10% C, <=1.0% Si, <=2.0% Mn, 15-26% Cr, 10-35% Ni, <=0.02% S, <=0.05% N, <=0.04% P and 0.4-1.1% Nb, furthermore contg. one or more kinds among <=3.0% Mo, <=3.0% W, <=3.0% Cu, <=3.0% V, <=0.5% Al, <=0.15% Ti and <=0.15% Zr and the balance consisting of iron with inevitable impurities is prepd. The steel tube furthermore has the coarse-grained structure of No. 6 or below that in average crystal grain sized-number and the fine-grained layer of No. 7 or above that in average crystal grain sized-number having 50-300mu thickness on the side of its inner face; C+N in the fine grained-layer part is regulated to >=0.15%.

Description

【発明の詳細な説明】 本発明はオーステナイトステンレス鋼管およびその製造
法に係り、優れた耐水蒸気酸化性と高温強度とを兼備し
たオーステナイトステンレス鋼管およびその好ましい製
造法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an austenitic stainless steel pipe and a method for manufacturing the same, and an object of the present invention is to provide an austenitic stainless steel pipe that has both excellent steam oxidation resistance and high-temperature strength, and a preferable method for manufacturing the same.

Nbを添加したSUS 347ステンレス鋼管は従来か
らその結晶粒度が微細な場合においてもかなりの高温強
度を有しているので耐水蒸気酸化性の優れた高温用鋼管
とされて来たが、ボイラなどの熱効率向上のため鋼管の
使用温度、圧力はそれぞれ上昇ないし増加傾向にあるの
でより高強度の材料が要求されている。然して前記5U
S347鋼においてはその結晶粒度をある程度粗大化す
ることにより相当の強度増加が期待できるが、この場合
においてはその粗粒化によって耐水蒸気酸化性が低下す
る。即ちこのようなステンレス鋼管においては高温強度
特性と耐水蒸気酸化性とを共に向上することができない
技術的関係にある。
Nb-added SUS 347 stainless steel pipes have long been considered high-temperature steel pipes with excellent steam oxidation resistance because they have considerable high-temperature strength even when the grain size is fine. In order to improve thermal efficiency, the operating temperature and pressure of steel pipes are rising or increasing, so materials with higher strength are required. However, the above 5U
In S347 steel, a considerable increase in strength can be expected by coarsening the grain size to a certain extent, but in this case, the steam oxidation resistance decreases due to the coarse grain size. That is, in such stainless steel pipes, it is technically impossible to improve both high temperature strength properties and steam oxidation resistance.

本発明は上記したような実情番こ鑑み検討を重ねて創案
されたものであって、高温強度において向上せしめられ
、しかも耐高温水蒸気酸化性においても改善されだNb
添加ステンレス網管及びその製造法を得ることに成功し
た。即ち本発明によるものは上記のような高温強度の向
上を図るために組成上特にC,Nb、S量の如きについ
て調整をなし、又斯かる組成をもった鋼管肉厚の大部分
(内面細粒層以外の部分)を比較的粗い結晶粒度に調整
し、しかも高温水蒸気に曝される内面側にその耐水蒸気
酸化性を良好に保つための細粒化層を特定された範囲内
に形成したものであって、内面細粒子i添加ステンレス
鋼の如きとは異った総合的な高性能化を図ったものであ
る。
The present invention was devised after repeated studies in view of the above-mentioned actual circumstances, and has been developed to improve high-temperature strength and also improve high-temperature steam oxidation resistance.
We succeeded in obtaining a doped stainless steel mesh pipe and its manufacturing method. That is, in order to improve the high-temperature strength as described above, the steel pipe according to the present invention has a composition in which the contents of C, Nb, and S are adjusted in particular, and most of the wall thickness of the steel pipe with such a composition (inner surface fineness) is adjusted. The crystal grain size (other than the grain layer) was adjusted to a relatively coarse grain size, and a fine grain layer was formed within a specified range on the inner surface exposed to high-temperature steam to maintain good steam oxidation resistance. It is designed to achieve comprehensive performance, which is different from stainless steel containing fine particles on the inner surface.

上記したような本発明について更に説明すると、先ずク
リープ破断強度の確保については、Nb添加オーステナ
イトステンレス鋼として一般に知られているSUS 3
47fiの粗粒化されたものと同等以上とすることを本
発明の目標とするものであって、より具体的には650
℃で10万時間におけるクリープ破断強度を少なくとも
9kg/mu2以上とするものである。斯かる関係につ
いて第1図には18%Cr−12%Ni−0,01%S
のヘースにおいてC量、Nb量とクリープ破断強度との
関係を示すが、結晶粒度番号は1170°C以上で溶体
化処理して陽4〜6に調整しており、前記クリープ破断
強度が9kg/am2以上となる範囲はノ\・ノチング
の施された曲線の内側となる。又第2図には結晶粒度N
Q4と陽8.5のものについて同しくクリープ破断強度
に及ぼすS量の影響を示すが、この第2図によれば細粒
となるに従ってSによる悪影響が顕著に示されることは
明らかである。
To further explain the present invention as described above, first, in order to ensure creep rupture strength, SUS 3, which is generally known as Nb-added austenitic stainless steel, is used.
The aim of the present invention is to make it equivalent to or higher than the coarse grained version of 47fi, more specifically, 650.
The creep rupture strength after 100,000 hours at ℃ is at least 9 kg/mu2 or more. Regarding this relationship, Figure 1 shows 18%Cr-12%Ni-0.01%S.
The relationship between the amount of C, the amount of Nb, and the creep rupture strength is shown for the heath of The range where am2 or more is inside the notched curve. Also, in Figure 2, the grain size N
The influence of the amount of S on the creep rupture strength is similarly shown for Q4 and positive 8.5 samples, and it is clear from FIG. 2 that the adverse effects of S become more pronounced as the grains become finer.

更に第3図には前記したような鋼について、上部横軸に
示した溶体化温度に各10分間保持し調整した場合の結
晶粒度の影響を前記破断強度について示したが、これら
第1〜第3図の結果から前記した9kg/in2以上の
クリープ破断強度を得るためには粒度番号をNo、6よ
り粗粒とし、又組成的にはCを0.05〜0.1%、N
bを0.1%以上、Sを0.02%以下とすることが必
要条件であることが理解され、このことが鋼管肉厚の大
部分を占めるSUS 347wAについて満すべき条件
であることを知った。
Furthermore, Fig. 3 shows the influence of the crystal grain size on the breaking strength when the above-mentioned steel is held at the solution temperature indicated on the upper horizontal axis for 10 minutes each. From the results shown in Figure 3, in order to obtain the above-mentioned creep rupture strength of 9 kg/in2 or more, the particle size number should be coarser than No. 6, and the composition should be 0.05 to 0.1% C and N.
It is understood that it is a necessary condition that b be 0.1% or more and S be 0.02% or less, and that this is a condition that should be met for SUS 347wA, which accounts for most of the wall thickness of the steel pipe. Knew.

一方鋼管の内表面近傍については細粒にすることが必要
で、この細粒にするためには利用し得る析出物がNb 
(C,N)であるため、これらのNb。
On the other hand, it is necessary to make the grain near the inner surface of the steel pipe fine, and in order to make the grain fine, available precipitates are Nb
(C,N), so these Nb.

C,Nの量も規制されてくる。然してこれらの中で、N
b量、C量については通常鋼の溶解時に調整されて定ま
るものであるが、N量は溶解時に調整するだけでなしに
、本発明では固体状態でガス中より拡散侵入させるもの
とした。即ぢ既述した第3図のように高温強度上の制限
より溶体化処理温度は1170°C以上にすることが必
要であり、このような温度でも鋼管内表面近傍には結晶
粒の成長を抑制するに充分なNb (C,N)力q斤出
していなければ上記溶体化処理後に該内表面近傍におい
て必要とされる細粒層が得られない。従って必要とされ
るNb量やC量と共に上記のように侵入させるN量を決
定する必要がある。即ち第4図に前記したSUS 34
7鋼における (C+N)量と1170°Cでの溶体化
処理後に得られる粒度の関係を示すが、本発明者等は上
記したような平均結晶粒度Mが7またはそれ以上の細粒
層が管内表面から50N以上、好ましくは100μ以上
で、300μ以下程度存在すると耐高温水蒸気酸化性が
改善されることを実験的に確認しており、粒度番号がこ
の寛7又はそれ以」二とするためには上記のように必要
とされる細粒層の範囲において、その(C+N)量が少
なくとも0.15%を必要とすることを前記第4図から
読みとれる。本発明においては既述したごとく、Nbの
炭窒化物によって高温強度確保のために必要となる高温
溶体化処理時の管内表面層において結晶粒の成長を防ぐ
ことにより該部分を細粒に維持するものである。従って
若しこれら析出物の形成に必要なC,N量に鋼の溶解状
態でそれらの量を調整したのでは溶体化処理後、管の全
肉厚に亘って−様な粒度の鋼管しか得られず、本発明の
目的を達し得ないことになる。そこで本発明では細粒層
を形成すべき管内表面の前記したような厚さ(深さ)範
囲内に鋼に対して侵入しゃずいNを上記のように固体状
態において侵入させるものであり、結晶粒度を前記範囲
の細粒にするために必要なNは粒度番号が漱7以上の細
粒状態で侵入させることが基本である。粗粒材に侵入し
たNは粒内の析出物となるだけであって、その後に加工
工程(11,70℃未満)とそれに伴う再結晶工程がな
い限り細粒化作用はない。
The amounts of C and N will also be regulated. However, among these, N
The amount of b and the amount of C are usually adjusted and determined when steel is melted, but the amount of N is not only adjusted during melting, but also is diffused into the gas in a solid state in the present invention. As shown in Figure 3, it is necessary to set the solution treatment temperature to 1170°C or higher due to high-temperature strength limitations, and even at such temperatures, crystal grains do not grow near the inner surface of the steel pipe. If sufficient Nb (C,N) force is not exerted to suppress the Nb (C,N), the required fine grain layer near the inner surface cannot be obtained after the solution treatment. Therefore, it is necessary to determine the required amount of Nb and C as well as the amount of N to be introduced as described above. That is, the SUS 34 shown in FIG.
The relationship between the amount of (C+N) and the grain size obtained after solution treatment at 1170°C in Steel No. 7 is shown. It has been experimentally confirmed that the high temperature steam oxidation resistance is improved when the particle size is present at 50N or more from the surface, preferably 100μ or more and 300μ or less. It can be seen from FIG. 4 that the amount of (C+N) is required to be at least 0.15% in the range of the fine grain layer required as described above. In the present invention, as described above, Nb carbonitride prevents the growth of crystal grains in the inner surface layer of the tube during high-temperature solution treatment, which is necessary to ensure high-temperature strength, thereby maintaining the fine grains in this area. It is something. Therefore, if the amounts of C and N required for the formation of these precipitates were adjusted in the molten state of the steel, after solution treatment, only a steel pipe with a -like grain size could be obtained over the entire wall thickness of the pipe. Therefore, the purpose of the present invention cannot be achieved. Therefore, in the present invention, N, which does not penetrate into the steel, is infiltrated in the solid state as described above within the thickness (depth) range as described above on the inner surface of the pipe where the fine grain layer is to be formed. In order to make the grain size into fine grains within the above range, it is basic that N is introduced in a fine grain state with a grain size number of 7 or higher. N that has entered the coarse-grained material only becomes precipitates within the grains, and there is no grain-refining effect unless there is a subsequent processing step (below 11.70° C.) and an accompanying recrystallization step.

平均結晶粒度来が7またはそれ以上の細粒層を管内表面
から50N以上300μ以下としたのは下記の理由によ
る。
The reason why the fine grain layer with an average grain size of 7 or more is set at 50N or more and 300μ or less from the tube inner surface is as follows.

鋼管の使用期間は通常10〜30万時間で、この間に粒
度陽7以上の場合、鋼管内面は水萎気により40N程度
の酸化が進行すると考えられるので細粒層は最低50μ
とする。
The usage period of steel pipes is usually 100,000 to 300,000 hours, and during this time, if the grain size is 7 or higher, oxidation of about 40N will progress on the inner surface of the steel pipe due to water atrophy, so the fine grain layer should be at least 50μ
shall be.

また細粒層の上限を300μとしたのは、300μを超
えてもそれに伴う酸化スケール厚の低減効果の増大は殆
どなく、更にクリープ破断強度に対して悪影響を与える
ので300μを上限とする。
Further, the upper limit of the fine grain layer is set to 300μ because even if it exceeds 300μ, there is almost no increase in the effect of reducing the oxide scale thickness, and furthermore, it has an adverse effect on the creep rupture strength.

(C+N)量は少なくとも0.15%とする必要がある
が、(C+N)量が大きくなると延性が低下するので上
限は0.5%が望ましい。
The amount of (C+N) needs to be at least 0.15%, but as the amount of (C+N) increases, the ductility decreases, so the upper limit is preferably 0.5%.

第5図にはベース成分を] 8Cr −12Ni  0
.01Nとし、これにC,Nbを変化させて成る鋼管内
面に、1.050〜1.100°CT:N2ガス又はA
r  N2混合ガス(N2:20〜50%)を10〜2
0分間流入させつつ侵入窒素処理をなし、その後117
0°Cで溶体化処理を行った際に得られた管内表面近傍
の平均結晶粒度を示したが、この図によれば優れた耐高
温水蒸気酸化性を得るための結晶粒度肖を7またはそれ
以上とするためには、Cが0.04%以上、Nbが0.
4%以上とする必要があることを理解し得る。
Figure 5 shows the base component] 8Cr -12Ni 0
.. 01N, and the inner surface of the steel pipe made by varying C and Nb.
r N2 mixed gas (N2: 20-50%) 10-2
Intrusion nitrogen treatment was carried out while flowing for 0 minutes, and then 117
The figure shows the average grain size near the inner surface of the tube obtained when solution treatment was carried out at 0°C. In order to achieve the above, C should be 0.04% or more and Nb should be 0.04% or more.
It can be understood that it is necessary to set it to 4% or more.

上記したような第1図および第5図から高温強度を上記
した程度以上に保持し且つ耐高温水蒸気酸化性を適切に
得るためにはNb添添加オーステビイ1ステンレス鋼の
C量は0.05〜0.10%でなければならず、Nbの
下限は0.4%となる。またNb量が1.1%を超える
と高温強度が劣化しはじめると共に溶接性も悪化するの
で、1.1%を上限とする。
As shown in Figs. 1 and 5 above, in order to maintain high-temperature strength above the above level and obtain appropriate high-temperature steam oxidation resistance, the C content of Nb-added Austevy 1 stainless steel should be 0.05 to 0.05. It must be 0.10%, and the lower limit of Nb is 0.4%. Furthermore, if the Nb content exceeds 1.1%, the high temperature strength begins to deteriorate and weldability also deteriorates, so the upper limit is set at 1.1%.

Crは耐水萎気酸化性確保のため少なくとも15%は必
要であるが、26%を超えて含有させるとオーステナイ
トが不安定となるので15〜26%とする。又Niは1
0%未満ではオーステナイトが不安定となり、このNi
量増大に従ってオーステナイトは安定となるが35%を
超えて含有させてもその効果が飽和し価格的に不利とな
るだけであるがら10〜35%とする。
Cr is required to be at least 15% in order to ensure water atrophy oxidation resistance, but if the content exceeds 26%, austenite becomes unstable, so the content is set at 15 to 26%. Also, Ni is 1
If it is less than 0%, austenite becomes unstable and this Ni
As the amount increases, austenite becomes more stable, but if the content exceeds 35%, the effect will be saturated and the cost will be disadvantageous, but the content is set at 10 to 35%.

本発明のオーステナイトステンレス鋼の成分組成のうち
、C,Cr、、Ni、 S及びNbの含有範囲と数値限
定の理由について前述したが、他の成分については以下
に記載する。
Among the components of the austenitic stainless steel of the present invention, the content ranges of C, Cr, Ni, S, and Nb and the reasons for numerical limitations have been described above, but other components will be described below.

Si:脱酸および耐酸化性から添加されるが、1%を超
えるとシグマ相等の脆化相の析出を助長するため、その
含有量を1%以下にする。
Si: Added for deoxidation and oxidation resistance, but if it exceeds 1%, it promotes precipitation of brittle phases such as sigma phase, so its content is kept at 1% or less.

Mn:脱酸、脱硫、オーステナイト相の安定に有効であ
るが、2%を超えるとその効果は顕著でないためその含
有量を2%以下にする。
Mn: Effective in deoxidizing, desulfurizing, and stabilizing the austenite phase, but the effect is not significant when it exceeds 2%, so the content is set to 2% or less.

N:細粒層の形成には有効であるが、過剰の添加は肉厚
中央部も細粒にしクリープ強度を損なうため、その含有
量を0゜05%以下にする。
N: Effective for forming a fine grain layer, but excessive addition causes fine grains in the central part of the wall thickness and impairs creep strength, so the content should be 0.05% or less.

P:不純物とりて含有されるが、その量が多い場合、熱
間加工性、溶接性等を低下させるため、その含有量を0
.04%以下にする。
P: It is contained as an impurity, but if its amount is large, it reduces hot workability, weldability, etc.
.. Keep it below 0.04%.

更にMo、 W、 Cu、■、Aff、Ti及びZrに
ついては1種又は2種以上を添加する。
Furthermore, one or more types of Mo, W, Cu, ■, Aff, Ti, and Zr are added.

Mo、W:高温クリープ強度に有効な元素であるが、シ
グマ相の析出を促進するため、何れもその含有量を3%
以下にする。
Mo, W: Elements effective for high-temperature creep strength, but in order to promote the precipitation of sigma phase, the content of both should be reduced to 3%.
Do the following.

Cu、■=クリープ強度の向上に有効な元素であるが、
過剰の含有は熱間加工性を著しく低下させるためその含
有量を何れも3%以下にする。
Cu, ■= an element effective in improving creep strength,
Excessive content significantly reduces hot workability, so the content should be kept at 3% or less.

Al:脱酸剤として有効であるが、フェライト相形成元
素であるため過剰添加はオーステナイト相の安定を損な
うため、その含有量を0.5%以下にする。
Al: Effective as a deoxidizing agent, but since it is a ferrite phase-forming element, excessive addition impairs the stability of the austenite phase, so the content is set to 0.5% or less.

Ti、 Zr :炭化物を形成しクリープ破断強度を高
めるが、過剰添加はLaves相等の脆化相が析出する
ため、その含有量も何れも0.15%以下にする。
Ti, Zr: Forms carbides and increases creep rupture strength, but if added excessively, brittle phases such as Laves phase will precipitate, so their content should be 0.15% or less.

第6図には鋼管内表面側に50μおよび100μの厚さ
をもった岬粒層を得るための代表的な処理条件を示した
。試験片は0.06%C−0,01%N −0,7%N
b−17%Cr−12%Ni−0,01%Sの組成を有
し、結晶粒度陽が8.5のものであり、細粒層の深さは
侵窒素処理後、1170℃以上で溶体化処理(即ち侵窒
素部分以外の粗粒化処理)を行ったものについて測定し
た。侵窒素処理にはN2ガスを使用し、所定の侵窒素保
持温度までの冊 温度上昇時間は約2分であり、侵窒素ガス中のN2分が
減少すると処理時間はこの第6図に示すところより若干
長くなり、又該ガス中の酸素量が多い場合も同様に必要
時間が多少長くなる。
FIG. 6 shows typical processing conditions for obtaining cape grain layers with thicknesses of 50 μm and 100 μm on the inner surface of the steel pipe. The test piece is 0.06%C-0.01%N-0.7%N
It has a composition of b-17%Cr-12%Ni-0.01%S, the grain size is 8.5, and the depth of the fine grain layer is 1170℃ or higher after nitrogen invasion treatment. Measurements were made on those that had been subjected to a chemical treatment (that is, a treatment to coarsen grains other than the nitrogen-contaminated portion). N2 gas is used for the nitrogen invasive treatment, and the time it takes for the book temperature to rise to the specified nitrogen invasive holding temperature is approximately 2 minutes, and as the N2 content in the nitrogen invasive gas decreases, the processing time is as shown in Figure 6. Similarly, when the amount of oxygen in the gas is large, the required time also becomes slightly longer.

なおこの第6図に示した侵窒素処理時間について耐雷す
ると、該図に示されたように処理温度と時間の関係はN
2ガスおよび不純物0□の割合が、0□ :5%以下の
場合はN2:25%以上のガスを使用した場合であり、
0□ :1%以下の場合はN、:5%以上のガス謡つい
て成立する。例えば02が0.1%以下のような大幅な
酸素の低減およびNH3分解ガスの混合などにより還元
性雰囲気にすることにより、この図の結果は図示上若干
左方に移動する。この効果は長時間処理が必要とされる
低温側においてより著しいことは言うまでもない。又9
00℃以下のような低温で侵窒素を行うと、表面近傍の
N 濃度は高くなるが、必要深さまでNが拡散するのに
時間を必要とするので低温法窒素処理後に高温(117
0°C未満)で熱処理し拡散させることが好ましい。こ
の拡散時間は図示した高温での保持時間(例えば110
0℃であれば5分)だけ行えばよい。
If lightning resistance is applied to the nitrogen invasive treatment time shown in Figure 6, the relationship between treatment temperature and time will be N as shown in the figure.
If the ratio of N2 gas and impurity 0□ is 0□:5% or less, it is the case that a gas with N2:25% or more is used,
0□: N if it is 1% or less, : holds true if it is 5% or more. For example, by creating a reducing atmosphere by significantly reducing oxygen to 0.1% or less and mixing NH3 decomposition gas, the results in this figure shift slightly to the left in the diagram. Needless to say, this effect is more remarkable at low temperatures where long-term treatment is required. Also 9
If nitrogen invasion is performed at a low temperature below 00°C, the N concentration near the surface will increase, but it will take time for the N to diffuse to the required depth.
It is preferable to perform a heat treatment at a temperature of less than 0° C. for diffusion. This diffusion time is the holding time at the high temperature shown (e.g. 110
If the temperature is 0°C, you only need to do it for 5 minutes).

処理前の結晶粒度番号は前述したように階7以上にする
必要があり、一方予め冷間加工されている場合又は11
70℃未満の温度で加工されている場合は、加工層が侵
窒素処理温度に達するまでに再結晶するため、細粒材、
粗粒材の別なく使用し傅る。この場合に必要とされる冷
間加工度は10%以上であり、冷間加工度が10%以下
では再結晶が生じないため、10%以上の冷間加工度を
必要とする。また冷間加工度は冷間圧延等の場合は肉厚
減少率であり、ショット加工のような内面近傍のみに対
して冷間加工を加える場合においては微少硬度測定によ
り換算する。
As mentioned above, the grain size number before treatment must be 7 or higher; on the other hand, if it has been cold worked in advance or 11
When processed at a temperature below 70°C, the processed layer recrystallizes by the time it reaches the nitrogen invasive treatment temperature, so fine grain materials,
It can be used regardless of coarse grain material. In this case, the degree of cold working required is 10% or more, and since recrystallization does not occur if the degree of cold working is 10% or less, a degree of cold working of 10% or more is required. Further, the degree of cold working is the wall thickness reduction rate in the case of cold rolling, etc., and in the case of applying cold working only to the vicinity of the inner surface such as shot processing, it is converted by microhardness measurement.

冷間加工度の上限規定については、 (1)  工業的に行いうる加工であれば特に限定する
必要はない。鋼管の加工(伸管、圧延)においては通常
は60%程度が上限であるが、更に高い加工度も与え得
る。
Regarding the upper limit of the degree of cold working, (1) There is no need to specifically limit the degree of cold working as long as it can be carried out industrially. In the processing of steel pipes (tube drawing, rolling), the upper limit is usually about 60%, but even higher processing rates can be achieved.

(2)  ショット加工、グラインダ加工等の表面近傍
に対する加工においては、表面は硬度から換算すると1
00%(外挿)を超える。但し、平均の加工度差は50
%程度、またはそれ以下になる。
(2) In processing near the surface such as shot processing and grinder processing, the surface has a hardness of 1
Exceeds 00% (extrapolation). However, the average processing degree difference is 50
% or less.

又その深さは501!以上あればよく、全肉厚でもよい
。侵窒素処理温度が1170 ′cを超える場合は昇温
速度が問題となり、一応の目安は500’C/minで
あって、それ以」二の速度で昇温する場合は細粒層は浅
くなり必要な細粒層厚50μが得られない。又直接通電
加熱などの方法により1000°C/min以上の急速
加熱を行う場合の加熱温度は1170℃以下に制限され
ることば言うまでもない。
Also, its depth is 501! It is sufficient if the thickness is greater than that, and the entire thickness may be sufficient. If the nitrogen invasive treatment temperature exceeds 1170'C, the rate of temperature rise becomes a problem, and a rough guideline is 500'C/min; if the temperature is raised at a rate higher than that, the fine grain layer becomes shallow. The required fine grain layer thickness of 50μ cannot be obtained. It goes without saying that when rapid heating of 1000° C./min or more is performed by a method such as direct current heating, the heating temperature is limited to 1170° C. or less.

」二記したような侵窒素処理温度が1】70°Cを超え
る場合の昇温速度制限、超急加熱の際の加熱温度制限は
処理管の平均結晶粒度がNo、 7またはそれ以」−の
細粒である場合および加工を加える場合の何れの場合に
おいても遵守されねばならないところである。
``The temperature increase rate limit when the nitrogen invasive treatment temperature exceeds 1] 70°C as described in ``1'', and the heating temperature limit during ultra-rapid heating, apply when the average grain size of the treatment tube is No. 7 or higher.'' This must be observed both in the case of fine grains and in the case of additional processing.

前記第6図の結果は、結晶粒度番号が陽7以」ニの侵窒
素処理と溶体化処理によって得られたものであるが、本
発明によるものばこの場合に限られるものでなく、以下
のような工程によっても同様に粗粒−細粒の二相MI織
を有する鋼管として製造することができる。
The results shown in FIG. 6 above were obtained by nitrogen invasive treatment and solution treatment for grain size numbers of +7 and above, but the results are not limited to the case of tobacco according to the present invention; A steel pipe having a coarse-grained/fine-grained two-phase MI weave can also be manufactured by such a process.

1)[有] 10%以上の加工(加工温度は117゜°
C以下)−〇 第6図に示したような侵窒素処理−■ 
1170℃以上の溶体化処理(■ ■は昇温速度を適当
に選ぶことにより同一過程で処理できる。即ち溶体化処
理温度まで昇温する過程で侵窒素処理することができる
) 2)前記した■ −・■ −■ 3)」二記1.)、2)の中の■ の処理過程を侵窒素
処理と拡散処理に分離したもの。
1) [Yes] Processing of 10% or more (processing temperature is 117°
C) -〇 Nitrogen invasive treatment as shown in Figure 6-■
Solution treatment at 1170°C or higher (■ ■ can be treated in the same process by appropriately selecting the heating rate. In other words, nitrogen invasive treatment can be performed during the process of raising the temperature to the solution treatment temperature) 2) −・■ −■ 3)” 2nd entry 1. ), the treatment process (■) in 2) is separated into nitrogen invasion treatment and diffusion treatment.

なお念のため耐雷すれば、3)の工程により処理する場
合において、拡散処理後に1100 ’c以下で加工す
る過程が入るときには拡散処理はその温度に限定を設け
る必要ないが、拡散処理過程後にこのような加工過程が
入らぬ場合は拡散処理も結晶粒が粗大化しない温度域(
即ち1170 ’c未満)で行わねばならない。父上記
のような基本パターンの外に、上記1)〜3)の組合わ
せも可能である。例えば、1)においてその■ と■ 
の間に再び■ 過程を装入してもよい。
As a precautionary measure, if lightning resistance is provided, in the case of processing in step 3), if processing at a temperature of 1100'C or less is performed after the diffusion treatment, there is no need to set a limit on the temperature of the diffusion treatment; If processing steps such as
i.e., less than 1170'c). In addition to the basic pattern as described above, combinations of 1) to 3) above are also possible. For example, in 1), the ■ and ■
■ Process may be charged again in between.

上記したような本発明の製造法を要約すると、以下が基
本的である ■ 最終熱処理(溶体化処理)は1170°C以上であ
ること。
To summarize the manufacturing method of the present invention as described above, the basics are as follows: (1) Final heat treatment (solution treatment) must be at 1170°C or higher.

■ 」二記溶体化処理の温度に材料が曝される以前の段
階で(溶体化処理温度に鋼管が昇温する途中であっても
よいし、全く別の工程であってもよいが)少なくとも鋼
管内表面から50〜300μの厚さ範囲の結晶粒度番号
がNo、7又はそれ以上の細粒状態(又は該細粒状態を
呈するとき)でその細粒状態を溶体化処理温度において
も保持するのに充分なN(即ちC−1−N20.15%
)が前記厚さ範囲に侵入していること。
■ At least at a stage before the material is exposed to the solution treatment temperature (this may be while the steel pipe is being heated to the solution treatment temperature, or in a completely different process). A fine grain state (or when exhibiting such a fine grain state) with a grain size number of No. 7 or higher in the thickness range of 50 to 300 μ from the inner surface of the steel pipe, and maintains the fine grain state even at solution treatment temperature. (i.e. C-1-N20.15%
) must be within the above thickness range.

然して前記最終熱処理以前に冷間加工、熱処理、酸洗な
どの諸工程を自由に挿入してよく、又当然のことなから
最終熱処理後の再度の熱処理も溶体化処理温度を著しく
超えない限り、耐高温水蒸気酸化性および高温強度につ
いては問題がない。
However, various steps such as cold working, heat treatment, and pickling may be freely inserted before the final heat treatment, and as a matter of course, as long as the second heat treatment after the final heat treatment does not significantly exceed the solution treatment temperature, There are no problems with high temperature steam oxidation resistance and high temperature strength.

なお侵窒素処理は管内にガスを封入することによっても
行い得られ、ガスの条件は単位面積当り常温常圧換算で
0.1 cc / cnt以上のN、ガス(分解するガ
スは分解したものとして計算し、NH3であれば0,2
ccZcIl)、1cc以下の02ガス(02分で計算
)を含むガスが一応の目安となる。
Nitrogen invasion treatment can also be performed by sealing gas inside the pipe, and the gas conditions are N of 0.1 cc/cnt or more per unit area converted to normal temperature and normal pressure, gas (gas to be decomposed is assumed to be decomposed) Calculate and if it is NH3, it is 0.2
ccZcIl), a gas containing 1 cc or less of 02 gas (calculated in 02 minutes) is a good guideline.

本発明によるものの具体的な製造例およびその比較例と
それらの製造方法について、それらの組成および性能を
要約して示すと、次表の通りである。なお代表のものに
おいてSは何れも0.02%以下であり、又何れも酸洗
材である。
The following table summarizes the composition and performance of specific manufacturing examples according to the present invention, comparative examples thereof, and manufacturing methods thereof. Note that in all representative examples, the S content is 0.02% or less, and all are pickling materials.

] 8 以上説明したような本発明によるときはNbを添加した
ステンレス鋼管においてその高温強度をより向上せしめ
ると共にその耐高温水蒸気酸化性を適切に高く維持せし
めることができるものであって工業的にその効果の大き
い発明である。
] 8 According to the present invention as explained above, it is possible to further improve the high-temperature strength of a stainless steel pipe to which Nb has been added, and to maintain its high-temperature steam oxidation resistance at an appropriately high level. This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は18%Cr−1,2%Ni−0,01%N−0,01
%S鋼の650°C110万時間のクリープ破断強度に
及ぼすC,Nbの1170℃以上の溶体化処理での影響
を示した図表、第2図は上記の鋼についてのクリープ破
断強度に及ぼすSの影響について示した図表、第3図は
上記鋼のクリープ破断強度に対する粒度の影響の関係を
示した図表、第4図はC+N量と1170℃結晶粒度の
関係を示した図表、第5図は上記鋼において1050 
’C110分の侵窒素処理後、1170°Cで溶体化処
理を行った後の鋼管内表面近傍の平均結晶粒度を示した
図表、第6図は50μ以上の細粒層深さを得るために必
要とされる熱処理時間と温度との関係を示した図表であ
る。
The drawings show the technical contents of the present invention, and FIG. 1 shows 18%Cr-1,2%Ni-0,01%N-0,01
Figure 2 shows the effects of C and Nb on the creep rupture strength of %S steel at 650°C for 1.1 million hours during solution treatment at temperatures above 1170°C. Figure 3 is a diagram showing the effect of grain size on the creep rupture strength of the above steel, Figure 4 is a diagram showing the relationship between C+N content and 1170°C grain size, and Figure 5 is a diagram showing the relationship between the grain size of the above steel. 1050 in steel
Figure 6 shows the average grain size near the inner surface of a steel pipe after nitrogen invasion treatment for 110 minutes and solution treatment at 1170°C. It is a chart showing the relationship between required heat treatment time and temperature.

Claims (1)

【特許請求の範囲】 1、C:0.05〜0.10%、Si≦1.0%、Mn
≦2.0%、Cr:15〜26%、Ni:10〜35%
、S≦0.02%、N≦0.05%、P≦0.04%、
Nb:0.4〜1.1%を含有し、更にMo≦3.0%
、W≦3.0%、Cu≦3.0%、V≦3.0%、A1
≦0.5%、Ti≦0.15%、Zr≦0.15%の1
種又は2種以上を含み、残部が鉄および不可避不純物か
らなるオーステナイトステンレス鋼による鋼管の平均結
晶粒度番号がNo.6またはそれ以下の粗粒組織とその
内面側における厚さが50〜300μで平均結晶粒度番
号がNo.7またはそれ以上の細粒層とを有し、該細粒
層部のC+Nが0.15%以上であることを特徴とする
オーステナイトステンレス鋼管。 2、C:0.05〜0.10%、Si≦1.0%、Mn
≦2.0%、Cr:15〜26%、Ni:10〜35%
、5≦0.02%、N≦0.05%、P≦0.04%、
Nb:0.4〜1.1%を含有し、更にMo≦3.0%
、W≦3.0%、Cu≦3.0%、V≦3.0%、Al
≦0.5%、Ti≦0.15%、Zr≦0.15%の1
種又は2種以上を含み、残部が鉄および不可避不純物か
らなるオーステナイトステンレス鋼による鋼管を117
0℃以上で粗粒組織を形成するように溶体化処理するに
当って少なくとも該鋼管の内面側50〜300μの厚さ
範囲内における平均結晶粒度番号がNo.7またはそれ
以上の細粒状態で前記厚さ範囲内のC+Nが0.15%
以上となる如くNを侵入させることにより前記溶体化処
理時においても前記内面側50〜300μの厚さ範囲内
における平均結晶粒度番号がNo.7またはそれ以上の
細粒状態を維持させることを特徴とするオーステナイト
ステンレス鋼管の製造法。 3、平均結晶粒度番号がNo.7またはそれ以上の細粒
オーステナイト鋼管にその結晶粒度を変化させるような
加工を加えることなく、その平均結晶粒度番号がNo.
7またはそれ以上の細粒状態を呈する条件下で前記鋼管
の内面側50〜300μの範囲内におけるC+Nが0.
15%以上となる如く侵窒素処理を行うことを特徴とす
る特許請求の範囲第2項に記載のオーステナイトステン
レス鋼管の製造法。 4、少なくとも内面側50〜300μの厚さ範囲内に対
し1170℃以下の温度条件で10%以上の加工を行う
工程と、侵窒素処理工程とを有し、前記厚さ範囲の平均
結晶粒度がNo.7またはそれ以上の細粒状態のもとで
C+Nを0.15%以上とする特許請求の範囲第2項に
記載のオーステナイトステンレス鋼管の製造法。
[Claims] 1. C: 0.05-0.10%, Si≦1.0%, Mn
≦2.0%, Cr: 15-26%, Ni: 10-35%
, S≦0.02%, N≦0.05%, P≦0.04%,
Contains Nb: 0.4 to 1.1%, and further Mo≦3.0%
, W≦3.0%, Cu≦3.0%, V≦3.0%, A1
≦0.5%, Ti≦0.15%, Zr≦0.15% 1
The average grain size number of a steel pipe made of austenitic stainless steel containing one or more species and the remainder consisting of iron and unavoidable impurities is No. 6 or less, the thickness on the inner surface side is 50 to 300μ, and the average grain size number is No. An austenitic stainless steel pipe having 7 or more fine grain layers, the fine grain layer having a C+N content of 0.15% or more. 2, C: 0.05-0.10%, Si≦1.0%, Mn
≦2.0%, Cr: 15-26%, Ni: 10-35%
, 5≦0.02%, N≦0.05%, P≦0.04%,
Contains Nb: 0.4 to 1.1%, and further Mo≦3.0%
, W≦3.0%, Cu≦3.0%, V≦3.0%, Al
≦0.5%, Ti≦0.15%, Zr≦0.15% 1
117 steel pipes made of austenitic stainless steel containing one or more species and the remainder consisting of iron and unavoidable impurities.
When solution treatment is performed to form a coarse grain structure at 0°C or higher, the average grain size number at least within the thickness range of 50 to 300μ on the inner surface of the steel pipe is No. C+N within the above thickness range in a fine grain state of 7 or more is 0.15%
By infiltrating N as described above, even during the solution treatment, the average grain size number within the thickness range of 50 to 300μ on the inner surface side becomes No. A method for producing an austenitic stainless steel pipe characterized by maintaining a fine grain state of 7 or more. 3. The average grain size number is No. No. 7 or more fine-grained austenitic steel pipe without any processing that would change its grain size.
C+N within the range of 50 to 300μ on the inner surface of the steel pipe is 0.7 or more under the condition of exhibiting a fine grain state of 7 or more.
The method for manufacturing an austenitic stainless steel pipe according to claim 2, characterized in that the nitrogen invasion treatment is carried out so that the nitrogen content becomes 15% or more. 4. At least a step of processing 10% or more at a temperature of 1170° C. or lower within a thickness range of 50 to 300 μ on the inner surface side, and a nitrogen invasive treatment step, so that the average grain size in the thickness range is No. The method for manufacturing an austenitic stainless steel pipe according to claim 2, wherein C+N is 0.15% or more in a fine grain state of 7 or more.
JP32798488A 1988-12-27 1988-12-27 Austenitic stainless steel tube and its manufacture Granted JPH01287249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32798488A JPH01287249A (en) 1988-12-27 1988-12-27 Austenitic stainless steel tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32798488A JPH01287249A (en) 1988-12-27 1988-12-27 Austenitic stainless steel tube and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1472082A Division JPS58133352A (en) 1982-02-03 1982-02-03 Austenite stainless steel pipe and preparation thereof

Publications (2)

Publication Number Publication Date
JPH01287249A true JPH01287249A (en) 1989-11-17
JPH0453943B2 JPH0453943B2 (en) 1992-08-28

Family

ID=18205203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32798488A Granted JPH01287249A (en) 1988-12-27 1988-12-27 Austenitic stainless steel tube and its manufacture

Country Status (1)

Country Link
JP (1) JPH01287249A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249946A (en) * 1996-03-14 1997-09-22 Nkk Corp Steel for pressure fluidized bed combustion type thermal power plant
US6918968B2 (en) * 2003-04-25 2005-07-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
JP2009235573A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel with excellent heat resistance and toughness
DE202009017682U1 (en) * 2009-12-29 2011-05-12 Wvt Breiding Gmbh Austenitic steel alloy and wear protection for boiler tubes
WO2011096592A1 (en) * 2010-02-04 2011-08-11 小田産業株式会社 High-nitrogen stainless-steel pipe with high strength, high ductility, and excellent corrosion and heat resistance and process for producing same
JP2014001436A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic heat-resistant steel pipe
JP2015137420A (en) * 2014-01-24 2015-07-30 新日鐵住金株式会社 Austenite stainless steel tube
US20180371591A1 (en) * 2015-12-23 2018-12-27 Posco Austenitic stainless steel pipe exhibiting excellent wrinkle resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289941B2 (en) * 2014-03-05 2018-03-07 株式会社神戸製鋼所 Austenitic heat resistant steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249946A (en) * 1996-03-14 1997-09-22 Nkk Corp Steel for pressure fluidized bed combustion type thermal power plant
US6918968B2 (en) * 2003-04-25 2005-07-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
JP2009235573A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel with excellent heat resistance and toughness
DE202009017682U1 (en) * 2009-12-29 2011-05-12 Wvt Breiding Gmbh Austenitic steel alloy and wear protection for boiler tubes
DE102010056350A1 (en) 2009-12-29 2011-12-15 Wvt Breiding Gmbh Austenitic steel alloy, useful in a wear protection system for a boiler tube, which is useful in waste incinerators, power plants and sugar refineries, comprises nickel, chromium, niobium, carbon, silicon and manganese
WO2011096592A1 (en) * 2010-02-04 2011-08-11 小田産業株式会社 High-nitrogen stainless-steel pipe with high strength, high ductility, and excellent corrosion and heat resistance and process for producing same
JP5894800B2 (en) * 2010-02-04 2016-03-30 三浦 春松 Manufacturing method of high nitrogen stainless steel pipe for manufacturing high pressure hydrogen gas storage container with high strength, high ductility and excellent corrosion resistance and heat resistance
JP2016065314A (en) * 2010-02-04 2016-04-28 三浦 春松 Production method of high nitrogen stainless steel pipe for high pressure hydrogen gas storage container production with high intensity, high ductility, excellent corrosion resistance and heat resistance
JP2014001436A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic heat-resistant steel pipe
JP2015137420A (en) * 2014-01-24 2015-07-30 新日鐵住金株式会社 Austenite stainless steel tube
US20180371591A1 (en) * 2015-12-23 2018-12-27 Posco Austenitic stainless steel pipe exhibiting excellent wrinkle resistance

Also Published As

Publication number Publication date
JPH0453943B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
EP3219820B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
US4465525A (en) Ferritic stainless steel having excellent formability
EP3020843B1 (en) High-carbon hot-rolled steel sheet and production method for same
US4464207A (en) Dispersion strengthened ferritic stainless steel
JP7339255B2 (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and method for producing the same
EP3480330A1 (en) Austenitic stainless steel
JPH01287249A (en) Austenitic stainless steel tube and its manufacture
JPH0510419B2 (en)
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
CN113166894B (en) Ferritic stainless steel with improved corrosion resistance and method for manufacturing same
JPH0222125B2 (en)
JP3752075B2 (en) High strength steel for super large heat input welding
JP7464606B2 (en) Ferritic stainless steel manufacturing method
JPS61174361A (en) Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP2002256376A (en) Steel sheet having low deterioration in toughness caused by strain aging
JPS60114551A (en) High strength bolt steel
JP3507626B2 (en) Steel for high strength bolts and high strength bolts
JPH0436441A (en) High strength and high toughness stainless steel and its manufacture
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3204080B2 (en) Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability
JPH0452218A (en) Manufacture of high toughness cast steel
JPS6164860A (en) Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture
JPS60152654A (en) Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture