JPS6164860A - Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture - Google Patents

Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture

Info

Publication number
JPS6164860A
JPS6164860A JP18476484A JP18476484A JPS6164860A JP S6164860 A JPS6164860 A JP S6164860A JP 18476484 A JP18476484 A JP 18476484A JP 18476484 A JP18476484 A JP 18476484A JP S6164860 A JPS6164860 A JP S6164860A
Authority
JP
Japan
Prior art keywords
less
strength
temperature
steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18476484A
Other languages
Japanese (ja)
Inventor
Akira Toyama
晃 遠山
Isao Minegishi
功 峯岸
Keisuke Hattori
服部 圭助
Kazuhiro Kanero
加根魯 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18476484A priority Critical patent/JPS6164860A/en
Publication of JPS6164860A publication Critical patent/JPS6164860A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve intergranular corrosion resistance and strength at a room temperature and a high temperature by reducing a C content of an Ni-Cr heat resisting steel, also controlling correctly its N content, and also executing cold working and heat treatment under specified conditions. CONSTITUTION:An Ni-Cr heat resisting steel containing 0.02-0.05% C, <2% Si, <2% Mn, 9-35% Ni, 15-26% Cr, 0.05-0.15% N, and <2.0% Nb, or also one kind or two kinds or more of <3% Mo, <1% Al and <3% Cr, as necessary, and having a quantitative relation of Nb/N>=100[c]+5 among Nb, N and C is heated and held at >=1,150 deg.C and softened on the way of cold working after hot working. The subsequent cold working is executed by >=15% draft, and the final solution treatment is executed at a temperature of >=1,150 deg.C. In this way, an austenite heat-resisting steel which has set a crystal particle size number to <=6 in order to strengthen high temperature strength, and also has set a particle size number to >=6 in order to improve vapor oxidation resistance is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐粒界腐食性及び強度等に優れた含Nbオース
トナイト系耐熱鋼及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Nb-containing austonitic heat-resistant steel having excellent intergranular corrosion resistance, strength, etc., and a method for producing the same.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

Nb i含有するオーステナイト系耐熱鋼管材料として
5US347H鋼が知られている。
5US347H steel is known as an austenitic heat-resistant steel pipe material containing Nbi.

この鋼の諸性性は最終の熱処理温度(溶体化処理温度)
に大きな影響を受ける。すなわちこの鋼は、高温すなわ
ちNb炭化物の大部分がマトリックスに溶は込むような
高温で溶体化処理を行うとクリープ破断強度は増力口す
るが、結晶粒の粗大化防止作用をするNb炭化物が存在
しないことから結晶粒径が大きくなシ、クリープ破断延
性、耐水蒸気酸化性が低下する。また固溶炭素が増加す
るため鋭敏化を起し易く、十分な耐粒界腐食特性が得ら
nない。−万、低温、すなわちNb炭化物がマトリック
スにほとんど固溶することがない程度の低温で溶体処理
を行うと結晶粒が組粒化し、クリープ破断延性及び耐水
蒸気酸化性が向上するとともに、鋭敏化を起しにく〈耐
粒界腐食性が向上するが、逆にクリープ破断強度はやや
低くなる。このような5US347I(鋼の特性に対し
、炭化物をある程度溶は込ませた状態で細粒組織を得る
方法もあるが、耐粒界腐食特性は必ずしも大きくは改善
されない。ま7t、Nt−添力口した上、Nb炭化物は
固溶するがNb窒化物はその一部又は全部が固溶しない
程度の高温で溶体化処理を行った場合も細粒の高強度鋼
を得ることが可能であるが、この場合は耐粒界腐食性は
さらに低下してしまう。
The properties of this steel are determined by the final heat treatment temperature (solution treatment temperature)
be greatly affected. In other words, when this steel is solution-treated at a high temperature, i.e., at a high temperature where most of the Nb carbides melt into the matrix, the creep rupture strength increases, but the presence of Nb carbides that prevents grain coarsening is present. As a result, the grain size becomes large, creep rupture ductility, and steam oxidation resistance decrease. Furthermore, since the amount of solid solute carbon increases, sensitization tends to occur, making it impossible to obtain sufficient intergranular corrosion resistance. - If solution treatment is performed at a low temperature, that is, at a low temperature where Nb carbide hardly forms a solid solution in the matrix, the crystal grains will be aggregated, improving creep rupture ductility and steam oxidation resistance, and increasing sensitization. (Although intergranular corrosion resistance is improved, creep rupture strength is slightly lower.) 5US347I (for the characteristics of steel, there is a method of obtaining a fine-grained structure with a certain amount of carbide infiltration, but the intergranular corrosion resistance does not necessarily improve greatly. As mentioned above, it is possible to obtain fine-grained high-strength steel even if solution treatment is performed at a high temperature such that Nb carbides dissolve in solid solution but some or all of Nb nitrides do not dissolve in solid solution. In this case, the intergranular corrosion resistance is further reduced.

本発明はこのような従来の問題に鑑みなされたもので、
耐粒界腐食性に優れるとともに、比較的低温域すなわち
常温及び600℃以下のクリープ変形金起さない温度域
における適度な強度(常温53 Kff/−程度)t−
有し、しかもクリープ変形の起る高温領域での優れた高
温強度又は耐高温水蒸気酸化性のいずnか一方の特性を
有する含Nbオーステナイト系耐熱鋼を提供せんとする
ものであシ、さらに、こnら特性の総て金兼ね備えたこ
の種の耐熱鋼の製造法を提供せんとするものである。
The present invention was made in view of such conventional problems,
Excellent intergranular corrosion resistance, and moderate strength (about 53 Kff/- at room temperature) at relatively low temperatures, that is, at room temperature and at temperatures below 600°C where creep deformation does not occur.
It is an object of the present invention to provide an Nb-containing austenitic heat-resistant steel having either one of the following properties: excellent high-temperature strength in a high-temperature region where creep deformation occurs; and high-temperature steam oxidation resistance. The present invention aims to provide a method for producing heat-resistant steel of this type that has all of these properties.

〔問題を解決する念めの手段〕[A precautionary measure to solve the problem]

このため本発明は、C量を従来の5US347H鋼に較
べ低減せしめるとともに・このC量の低減による強度、
すなわち常温及び600℃以下のクリープ変形を起さな
い温度域での強度(以下、単に常温強度と称す)及びク
リープ変形の起る温度域での高温強度(以下、単に高温
強度と称す)の低下をN全含有させることによシ防止し
さらには改善するものである。しかも本発明では、この
C量、N量及びN′b量を、耐粒界腐食にとって最も厳
しい最終溶体化処理条件、すなわち凪炭化物及びNb窒
化物が完全に固溶するような高温条件で最終溶体化処理
を行った場合においても、当該腐食が問題とならないよ
う調整することによシ、従来技術をもってしては両立が
不可能であつ念優T″Lfr:、耐粒界腐食割n性と優
nた高温強度を兼ね備えた含Nbオーステナイト系耐熱
鋼を得ることに成功したものである。また本発明では、
粒度の如何、すなわち細粒状態でもまた比較的粗粒状態
でも耐粒界腐食性と優nた強度を得ることができる。こ
のような本発明の特徴とするところは、C: 0.02
〜0.05wt%、Si:2 wt%以下、Mn : 
2 wt %以下、Nl:9〜35wt%、cr : 
15〜26wl、%、N : 0.05〜0.15wt
チ、Nb:2wt%以下、さらに必要に応じてMO:3
wt%以下、Al:1wt%以下、Cu:3wt%以下
の1種又は2種以上を含有し、残部Fe及び不可避不純
物からなり、且つNbft、N量及びC量が、 Nb/N≧loo[c]+5 の関係を満足するよう調整され、結晶粒度番号が6番未
満となるようにした点にあわ、これによシ優wfcit
粒界腐食特性と、常温強度及び高温強度とが適切に得ら
れる。
Therefore, the present invention reduces the amount of C compared to the conventional 5US347H steel, and also improves the strength by reducing the amount of C.
In other words, a decrease in strength at room temperature and a temperature range below 600°C where creep deformation does not occur (hereinafter simply referred to as room temperature strength) and high temperature strength in a temperature range where creep deformation occurs (hereinafter simply referred to as high temperature strength). By containing all N, this can be prevented and further improved. Moreover, in the present invention, the amounts of C, N, and N'b can be adjusted under the most severe final solution treatment conditions for intergranular corrosion resistance, that is, at high temperatures where the calm carbides and Nb nitrides are completely dissolved. By adjusting the corrosion so that it does not become a problem even when solution treatment is performed, it is possible to improve the intergranular corrosion resistance, which is impossible to achieve with conventional technology. The present invention has succeeded in obtaining a Nb-containing austenitic heat-resistant steel that has both excellent high-temperature strength and excellent high-temperature strength.
Intergranular corrosion resistance and excellent strength can be obtained regardless of the grain size, whether fine or relatively coarse. The feature of the present invention is that C: 0.02
~0.05 wt%, Si: 2 wt% or less, Mn:
2 wt% or less, Nl: 9 to 35 wt%, cr:
15-26wl, %, N: 0.05-0.15wt
H, Nb: 2 wt% or less, further MO: 3 as necessary
wt% or less, Al: 1wt% or less, Cu: 3wt% or less, the balance consists of Fe and unavoidable impurities, and Nbft, the amount of N, and the amount of C are Nb/N≧loo[ c] + 5, and the grain size number is less than 6.
Appropriate intergranular corrosion properties, room temperature strength, and high temperature strength can be obtained.

また本発明の他の特徴とするところは、C: 0.02
〜0.05 wt%、Si:2wt%以下、Mn:2w
t%以下、Ni : 9〜35 wt%、Cr: l 
5〜26wtチ、N : 0.05〜0.15wt %
、Nb : 2wt%以下、さらに必要に応じてMo 
: 3 wt%以下、A4:1wt%以下、C’u:3
wtチ以下の1種又は2種以上を含有し、残部Fe及び
不可避不純物からな)、且つNbi、N量及びC量が、 Nb/N≧100CC)+5 の関係を満足するよう調整さn、結晶粒度番号が6番以
上となるようとした点にあシ、これによシ、優れた耐粒
界腐食特性と適切な常温強度が得られるとともに1優n
た耐水蒸気酸化性が得らルる。
Another feature of the present invention is that C: 0.02
~0.05 wt%, Si: 2 wt% or less, Mn: 2w
t% or less, Ni: 9 to 35 wt%, Cr: l
5-26wt Chi, N: 0.05-0.15wt%
, Nb: 2wt% or less, further Mo as necessary
: 3 wt% or less, A4: 1 wt% or less, C'u: 3
Contains one or more of the following (wt. The advantage is that the grain size number is set to be 6 or more, and this also provides excellent intergranular corrosion resistance and appropriate normal temperature strength, as well as a 1.
Provides excellent steam oxidation resistance.

さらに本発明の他の特徴とするところは、上記諸物件、
すなわち、耐粒界腐食性、強度及び耐水蒸気酸化性の総
てを高度に満足させ得るこの種の耐熱鋼の製造法に関す
るものであフ、その特徴とするところは、C:0.02
〜0.05wt%、Si:2wt%以下、MH: 2 
wt%以下、Ni : 9〜35 wt%、Cr:15
〜26wt%、N:o、os〜0.15wt%、Nb 
: 2wt%以下、さらに必要に応じてMo:3wt%
以下、Al: l wt%以下、Cu:3wt%以下の
1種又は2種以上を含有し、残部Fe及び不可避不純物
からなり、且つNbi、N量及びC量が、 Nb/N≧xoo[c)+s の関係を満足するよう調整さ几た調音、冷間加工途中で
1150℃以上の温度で軟化処理し、その後の冷間加工
”t−15%以上の冷間加工度で行った後、1150℃
以上の温度で最終溶体化処理を行うようKしたことにあ
る。
Furthermore, other features of the present invention include the above-mentioned objects,
That is, it relates to a method for manufacturing this type of heat-resistant steel that can highly satisfy all of intergranular corrosion resistance, strength, and steam oxidation resistance, and is characterized by C: 0.02.
~0.05wt%, Si: 2wt% or less, MH: 2
wt% or less, Ni: 9 to 35 wt%, Cr: 15
~26wt%, N:o, os~0.15wt%, Nb
: 2wt% or less, further Mo: 3wt% if necessary
Hereinafter, it contains one or more of Al: 1 wt% or less, Cu: 3 wt% or less, and the balance consists of Fe and unavoidable impurities, and the amount of Nbi, the amount of N, and the amount of C are Nb/N≧xoo[c ) + s The tuning is carefully adjusted to satisfy the relationship, softening treatment is performed at a temperature of 1150℃ or higher during cold working, and the subsequent cold working is performed at a cold working degree of t-15% or higher. 1150℃
The reason is that the final solution treatment was carried out at a temperature higher than that.

以下本発明の詳細及びその限定理由について説明する。The details of the present invention and the reasons for its limitations will be explained below.

本発明鋼はボイラ等で使用される場合に総合的に優れ比
特性を持つことをその上次る目的としている。高温にお
いて使用さnる材料においても粒界型の割tが起ること
がち)、耐粒界腐食性は最重点を置くべき特性の1つで
ある。粒界腐食はC量が増加子ると大きくなる傾向があ
るが、この傾向は高温のりIJ−ブ(破断)強度を上げ
る次めの高温溶体化を行うと著しくなる。このため本発
明は粒界腐食に有害々CiNで置換するものでちり、こ
のような観点からCはその上限を0.05wt%に抑え
ら几る。しかし、高温クリープ(破断)強度を確保する
ため、Cはその下限をO’、02wt係とする。
A further object of the steel of the present invention is to have excellent overall ratio properties when used in boilers and the like. Even in materials used at high temperatures, intergranular corrosion tends to occur), so intergranular corrosion resistance is one of the characteristics that should be given top priority. Intergranular corrosion tends to increase as the C content increases, and this tendency becomes more pronounced when subsequent high-temperature solution treatment is performed to increase the high-temperature adhesive IJ-build (rupture) strength. Therefore, in the present invention, the substitution with CiN is harmful to intergranular corrosion, and from this point of view, the upper limit of C is limited to 0.05 wt%. However, in order to ensure high temperature creep (rupture) strength, the lower limit of C is set to O', 02wt.

cl置換するNは、常・高温強度を確保するため0.0
5 wt 1以上必要であるが、0.15wt%を超え
てもその効果が飽和するため、0.05〜0.15wt
%の範囲とする。第2図は高温強度に及ぼすN量の影響
を0.03wt%C−x7wt%Cr 12wt%Ni
 −0,85wt%Nbfi4(図中呂は第1表中の供
試材鋼Nαを示す)について調べたものであシ、Nb炭
化物は勿論Nb窒化物を和尚固溶させるため最終溶体化
処理温度11190℃lc選んでいる。jfLによn、
u、N k O,05wtチ以上含有させることによシ
、650℃、20 Kg/1han”負荷のもとてのク
リープ破断時間が1000時間以上と、高温強度が改善
さnていることが示さしている。第3図は常温強度に及
はすNの影響を同じ(0,03wt%C17wt%Cr
−12wt%Ni −0,85wt%Nb鋼(図中醜は
第1表中の供試材鋼m’6示す)について調べたもので
、常温で引張試験を行った結果を示すものである。図中
○印は1220℃、e印は1050℃でそnぞれ最終溶
体処理を行ったものであるが、両者ともにほぼ同一線上
にあり、53 Kg/arm2以上の強度を得るために
は0.05 wt%以上のNが必要なことが判る。セし
てNb炭化物及び窒化物が完全に固溶する温度で溶体化
処理した場合には主として固溶強化(析出強化)によシ
強度が向上し、炭窒化物が全く溶は込まない温度で溶体
化処理しfc場合には、主として細粒効果によって強度
が向上していると考えられるが、その強化作用はほぼ同
一であることが判る。したがってクリープ変形を伴わな
い温度域での強度はいかなる場合でもNの添加で改善さ
nる。
N for Cl substitution is 0.0 to ensure normal and high temperature strength.
5wt% or more is required, but the effect is saturated even if it exceeds 0.15wt%, so 0.05 to 0.15wt% is required.
% range. Figure 2 shows the effect of N amount on high temperature strength: 0.03wt%C-x7wt%Cr 12wt%Ni
-0.85wt%Nbfi4 (the figures in the figure indicate the sample steel Nα in Table 1).The final solution treatment temperature was to dissolve not only Nb carbides but also Nb nitrides. 11190℃lc is selected. To jfL,
It is shown that the creep rupture time is 1000 hours or more under a load of 20 Kg/1han at 650°C, indicating that the high temperature strength is improved by containing 05wt or more of NkO. Figure 3 shows the effect of N on room temperature strength at the same temperature (0.03wt%C17wt%Cr).
-12wt%Ni -0.85wt%Nb steel (the ugliness in the figure indicates sample steel m'6 in Table 1) was investigated, and shows the results of a tensile test at room temperature. In the figure, the mark ○ indicates the final solution treatment at 1220°C and the mark e indicates the final solution treatment at 1050°C, but both are almost on the same line, and in order to obtain a strength of 53 Kg/arm2 or more, it is necessary to It can be seen that N of .05 wt% or more is required. When solution treatment is performed at a temperature where Nb carbides and nitrides are completely dissolved, the strength is improved mainly due to solid solution strengthening (precipitation strengthening), and at a temperature where carbonitrides are completely dissolved, the strength is improved. In the case of solution treatment and fc, it is thought that the strength is improved mainly due to the fine grain effect, but it can be seen that the strengthening effect is almost the same. Therefore, the strength in a temperature range where creep deformation does not occur can be improved by adding N in any case.

Nbは粒界腐食を防止するためC1Nとの関係でその量
全規制されつつ添加さnる。すなわち、本発明ではNb
量、N量及びC量が、Nb/N≧100 CC〕+ 5 の関係t−満足するよう調整さnる。第1図は17wt
%Cr−12wt%Ni −N : 0.05〜0.1
5wt1鋼において、C量及びN量を変化させた鋼につ
いて、1220℃で溶体化処理してNb窒化物を完全に
固溶させた後、650℃、2hrの鋭敏化処理し、こn
についてJIS G O575に従ってストラウス試i
l1行い、割nの発生状況を調べたものである(なお、
図中の随が付さnたものはC景、Nb/Hに関して後述
する実施例の同raの鋼と対応している)。同図によれ
ば、C量が0.05wt%を超える鋼はNb/Nの値に
かかわらず粒界腐食を生じ、逆に0.02wt%未満の
範囲ではNb / Hの値にかかわらず粒界腐食を生じ
ていない。そして本発明の範囲であるC : 0.02
〜0.05wt%の範囲では、C:0.03wt%では
Nb/N 二8以上、C: 0.05wt %ではNb
/N : 10以上というようにCmが多くなるほど同
−Niに対してNb、t’e多量に含有させる必要があ
り、具体的にはNb/N≧loO〔c:1+5vi″満
足させるようNb、C,Hの各含有量を調整しなけnば
ならないことが判る。前述のように粒界腐食は炭窒化物
が完全に固溶した状態で最も生じ易いものであるから、
この状態で粒界腐食を生じないようにNb、N1Cの量
的関係を調整しておくことによシ、その粒度の如何、最
終溶体化処理の如何にかかわらず粒界腐食のおそnはな
くなる。なお、C:0.02wt1未満の領域は粒界腐
食は生じないが、前述したように強度(クリープ強度及
び常温強度)が劣るため本発明の範囲外とされる。
In order to prevent intergranular corrosion, Nb is added while its amount is completely regulated in relation to C1N. That is, in the present invention, Nb
The amount of N, the amount of N, and the amount of C are adjusted so that they satisfy the relationship t-Nb/N≧100 CC]+5. Figure 1 is 17wt
%Cr-12wt%Ni-N: 0.05-0.1
5wt1 steel with varying amounts of C and N was solution-treated at 1220°C to completely dissolve Nb nitrides, and then subjected to sensitization treatment at 650°C for 2 hours.
Strauss test i according to JIS G O575
11 and investigated the occurrence of %n (in addition,
Items marked with n in the figure correspond to steels of the same ra in Examples described later regarding C-view and Nb/H). According to the same figure, steel with a C content exceeding 0.05 wt% causes intergranular corrosion regardless of the Nb/N value, and conversely, in a range of less than 0.02 wt%, grain boundary corrosion occurs regardless of the Nb/H value. No interfacial corrosion occurred. And C which is the range of the present invention: 0.02
In the range of ~0.05wt%, Nb/N28 or higher for C: 0.03wt%, Nb for C: 0.05wt%
/N: The larger the Cm is, such as 10 or more, the more Nb and t'e must be contained relative to the same -Ni. Specifically, Nb, It is clear that each content of C and H must be adjusted.As mentioned above, intergranular corrosion is most likely to occur when carbonitrides are completely dissolved in solid solution.
By adjusting the quantitative relationship between Nb and N1C so that intergranular corrosion does not occur in this state, the possibility of intergranular corrosion will be eliminated regardless of the grain size or final solution treatment. . Incidentally, in a region where C: is less than 0.02wt1, intergranular corrosion does not occur, but as described above, the strength (creep strength and room temperature strength) is inferior, and therefore it is outside the scope of the present invention.

さらに励は2 wt%を超えて添加してもこnに見合う
効果が得らnず、却って溶接性が悪化するという問題が
あシ、このため、その上限が2wtチに規制さnる。
Further, even if more than 2 wt % of ferrite is added, the corresponding effect will not be obtained, and there is a problem that weldability will deteriorate, and for this reason, the upper limit is limited to 2 wt %.

Niはオーステナイト単相組織を得るたあには少なくと
も9 wt%必要であるが、35wt%を超えると経済
性を損うため、9〜a s wt %とする。
Ni is required to be at least 9 wt % to obtain an austenite single phase structure, but if it exceeds 35 wt %, it will be uneconomical, so it is set at 9 to a s wt %.

Crは、所望の耐食性を得るためには15wt%以上必
要であるが、26wt%’を超えて添加するとオーステ
ナイト単相組織が得られなくな)、このため15〜26
wt%とする。
Cr is required in an amount of 15 wt% or more in order to obtain the desired corrosion resistance, but if it is added in an amount exceeding 26 wt%, an austenite single phase structure cannot be obtained).
Let it be wt%.

その他の成分について説明すると、まずMnは脱酸作用
を有しオーステナイト系耐熱鋼に通常含有される元素で
あるが、2wt%を超えて含有させると溶接性が劣化す
るため、2wt%全上限とする。Stも脱酸元素として
オーステナイト系耐熱鋼に含まnる元素であシ、オース
テナイト単相組織が得らnる々らば2wt俤を限度とし
て含有させることができる。
To explain the other components, first Mn is an element that has a deoxidizing effect and is normally contained in austenitic heat-resistant steel, but if it is contained in excess of 2 wt%, weldability deteriorates, so the total upper limit of 2 wt% is do. St is also an element contained in austenitic heat-resistant steel as a deoxidizing element, and it can be contained up to 2 wt so long as an austenite single phase structure is obtained.

本発明では以上のような成分に、必要に応じMo : 
3 wt%以下、Cu二3wt%以下、Al:1wt%
以下の1種または2種以上を含有させることができる。
In the present invention, in addition to the above components, Mo:
3 wt% or less, Cu2 3 wt% or less, Al: 1 wt%
One or more of the following may be included.

MO、cuは常温ならびに高温強度を向上させる効果が
あるが、そn(J−n awt%でほぼその効果が飽和
し、このためそれぞfL 3 wtチを上限とする。ま
たAlは耐酸化往管向上させるが、1 wt%を超える
と銅の溶製が困難となる。
MO and Cu have the effect of improving the strength at room temperature and high temperature, but their effect is almost saturated at n (J-n awt%), so the upper limit for each is set at fL 3 wt%. Although it improves the flow of the pipe, if it exceeds 1 wt%, it becomes difficult to melt copper.

以上のような成分組成の規制に加え、本発明では目的と
する特性忙応じ結晶粒度が規制さ【る。すなわち、耐粒
界腐食性及び常温強度という基本特性に加え、特に高温
強度に優れた鋼とする場合には、結晶粒度番号が6番未
満となるように、it上記基本特性に加え、特に耐水蒸
気酸化性に優−nfc鋼とする場合には、結晶粒度番号
が6番以上となるように規制される。
In addition to regulating the component composition as described above, the present invention also regulates the crystal grain size depending on the desired characteristics. In other words, in addition to the basic properties of intergranular corrosion resistance and room-temperature strength, if you want a steel that is particularly excellent in high-temperature strength, in addition to the above-mentioned basic properties, it is necessary to When NFC steel has excellent steam oxidation properties, the grain size number is regulated to be No. 6 or higher.

結晶粒度は、基本的には最終溶体化処理条件によ)支配
さn、最終溶体化処理温度を1150’C’lr超える
高温で行うとNb窒化物の固溶がはじ1シ、このため結
晶粒粗大化防止作用が弱まり、結晶粒度も6番未満にな
る傾向を有する。このような鋼では特に優れた高温強度
が得られるものであシ、これが本願第1の発明である。
The grain size is basically controlled by the final solution treatment conditions.If the final solution treatment temperature is higher than 1150'C'lr, the solid solution of Nb nitride is likely to occur, and therefore the crystal grain size is The effect of preventing grain coarsening is weakened, and the crystal grain size tends to be less than No. 6. Such steel can provide particularly excellent high-temperature strength, and this is the first invention of the present application.

一万、最終溶体化処理i Nb窒化物がほとんど固溶し
ない1150℃未満で行えばNb窒化物による結晶粒粗
大化防止作用によシ粒反番号6番以上のものが得られる
。このような鋼はその細粒化によシ優nた耐水蒸気酸化
性が得らnる。耐水蒸気酸化性は結晶粒度に支配さnる
。すなわち水蒸気酸化によるスケールの剥離は、そのス
ケールが70μmft超えると起シはじめ、100μr
nl超えると著しくなる。
10,000, Final solution treatment i If performed at a temperature below 1150° C. at which almost no Nb nitride is dissolved in solid solution, grains with grain numbers 6 or higher can be obtained due to the grain coarsening prevention effect of the Nb nitride. Such steel has excellent steam oxidation resistance due to its fine grain size. Steam oxidation resistance is governed by grain size. In other words, scale exfoliation due to steam oxidation begins when the scale exceeds 70 μm, and when the scale exceeds 100 μm
It becomes noticeable when exceeding nl.

そしてCr含有量が20%以下のオーステナイト系ステ
ンレス鋼にあっては、長時間使用時のスケールの成長は
550〜600℃においては結晶粒径の2倍程度で止ま
ることが多く、シたがって粒度6番の場合のスケール厚
さは概ね80〜100μm1同8番の場合のスケール厚
さは40〜50μ扉となる。このようなことから、スケ
ールの厚さを剥離の生じない70μm以下の厚さにとど
める九めには粒度t−6番以上に調整する必要があるも
のであ)、こnが特に耐水蒸気酸化性の優れ念ものとし
て規定した本創第2の発明である。
In austenitic stainless steels with a Cr content of 20% or less, scale growth during long-term use often stops at about twice the grain size at 550 to 600°C; The scale thickness in the case of No. 6 is approximately 80 to 100 μm, and the scale thickness in the case of No. 8 is 40 to 50 μm. For this reason, in order to keep the scale thickness to 70 μm or less without peeling, it is necessary to adjust the particle size to T-6 or higher), and this is especially resistant to steam oxidation. This is the second invention of the present invention, which is defined as a product of sexual excellence.

次に本発明の製造法について説明する。Next, the manufacturing method of the present invention will be explained.

前述したように、結晶粒度は基本的には最終溶体化処理
条件により支配されるが、よp具体的には、最終溶体化
処理条件、その直前の冷間加工度、さらにはその前の軟
化処理条件の影響を受ける。一方、高温クリープ(破断
強度)は炭化物の溶は込みに影響さn、実質的には最終
溶体化処理温度によシ決定される。
As mentioned above, the grain size is basically controlled by the final solution treatment conditions, but more specifically, the final solution treatment conditions, the degree of cold working immediately before that, and the softening before that. Affected by processing conditions. On the other hand, high temperature creep (rupture strength) is influenced by the dissolution of carbides and is substantially determined by the final solution treatment temperature.

第4図は0.03 wt%C−17wt%cr−izv
t*Ni−0,095wt%N−0,85wt%Wb 
ill  をl l 50゛℃及び1175℃で軟化処
理後、15%の加工度で冷間加工し、それぞれ10(0
0〜1200℃で最終溶体化処理を行った場合得らnる
結晶粒度を示し念ものである。また参考のため、119
0℃で軟化処理を行い同様に加工を行つたものKついて
も、1190℃で最終溶体化処理全行った。この図から
、最終溶体化処理温度及び冷間加工度が同一であっても
、結晶粒度は同一ではなく、軟化処理温度が高いものほ
ど最終溶体化処理後の結晶粒が微細になっていることが
判る。こnは、冷間加工で鋼材に充分な転移が導入さn
ている場合は、最終溶体化処理の昇温過程において前段
の軟化処理で固溶していたNb窒化物が格子欠陥に析出
することとなるが、軟化処理温度が高くなる程、格子欠
陥に析出可能な固溶Nbi化物が多くなるためと考えら
nる。軟化処理時に未固溶のNb窒化物は、上述した最
終焼鈍昇熱工程−7′m祈出1てビス掛9什物r紳べて
す央すがすきく且つその数も極めて少ないため、オース
テナイト結晶粒の粗大化防止作用も格段に差が出てくる
Figure 4 shows 0.03 wt%C-17wt%cr-izv
t*Ni-0,095wt%N-0,85wt%Wb
After softening at 50°C and 1175°C, cold working was carried out at a working degree of 15%, resulting in 10 (0
This is an illustration of the grain size obtained when the final solution treatment is carried out at 0 to 1200°C. Also, for reference, 119
For sample K, which was softened at 0°C and processed in the same way, the final solution treatment was performed at 1190°C. This figure shows that even if the final solution treatment temperature and cold working degree are the same, the grain size is not the same, and the higher the softening treatment temperature, the finer the grains after the final solution treatment. I understand. This means that sufficient transitions are introduced into the steel material during cold working.
If the temperature is increased during the final solution treatment, Nb nitride, which had been dissolved in the previous softening treatment, will precipitate in the lattice defects. This is thought to be due to an increase in the number of solid-dissolved Nbide compounds. During the softening process, undissolved Nb nitrides form austenite because the space between the final annealing heat raising process mentioned above and the number of screws is very small. There is also a significant difference in the effect of preventing coarsening of crystal grains.

第5図は第4図て用い次と同一の鋼を軟化処理温度: 
1190℃、最終溶体化処理温度:1190℃で処理し
、軟化処理後の冷間加工度と溶体化処理後の粒度との関
係を調べたものである。こnlcよれば、冷間加工度が
大きくなるにつnて結晶粒度は微細になシ%15’J以
上で十分な微細化効果が得られている。また、その効果
の向上は加工度が15%を超えるとゆるやかとなる。先
に説明したようK。
Figure 5 shows the softening temperature of the same steel as in Figure 4:
Processing was performed at 1190°C, final solution treatment temperature: 1190°C, and the relationship between the degree of cold work after softening treatment and the particle size after solution treatment was investigated. According to this nlc, as the degree of cold working increases, the crystal grain size becomes finer, and a sufficient refining effect is obtained at %15'J or more. Further, the improvement in the effect becomes gradual when the degree of processing exceeds 15%. As explained earlier, K.

最終焼鈍過程でNb窒化物の析出サイトとなる転移密度
が増加するほど結晶粒が微細になるものであシ、上記し
たように微細化効果の向上がゆるやかになるのは、固溶
Nb量との関係もあるかも知乳ないが、ある一定の加工
度以上の加工では転移密度のほうも飽和してくるととt
意味している。
In the final annealing process, the grains become finer as the dislocation density, which becomes the precipitation site of Nb nitrides, increases.As mentioned above, the improvement in the refinement effect becomes gradual due to the amount of solute Nb. Although there may be a relationship between
It means.

ここで、第4図からも判るように軟化処理−冷間加工−
穀終溶体化処理という工程でNb含有オーステナイト鋼
を製造する場合、最終溶体化処理後の結晶粒度が同一の
もの(例えば粒度番号6番)が異った条件(軟化処理温
度−最終溶体化処理温度の組み合せって製造される。例
えば軟化処理1150℃−溶体化処理1170℃のもの
と、軟化処理1175℃−溶体化処理1190℃のもの
はいずれも粒度番号は6番である。しかし後者のほうが
最終溶体化処理温度が高いためNb窒化物の固溶が進み
、高温強度は高くなるはずである。
Here, as can be seen from Figure 4, softening treatment - cold working -
When producing Nb-containing austenitic steel through a process called grain final solution treatment, grains with the same grain size after final solution treatment (for example, grain size number 6) are processed under different conditions (softening treatment temperature - final solution treatment For example, the particle size number for both the softening treatment at 1150°C and solution treatment at 1170°C and the softening treatment at 1175°C and solution treatment at 1190°C has a particle size number of 6. However, the latter Since the final solution treatment temperature is higher, solid solution of Nb nitride progresses, and the high-temperature strength should be higher.

このような観点から、結晶粒度番号と650℃、20に
9/−負荷によるクリープ試験における破断時間との関
係を軟化処理温度別にみたのが第6図である。供試鋼は
前記第4図及び第5図と同一で冷間加工度は15%でち
る。
From this point of view, FIG. 6 shows the relationship between the grain size number and the rupture time in a creep test at 650° C. and a load of 20 to 9/−, depending on the softening treatment temperature. The steel sample was the same as that shown in FIGS. 4 and 5, and the degree of cold working was 15%.

同図によnば、同一の粒度でみた場合軟化処理温度が高
いほど高い高温強度が得られることが判る。すなわち、
前述し次本発明鋼(本願第1発明)では結晶粒度が6番
未満で高い高温強度(650℃、20 K47mmで1
000hr以上のクリープ破断時間)が得らnたもので
あるが、軟化処理−冷間加工−最終溶体化処理という工
程において、軟化処理11150℃以上で行った場合は
、結晶粒度が6番以上でも650℃、20 Kg/lt
Jで1000.hr以上のクリープ破断時間が得らnる
ものである。既に説明し念ように、1150℃以上で最
終溶体化処理を行えばNb窒化物の固溶がはじまシ高温
強度が向上するのであるから、1150℃以上で最終溶
体化処理を行う限シその時の結晶粒度が6番以上の細粒
であっても高い高温強度を有することはむしろ当然であ
ると言える。
According to the figure, it can be seen that when looking at the same particle size, the higher the softening temperature, the higher the high temperature strength can be obtained. That is,
As mentioned above, the steel of the present invention (first invention of the present application) has a grain size of less than No. 6 and high high temperature strength (1 at 650°C, 20K, 47mm).
However, in the process of softening treatment - cold working - final solution treatment, if the softening treatment is carried out at 11150 °C or more, even if the grain size is No. 6 or more, 650℃, 20 Kg/lt
J for 1000. A creep rupture time of hr or more can be obtained. As already explained, if the final solution treatment is performed at a temperature of 1150°C or higher, solid solution of Nb nitride will start and the high temperature strength will be improved. It is rather natural that even fine grains with a grain size of 6 or more have high high temperature strength.

以上のことから本発明では、従来1150℃未満の温度
域で行わ几ていた軟化処理を特に1150℃以上で行う
ようにするとともに、1150℃以上の軟化処理−加工
度15%以上の冷間加ニー1150℃以上の最終溶体化
処理という一連の条件を規定することにより、耐粒界腐
食性、常温強度、耐水蒸気酸化性、及び高温強度の各特
性においていずれも優れた含穐耐熱鋼の製造を可能なら
しめたものである。なお、本発明では軟化処理温度及び
最終溶体化処理温度11175℃以上とし、また冷間加
工度を20%以上とすることによシ、よシ優れた特性を
得ることが可能となる。
In view of the above, in the present invention, the softening treatment, which was conventionally performed at a temperature range of less than 1150°C, is particularly performed at a temperature of 1150°C or higher, and the softening treatment at 1150°C or higher - cold processing with a working degree of 15% or higher. By specifying a series of conditions including final solution treatment at a temperature of 1150°C or higher, we can manufacture heat-resistant steel containing aqueous steel that is excellent in intergranular corrosion resistance, room-temperature strength, steam oxidation resistance, and high-temperature strength. This made it possible. In the present invention, by setting the softening treatment temperature and the final solution treatment temperature to 11,175° C. or higher, and by setting the degree of cold working to 20% or higher, it is possible to obtain much better properties.

〔実施例〕〔Example〕

第1表は本発明の実施例を示すもので、同表に示される
成分及び処理条件で鋼材を製造し、各供試材について高
温強度、常温強度及び粒界腐食性を調べた。表中、凰1
鋼〜N15鋼が本願第1発明鋼、NILG鋼及び随7鋼
が本願第2発明鋼であシ、結晶粒度6番未満のll鋼〜
Na、5鋼は耐粒界腐食性及び常温強度とともに、優n
た高温強度が得らnておシ、特に窒化物が完全に溶は込
む温度で最終溶体化処理を行ったN11Ls鋼は特に優
几た高温強度が得らnている。一方、結晶粒度6番以上
の高6鋼及び随7鋼はNを添加しただけの高温強麿力面
μH徂瓜1外臥萌;−矛の鈷、乱飴険九戯優nた耐水蒸
気酸化性が得られていることが判る。こnに対して瀧1
0鋼及びNa1l鋼は第1甲に示すようK Nb/N≧
1oo[C]+5の条件金外tた比較材であり、これら
はいずれも耐粒界腐食性が劣っている。
Table 1 shows examples of the present invention. Steel materials were manufactured using the ingredients and treatment conditions shown in the table, and the high temperature strength, room temperature strength, and intergranular corrosion properties of each sample material were examined. In the table, 凰1
Steel ~ N15 steel is the first invention steel of the present application, NILG steel and No. 7 steel are the second invention steel of the present application, II steel with a grain size of less than No. 6 ~
Na,5 steel has excellent intergranular corrosion resistance and room temperature strength.
In particular, N11Ls steel, which has been subjected to final solution treatment at a temperature at which nitrides are completely dissolved, has particularly excellent high-temperature strength. On the other hand, high-temperature steel with a grain size of No. 6 or higher and No. 7 steel have a high-temperature, strong malleability surface μH with just the addition of N; It can be seen that oxidizing properties are obtained. Taki 1 for this
0 steel and Na1l steel have KNb/N≧ as shown in Part 1A.
These are comparative materials under the condition of 1oo[C]+5, and all of these are inferior in intergranular corrosion resistance.

また随8鋼、Pa9鋼、N112鋼へN1114鋼はい
ずnも本発明製造法によシ得らnたもので、こnらは耐
粒界腐食性、常温強度、耐水蒸気酸化性及び高温強度と
いう総ての面で優nた特性を得ていることが判る。
In addition, all steels such as No. 8 steel, Pa9 steel, N112 steel and N1114 steel are obtained by the manufacturing method of the present invention, and these have excellent intergranular corrosion resistance, room temperature strength, steam oxidation resistance, and high temperature It can be seen that excellent properties have been obtained in all aspects of strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は17wt%Cr−12wt%Ni −N : 
0.05〜0.15.、wt%鋼において粒界腐食性に
対するNb/N 、 Cの影響を示すものである。第2
図は0.03wt%C17wt%Cr−12wt%Ni
−0,85wt%Nb鋼において高温強度に及ぼすN量
の影響を示すものである。第3図は同じ(o、o3wt
%C−17wt%Cr−12wt%Ni −0,85w
t%Nb鋼において常温強度に及ぼすN量の影響を示す
ものである。第4図は0、03 wt%C−17wt%
Cr−12wt%Ni −0,85wt%Nb −0,
095wt S N鋼における熱処理条件と結晶粒度と
の関係含水すものである。 第5図は同じ(0,03wt%C−x7wt%Cr −
12wt%Ni −0,85wt%Nb−0,095w
t%N鋼において冷間加工度と最終溶体化処理後の結晶
粒度との関係を示すものである。第6図は同じ(0,0
3wt % C−17wt%Cr−12wt%Ni −
0,85wt%Nb−0,095wt%N鋼において結
晶粒度とクリープ破断強度との関係を示すものである。 特許出願人  日本銅管株式会社 発  明  者   遠   山        見回
         峯   岸        初回 
       服   部   圭   肋間    
加根魯 和 宏 代理人弁理士   吉   原   省   三同  
 1司      高   橋        清同 
 弁護士   吉   原   弘   子(’ON)
マl管採
Figure 1 shows 17wt%Cr-12wt%Ni-N:
0.05-0.15. , which shows the influence of Nb/N and C on intergranular corrosion in wt% steel. Second
The figure shows 0.03wt%C17wt%Cr-12wt%Ni
This figure shows the influence of the amount of N on the high-temperature strength of -0.85 wt% Nb steel. Figure 3 is the same (o, o3wt
%C-17wt%Cr-12wt%Ni -0,85w
This figure shows the influence of the amount of N on the room temperature strength of t%Nb steel. Figure 4 shows 0.03 wt%C-17wt%
Cr-12wt%Ni-0, 85wt%Nb-0,
Relationship between heat treatment conditions and grain size in 095wt SN steel. Figure 5 is the same (0.03wt%C-x7wt%Cr-
12wt%Ni-0,85wt%Nb-0,095w
This figure shows the relationship between the degree of cold work and the grain size after final solution treatment in t%N steel. Figure 6 is the same (0,0
3wt% C-17wt%Cr-12wt%Ni −
This figure shows the relationship between grain size and creep rupture strength in 0.85wt%Nb-0.095wt%N steel. Patent applicant: Nippon Doppan Co., Ltd. Inventor: Toyama Mikami Minegishi First time
Kei Hattori Intercostal space
Kazuhiro Kanero, Patent Attorney, Sho Yoshihara, Sando
1st Tsukasa Seido Takahashi
Attorney Hiroko Yoshihara ('ON)
Maru pipe collection

Claims (3)

【特許請求の範囲】[Claims] (1)C:0.02〜0.05wt%、Si:2wt%
以下、Mn:2wt%以下、Ni:9〜35wt%、C
r:15〜26wt%、N:0.05〜0.15wt%
、Nb:2wt%以下、さらに必要に応じてMo:3w
t%以下、Al:1wt%以下、Cu:3wt%以下の
1種又は2種以上を含有し、残 部Fe及び不可避不純物からなり、且つNb量、N量及
びC量が、 Nb/N≧100〔C〕+5 の関係を満足するよう調整され、結晶粒 度番号が6番未満である耐食性および強 度等の優れたNbを含有するオーステナイ ト系耐熱鋼。
(1) C: 0.02-0.05wt%, Si: 2wt%
Below, Mn: 2 wt% or less, Ni: 9 to 35 wt%, C
r: 15-26wt%, N: 0.05-0.15wt%
, Nb: 2wt% or less, further Mo: 3w as necessary
t% or less, Al: 1wt% or less, Cu: 3wt% or less, the balance consists of Fe and unavoidable impurities, and the amount of Nb, the amount of N, and the amount of C are Nb/N≧100 [C]+5 Nb-containing austenitic heat-resistant steel having a grain size number of less than 6 and having excellent corrosion resistance and strength.
(2)C:0.02〜0.05wt%、Si:2wt%
以下、Mn:2wt%以下、Ni:9〜35wt%、C
r:15〜26wt%、N:0.05〜0.15wt%
、Nb:2wt%以下、さらに必要に応じてMo:3w
t%以下、Al:1wt%以下、Cu:3wt%以下の
1種又は2種以上を含有し、残部 Fe及び不可避不純物からなり、且つNb量、N量及び
C量が、 Nb/N≧100〔C〕+5 の関係を満足するよう調整され、結晶粒 度番号が6番以上である耐食性および強 度等の優れたNbを含有するオーステナイ ト系耐熱鋼。
(2) C: 0.02-0.05wt%, Si: 2wt%
Below, Mn: 2 wt% or less, Ni: 9 to 35 wt%, C
r: 15-26wt%, N: 0.05-0.15wt%
, Nb: 2wt% or less, further Mo: 3w as necessary
t% or less, Al: 1wt% or less, Cu: 3wt% or less, the balance consists of Fe and unavoidable impurities, and the amount of Nb, the amount of N, and the amount of C are Nb/N≧100 An austenitic heat-resistant steel containing Nb that is adjusted to satisfy the relationship of [C]+5 and has a grain size number of 6 or more and has excellent corrosion resistance and strength.
(3)C:0.02〜0.05wt%、Si:2wt%
以下、Mn:2wt%以下、Ni:9〜35wt%、C
r:15〜26wt%、N:0.05〜0.15wt%
、Nb:2wt%以下、さらに必要に応じてMo:3w
t%以下、Al:1wt%以下、Cu:3wt%以下の
1種又は2種以上を含有し、残 部Fe及び不可避不純物からなり、且つNb量、N量及
びC量が、 Nb/N≧100〔C〕+5 の関係を満足するよう調整された鋼を、 冷間加工途中で1150℃以上の温度で軟 化処理し、その後の冷間加工を15%以 上の冷間加工度で行った後、1150℃以 上の温度で最終溶体化処理することを特 徴とする耐食性および強度等の優れたNb を含有するオーステナイト系耐熱鋼の製 造方法。
(3) C: 0.02-0.05wt%, Si: 2wt%
Below, Mn: 2 wt% or less, Ni: 9 to 35 wt%, C
r: 15-26wt%, N: 0.05-0.15wt%
, Nb: 2wt% or less, further Mo: 3w as necessary
t% or less, Al: 1wt% or less, Cu: 3wt% or less, the balance consists of Fe and unavoidable impurities, and the amount of Nb, the amount of N, and the amount of C are Nb/N≧100 Steel adjusted to satisfy the relationship [C] + 5 is softened at a temperature of 1150°C or higher during cold working, and the subsequent cold working is performed at a degree of cold working of 15% or higher. A method for producing Nb-containing austenitic heat-resistant steel having excellent corrosion resistance and strength, the method comprising final solution treatment at a temperature of 1150° C. or higher.
JP18476484A 1984-09-04 1984-09-04 Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture Pending JPS6164860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18476484A JPS6164860A (en) 1984-09-04 1984-09-04 Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18476484A JPS6164860A (en) 1984-09-04 1984-09-04 Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture

Publications (1)

Publication Number Publication Date
JPS6164860A true JPS6164860A (en) 1986-04-03

Family

ID=16158917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18476484A Pending JPS6164860A (en) 1984-09-04 1984-09-04 Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture

Country Status (1)

Country Link
JP (1) JPS6164860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369946A (en) * 1986-09-10 1988-03-30 Mitsubishi Heavy Ind Ltd Austenitic heat-resisting steel
JPH05195126A (en) * 1992-01-22 1993-08-03 Sumitomo Metal Ind Ltd Highly corrosion resistant alloy for heat exchanger tube of boiler
JP2009293063A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities
KR20190016629A (en) * 2017-08-08 2019-02-19 한국기계연구원 Austenitic heat resisting steel and method of manufacuring the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369946A (en) * 1986-09-10 1988-03-30 Mitsubishi Heavy Ind Ltd Austenitic heat-resisting steel
JPH05195126A (en) * 1992-01-22 1993-08-03 Sumitomo Metal Ind Ltd Highly corrosion resistant alloy for heat exchanger tube of boiler
JP2009293063A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities
KR20190016629A (en) * 2017-08-08 2019-02-19 한국기계연구원 Austenitic heat resisting steel and method of manufacuring the same

Similar Documents

Publication Publication Date Title
JP2760004B2 (en) High-strength heat-resistant steel with excellent workability
JP6289941B2 (en) Austenitic heat resistant steel
JP4221518B2 (en) Ferritic heat resistant steel
JPS6024353A (en) Heat-resistant 12% cr steel
JP4074555B2 (en) Manufacturing method of steel for high strength low alloy boilers with excellent creep characteristics
JP6477252B2 (en) Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
JP2010180459A (en) Duplex phase stainless steel and manufacturing method thereof
US11866814B2 (en) Austenitic stainless steel
JP2808048B2 (en) High-strength ferritic heat-resistant steel
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPS6164860A (en) Austenite compound heat resisting steel containing nb excellent in corrosion resistance and strength or the like and its manufacture
JPH04371551A (en) High strength ferritic heat resisting steel
JP6718510B2 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
JPS5923855A (en) Steel having high strength at high temperature containing carbide forming element
JP4009124B2 (en) High strength low Cr ferritic boiler steel pipe with excellent long-term creep characteristics and method for producing the same
JP2021105204A (en) Austenitic heat-resistant steel
JP3752075B2 (en) High strength steel for super large heat input welding
JPH01287249A (en) Austenitic stainless steel tube and its manufacture
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3570379B2 (en) Low alloy heat resistant steel
JP3301284B2 (en) High Cr ferritic heat resistant steel
JPH055891B2 (en)
JPH0735548B2 (en) Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength
JPS60155620A (en) Manufacture of steel plate for reactor container having superior falling characteristic
JP4264179B2 (en) Low carbon steel continuous cast slab with small austenite grains during heating